TY - JOUR A1 - Kazlagić, Anera A1 - Rosner, M. A1 - Cipriani, A. A1 - Frick, D. A. A1 - Glodny, J. A1 - Hoffmann, E. J. A1 - Hora, J. M. A1 - Irrgeher, J. A1 - Lugli, F. A1 - Magna, T. A1 - Meisel, T. C. A1 - Meixner, A. A1 - Possolo, A. A1 - Pramann, A. A1 - Pribil, M. J. A1 - Prohaska, T. A1 - Retzmann, Anika A1 - Rienitz, O. A1 - Rutherford, D. A1 - Paula-Santos, G. M. A1 - Tatzel, M. A1 - Widhalm, S. A1 - Willbold, M. A1 - Zuliani, T. A1 - Vogl, Jochen T1 - Characterisation of conventional 87Sr/86Sr isotope ratios in cement, limestone and slate reference materials based on an interlaboratory comparison study JF - Geostandards and Geoanalytical Research N2 - An interlaboratory comparison (ILC)was organised to characterise 87Sr/86Sr isotope ratios in geological and industrial reference materials by applying the so-called conventional method for determining 87Sr/86Sr isotope ratios. Four cements (VDZ 100a,VDZ 200a, VDZ 300a, IAG OPC-1), one limestone (IAG CGL ML-3) and one slate (IAG OU-6) reference materials were selected, covering a wide range of naturally occurring Sr isotopic signatures. Thirteen laboratories received aliquots of these six reference materials together with a detailed technical protocol. The consensus values for the six reference materials and their associated measurement uncertainties were obtained by applying a Gaussian, linear mixed effects model fitted to all the measurement results. By combining the consensus values and their uncertainties with an uncertainty contribution for potential heterogeneity, reference values ranging from 0.708134 mol mol-1 to 0.729778 mol mol-1 were obtained with relative expanded uncertainties of ≤ 0.007 %. This study represents an ILC on conventional 87Sr/86Sr isotope ratios, within which metrological principles were considered and the compatibility of measurement results obtained by MC-ICP-MS and by MC-TIMS is demonstrated. The materials characterised in this study can be used as reference materials for validation and quality control purposes and to estimate measurement uncertainties in conventional 87Sr/86Sr isotope ratio measurement. KW - Sr isotope analysis KW - Isotope ratios KW - Cement KW - Geological material KW - MC-TIMS KW - MC-ICP-MS KW - Interlaboratory comparison KW - Measurement uncertainty KW - Cconventional method PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579836 DO - https://doi.org/10.1111/ggr.12517 SN - 1639-4488 VL - 47 IS - 4 SP - 821 EP - 840 PB - Wiley online library AN - OPUS4-57983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kazlagić, Anera A1 - Stephan, D. A1 - Ostermann, Markus A1 - Possolo, A. A1 - Vogl, Jochen T1 - Fingerprinting Portland cements by means of 87Sr/86Sr and 143Nd/144Nd isotope ratios and geochemical profiles JF - Advances in Cement Research N2 - This study uses conventional 87Sr/86Sr and 143Nd/144Nd isotope and interelement ratios of Ca, Sr, K, Mn, Mg and Ti as fingerprints for provenancing ordinary Portland cements (OPC). Herein, the first database of Sr and Nd isotope ratios investigated in OPCs, stemming from 29 cement plants located worldwide, was created. The results show that the Sr isotope ratios of OPCs are higher than those of seawater from the observed geological period. The spread of 143Nd/144Nd in OPCs is not as large as the spread for 87Sr/86Sr isotope ratios. However, the combination of both Sr and Nd isotope ratios provides the potential for distinguishing between cements of different production sites. Most of the OPCs investigated have measurable differences in their 87Sr/86Sr and 143Nd/144Nd isotope ratios, which can be employed as a valuable analytical fingerprinting tool. In the case of equivocal results, divisive hierarchical clustering was employed to help overcome this issue. The construction of geochemical profiles allowed the computing of suitably defined distances between cements and clustering them according to their chemical similarity. By applying this methodology, successful fingerprinting was achieved in 27 out of the 29 ordinary Portland cements that were analysed. KW - Elemental fingerprints KW - Geochemistry KW - Portland cement KW - Sr and Nd isotope analysis KW - Statistical analysis PY - 2023 DO - https://doi.org/10.1680/jadcr.23.00018 SN - 0951-7197 SP - 1 EP - 12 PB - Emerald Publishing Limited AN - OPUS4-57979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -