TY - JOUR A1 - Tvrdonova, M. A1 - Vlcnovska, M. A1 - Pompeiano Vanickova, L. A1 - Kanicky, V. A1 - Adam, V. A1 - Ascher, Lena A1 - Jakubowski, Norbert A1 - Vaculovicova, M. A1 - Vaculovic, T. T1 - Gold nanoparticles as labels for immunochemical analysis using laser ablation inductively coupled plasma mass spectrometry JF - Analytical and Bioanalytical Chemistry N2 - In this paper, we describe the labelling of antibodies by gold nanoparticles (AuNPs) with diameters of 10 and 60 nm with detection by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Additionally, the AuNPs labelling strategy is compared with commercially available labelling reagents based on MeCAT (metal coded affinity tagging). Proof of principle experiments based on dot blot experiments were performed. The two labelling methods investigated were compared by sensitivity and limit of detection (LOD). The absolute LODs achieved were in the range of tens of picograms for AuNP labelling compared to a few hundred picograms by the MeCAT labelling. KW - Nanoparticle KW - LA-ICP-MS KW - Labeling PY - 2019 DO - https://doi.org/10.1007/s00216-018-1300-7 SN - 1618-2642 SN - 1618-2650 VL - 411 IS - 3 SP - 559 EP - 564 PB - Springer-Verlag GmbH CY - Berlin, Heidelberg AN - OPUS4-47093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saatz, Jessica A1 - Grunert, B. A1 - Jakubowski, Norbert T1 - Nanocrystals as tagging reagents for imaging mass cytometry N2 - Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is gaining importance for bioimaging cytometry to answer analytical, biological and biomedical questions. High sensitivity and spatial resolution make it an excellent tool for imaging of metal and heteroelement distribution in single cells. Comparable to CyTOF imaging mass cytometry, metal coded antibodies can be used for multiparametric analysis as well as quantification. In this project, nanocrystals are investigated as new highly sensitive metal tags for identification and quantification of biomarkers, like Alzheimer’s or breast cancer, in clinical cell assays and tissue samples. Of high significance is the simultaneous analysis of several biomarkers at once, which is possible by special coding of lanthanide tags on the biomarker associated antibody. Nanocrystals show potential for sensitive measurement in MS due to high stability and signal amplification compared to tags with fewer metal atoms. For proof of principle, synthesis and characterization of lanthanide doped nanocrystals was performed by a nanoPET pharma GmbH with great reproducibility and homogenous size. In A549 cell cultures, the uptake and distribution of these nanocrystals within the monolayered cells was investigated by LA-ICP-MS measurements using subcellular resolution. The nanocrystals showed high sensitivity and the possibility of multiparametric analysis by doting different lanthanides. Additionally, stability of the bioconjugation of the nanocrystals and target antibodies was investigated using Dot Blot experiments and LA-ICP-MS. T2 - CyTOF User Forum 2018 CY - Berlin, Germany DA - 01.02.2018 KW - Nanocrystal KW - Imaging mass cytometry KW - LA-ICP-MS KW - Bioconjugation KW - Metal-Tag KW - Multimodal PY - 2018 AN - OPUS4-44106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saatz, Jessica A1 - Traub, Heike A1 - Anderhalten, L. C. A1 - Infante-Duarte, C. T1 - Imaging mass cytometry for visualisation of neuroinflammation induced changes N2 - Multiple sclerosis (MS) is the most common acquired neurological disease affecting Young adults. It leads to myelin destruction and formation of lesions in the brain and permeabilization of the blood-brain barrier (BBB). Gadolinium based contrast agents (GBCA), used for diagnosis and monitoring by MRI, might accumulate in tissue, including brain. Using an animal model, application of linear and macrocyclic GBCA was investigated. Analysis was performed by laser ablation inductively coupled plasma (LA-ICP) MS. This method works as a bioimaging tool for sample thin sections and allows to identify regions of accumulated Gd in the samples. In healthy and diseased mice, inflammationmediated changes in the brain were investigated by application of GBCA. The mean objective is to understand the changes in inflamed tissue and correlate alterations of the BBB by LA-ICP-MS (Imaging Mass Cytometry). T2 - Colloquium Analytische Atomspektroskopie 2019 CY - Freiberg, Germany DA - 23.09.2019 KW - Bioimaging KW - LA-ICP-MS KW - Imaging Mass Cytometry KW - Gadolinium PY - 2019 AN - OPUS4-49853 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saatz, Jessica A1 - Grunert, Bianca A1 - Jakubowski, Norbert A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Emmerling, Franziska T1 - Tagging reagents for imaging mass cytometry N2 - In der klinischen Diagnostik werden für zytometrische Messverfahren bereits eine Reihe von Reagenzien eingesetzt zur Markierung von Antikörper eingesetzt, um die Detektion von Biomarkern mittels Fluoreszenz- oder Flugzeitmassenspektrometrie zu ermöglichen. Seit kurzem ist auch eine Imaging Mass Cytometry Kombination direkt erhältlich, wodurch der Nachweis von Biomarkern in Gewebeschnitten erreicht werden kann. Dazu wird eine Kopplung von Laser Ablation und induktiv gekoppeltem Plasma Massenspektrometrie eingesetzt, wobei ähnlich der Massenzytometrie, zuvor Antikörper mit Metallen markiert, und im Anschluss mit dem Gewebeschnitt inkubiert werden. Durch die hohe Ortsauflösung können die Biomarker lokalisiert, und zukünftig vielleicht auch quantifiziert werden. Insbesondere Lanthanide eignen sich als Markierungsmetalle, da sie einen niedrigen Untergrund und chemisch ähnliches Verhalten zueinander aufweisen. Allein durch diese Elemente können bereits etwa 15 Parameter unterschieden werden, was durch isotopenreine Standards weiter gesteigert werden kann. Vom Markierungsgrad abhängig werden unterschiedlich viele Metalle am Antikörper gebunden, und beeinflussen so die Sichtbarkeit im ICP-MS. Nanopartikel könnten daher eine deutliche Steigerung der Sensitivität bewirken. GdVO4 Nanokristalle scheinen bisher sehr vielversprechend und bieten neben multiparametrischen Anwendungen auch Multimodalität. Die Synthese der Nanokristalle zeigte hohe Homogenität und Reproduzierbarkeit in Partikelgröße in der Zusammensetzung. Ein erstes Experiment mit einer Zellkultur konnte bereits die effiziente Markierung der Zellen unter Beweis stellen, wobei durch hohe Signalstärke auch subzelluläre Auflösung in der LA-ICP-MS erreicht werden konnte. T2 - ICPMS Anwendertreffen 2018 CY - Berlin, Germany DA - 03.09.2018 KW - LA-ICP-MS KW - Immuno assay KW - Bioimaging KW - Nanocrystal KW - Lanthanide KW - Metal-tag PY - 2018 AN - OPUS4-45866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saatz, Jessica A1 - Grunert, Bianca A1 - Jakubowski, Norbert T1 - Nanocrystals as labeling reagents for imaging mass cytometry N2 - Imaging of elemental distributions in single cell assays as well as tissue sections can be performed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). This powerful technique offers precise spatially resolved measurements at trace and ultratrace levels and has been established as an excellent tool to answer analytical, biological and biomedical questions. To date, mass cytometry is already able to simultaneously detect up to 40 cellular targets due to conjugation of isotopically pure lanthanides to affinity binders, e.g. antibodies. To further enhance the ability of multiparametric analysis to more than 100 analytes at once, we investigated lanthanide nanocrystals as new, highly sensitive metal tags for identification of targets in clinical cell assays and tissue samples. Multiparametric analysis will be possible by encoding the lanthanide composition of nanocrystals associated to the affinity binders. Nanocrystals showed remarkable potential for sensitive detection in MS due to high stability and signal amplification compared to e.g. polymer tags, carrying fewer metal atoms. Furthermore, the nanocrystals allow multimodal imaging due fluorescence of Eu3+ as well as contrast enhancing properties of Gd3+ in magnetic resonance imaging. Synthesis of functionalized lanthanide nanocrystals for further bioconjugation was performed with high reproducibility and monodisperse size distribution. For proof of principle, the uptake and distribution of these nanocrystals within the monolayered cell line A549 were investigated by mapping the intensities at subcellular resolution using LA-ICP-MS. It could be shown, that the cells were efficiently labeled with the nanocrystals. Additionally, the bioconjugation of the nanocrystals to antibodies and particularly the preservation of the antibody specificity was investigated using Dot Blot experiments. All in all, the results imply high sensitivity and the possibility of multiparametric analysis by doting various lanthanides into the nanocrystals. T2 - Bioimaging Workshop BI(MS)2 CY - Münster, Germany DA - 24.05.2018 KW - Bioimaging KW - Nanoparticle KW - LA-ICP-MS KW - Lanthanide PY - 2018 AN - OPUS4-45867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Iznaguen, H. A1 - Traub, Heike A1 - Ostermann, Markus T1 - LA-ICP-MS- und RFA-Messungen für die Bestimmung von polybromierten Flammschutzmitteln (PBFSM) in Polystyrol- und Polypropylenproben N2 - To investigate the release and migration of flame retardants from polypropylene (PP) and polysytrene (PS) we use samples of with defined content of flame retardants as additives. Therefore we use HBCD in the concentration of 1% wt. resp. BDE-209 in the concentration of 0.1% wt. For the preparation of the samples granular of PP resp. PS are extruded together with the BFRs additives. Even the result of this process may lead to homogenous partition of the BFRs additives, this has to be proven before using the samples in the experimental setup for weathering studies. In accordance to the regulation of RoHS, where the use of XRF is recommended for the proof of flame retardants in electronic consumer products, we use this method as a reference to the laser ablation ICP/MS. Therefore we present the correlation of these experiments. The experimental setup for the XRF experiment is like a standard addition: in cavities, which are introduced in the sample plates subsequently, solutions of defi ned concentration of flame retardants are put in these cavities. According to the idea of standard addition, we get an information of the originating concentration of flame retardant in each sample and we can monitor the release and migration of these additives during/after the weathering experiment with high precision. Therefore to the designated plates an internal standard is added as a marker and can be analyzed after the weathering experiment. As awaited, the light exposed site, shows a deviating content in flame retardants compared to the sheltered site. N2 - Gegenstand der vorzustellenden Arbeiten ist die Prüfung der Umweltbeständigkeit und -verträglichkeit von Materialien und Produkten hinsichtlich der Emission von potenziellen Schadstoffen in die Umwelt. Hierzu werden chemisch-physikalische Einflüsse (Bewitterung) und mikrobielle Beanspruchungen an Modellmaterialien evaluiert. So werden die Freisetzungsraten von Schadstoffen in Abhängigkeit der Beanspruchung beschrieben. Als Modellmaterialien kommen die Polymere Polystyrol (PS) und Polypropylen (PP) zum Einsatz, die jeweils mit polybromierten Flammschutzmitteln (PBFSM) versehen sind. Synergistische Effekte der Bewitterungsparameter und der mikrobiologischen Beanspruchung sollen dabei ebenso betrachtet werden, wie die gezielte Alterung. Auch findet eine Beschreibung des Verhaltens der ausgetragenen Schadstoffe in den Umweltkompartimenten Boden oder Wasser statt. Hier sind mit Hilfe der zu entwickelnden Screening- und non-Target-Analyseverfahren die Transformation und der Metabolismus durch Mikroorganismen zu beschreiben. Auch soll mit Hilfe der RFA und der LA-ICP-MS die Abreicherung der PBFSM in den Modellmaterialien beschrieben werden. Aus den Ergebnissen sollen Korrelationen zwischen den künstlichen Alterungsverfahren und realen Szenarien abgeleitet werden. T2 - Umwelt 2018 CY - Münster, Germany DA - 09.09.2018 KW - PBFSM KW - RFA KW - LA-ICP-MS KW - Polypropylen KW - Polystyrol PY - 2018 AN - OPUS4-47028 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Traub, Heike A1 - Ostermann, Markus A1 - Becker, Roland A1 - Köppen, Robert A1 - Bücker, Michael A1 - Reger, Christian T1 - LA-ICP-MS- und RFA-Messungen für die Bestimmung von polybromierten Flammschutzmitteln(PBFSM) in Polystyrol- und Polypropylenproben N2 - Gegenstand der vorzustellenden Arbeiten ist die Prüfung der Umwelt-beständigkeit und -verträglichkeit von Materialien und Produkten hinsichtlich der Emission von potenziellen Schadstoffen in die Umwelt. Hierzu werden chemisch-physikalische Einflüsse (Bewitterung) und mikrobielle Beanspruchungen an Modellmaterialien evaluiert. So werden die Freisetzungsraten von Schadstoffen in Abhängigkeit der Beanspruchung beschrieben. Als Modellmaterialien kommen die Polymere Polystyrol (PS) und Polypropylen (PP) zum Einsatz. Synergistische Effekte der Bewitterungsparameter und der mikrobiologischen Beanspruchung sollen dabei ebenso betrachtet werden, wie die gezielte Alterung. Auch findet eine Beschreibung des Verhaltens der ausgetragenen Schadstoffe (polybromierte Flammschutzmittel) in den Umweltkompartimenten Boden oder Wasser statt. Hier sind mit Hilfe der zu entwickelnden Screening- und non-Target-Analyseverfahren die Transformation und der Metabolismus durch Mikroorganismen zu beschreiben. Aus den Ergebnissen sollen Korrelationen zwischen den künstlichen Alterungsverfahren und realen Szenarien abgeleitet werden. T2 - Kolloquium "Aquatische Ökologie" CY - Essen, Germany DA - 27.11.2019 KW - Umweltsimulation KW - PBFSM KW - LA-ICP-MS KW - RFA PY - 2019 AN - OPUS4-49975 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Köppen, Robert A1 - Becker, Roland A1 - Traub, Heike A1 - Ostermann, Markus T1 - Weathering of flame-protected polymers and monitoring of the release of brominated flame retardants under different scenarios N2 - In addition to previously reported results on the accelerated weathering of polystyrene samples (PS) containing 1 wt.% hexabromocyclododecane (HBCD), we present the first results of our investigations of polypropylene samples (PP) containing 0.1 wt.% BDE-209. All studied polymer samples were exposed to a defined weathering schedule in a climate chamber in accordance to regulation EN ISO 4892-3:2006. For the determination of BDE-209 in the collected raining water the samples were prepared in accordance to a validated protocol. Before the analyses each sample was spiked with isotopically labeled BDE-209. Subsequently the samples were extracted with isooctane. The obtained extracts were concentrated, and the resulting solutions were analyzed by GC/MS. Additionally, the total bromine content was monitored for the weathered and untreated samples using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and X-ray fluorescence analysis (XRF) as a non-destructive and rapid method. In general, the resulting data from the accelerated weathering will be compared to those from the natural weathering experiments. Here, the surfaces of the test pieces were analyzed by LA-ICP-MS and XRF as well. Moreover, soil bed tests were conducted in a well characterized model soil. This soil (boulder-clay, sand with 12 % loam, particle size in total 0.2-4 mm) is filled in a free-draining basin inside of an air-conditioned cellar. In this manner, TOC, water capacity and humidity are recorded parameters. To induce a leaching process from the samples by the raining water, the target water content is calculated to 8%. The actual humidity is measured by a tensiometer, assuring the duration of the raining period. A defined humidity is a fundamental parameter for a biological activity in the soil. The test polymers were placed up to the half in the soil. Microbial activity of the soil is monitored by a reference polymer (polyurethane) and should induce the release of HBCD and BDE-209 out of the test materials. These released analytes will be captured by passive samplers (silicone tubes) placed in a distinct distance to the polymer samples in the soil. The soil bed experiments are complementary to the weathering experiments due to the biological activity in the soil. T2 - SETAC Glb 2019 CY - Landau, Germany DA - 04.09.2019 KW - Polymer KW - XRF KW - LA-ICP-MS KW - BFR PY - 2019 AN - OPUS4-49797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Köppen, Robert A1 - Becker, Roland A1 - Traub, Heike A1 - Ostermann, Markus T1 - Changes in polymer surface morphology and leaching of brominated flame retardants induced by different weathering scenarios N2 - In addition to previously reported results on the accelerated weathering of polystyrene samples (PS) containing 1 wt.% hexabromocyclododecane (HBCD), we present the first results of our investigations of polypropylene samples (PP) containing 0.1 wt.% BDE-209. All studied polymer samples were exposed to a defined weathering schedule in a climate chamber in accordance to regulation EN ISO 4892-3:2006. For the determination of BDE-209 in the collected raining water the samples were prepared in accordance to a validated protocol. Before the analyses each sample was spiked with isotopically labeled BDE-209. Subsequently the samples were extracted with isooctane. The obtained extracts were concentrated, and the resulting solutions were analyzed by GC/MS. Additionally, the total bromine content was monitored for the weathered and untreated samples using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and X-ray fluorescence analysis (XRF) as a non-destructive and rapid method. In general, the resulting data from the accelerated weathering will be compared to those from the natural weathering experiments. Here, the surfaces of the test pieces were analyzed by LA-ICP-MS and XRF as well. Moreover, soil bed tests were conducted in a well characterized model soil. This soil (boulder-clay, sand with 12 % loam, particle size in total 0.2-4 mm) is filled in a free-draining basin inside of an air-conditioned cellar. In this manner, TOC, water capacity and humidity are recorded parameters. To induce a leaching process from the samples by the raining water, the target water content is calculated to 8%. The actual humidity is measured by a tensiometer, assuring the duration of the raining period. A defined humidity is a fundamental parameter for a biological activity in the soil. The test polymers were placed up to the half in the soil. Microbial activity of the soil is monitored by a reference polymer (polyurethane) and should induce the release of HBCD and BDE-209 out of the test materials. These released analytes will be captured by passive samplers (silicone tubes) placed in a distinct distance to the polymer samples in the soil. The soil bed experiments are complementary to the weathering experiments due to the biological activity in the soil. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2019 KW - BFR KW - LA-ICP-MS KW - XRF KW - Polymer PY - 2019 N1 - Folien in deutscher Sprache, Votrag, Titel und Abtract in englischer Sprache AN - OPUS4-49796 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Iznaguen, H. A1 - Traub, Heike A1 - Feldmann, Ines A1 - Köppen, Robert A1 - Witt, Angelika A1 - Jung, Christian A1 - Becker, Roland A1 - Oleszak, K. A1 - Bücker, Michael A1 - Urban, Klaus A1 - Reger, Christian A1 - Ostermann, Markus T1 - Bewitterungsszenarien im Vergleich – Veränderungen in der Oberflächenmorphologie von Polypropylen (PP) und Polystyrol (PS) unter dem Aspekt des Austrags von polybromierten Flammschutzmitteln N2 - In addition to previously reported results on the simulated aging of polystyrene samples (PS) containing 1 wt. % hexabromocyclododecane (HBCD), we present the first results of our investigations of polypropylene (PP)-samples containing 0.1 wt. % BDE-209. All studied polymer samples were exposed to a defined weathering schedule in a climate chamber in accordance to regulation EN ISO 4892-3:2006.For the determination of BDE-209 in the collected rain water samples derived from the used climate chamber, the samples were prepared in accordance with a validated protocol. Before the analyses, each sample was spiked with 2 µL of isotopically labeled BDE-209 (13C10-BDE-209) to serve as internal standard (ISTD) in the performed stable isotope dilution analysis. Subsequently the samples were extracted with isooctane, the obtained aliquots of the extracts were concentrated to 200 µL and 2 µL of the resulting solution were injected to the GC/MS for quantification. Additionally, the total bromine contents are monitored for the aged and untreated samples using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as well as X-ray fluorescence analysis (XRF) as non-destructive and rapid method. Furthermore, results from surface analysis using environmental scanning electron microscopy (ESEM) for morphological characterization of the aged and untreated samples were presented and discussed. In general, the resulting data from the accelerated aging will be compared to those from the natural weathering experiments (“atmospheric exposure”, in soil). The atmospheric exposure was performed by placing the samples on a weathering rack, which is aligned in SW direction (in a 45° angle to the horizon). The weathering data were regularly recorded by Deutscher Wetterdienst at this site. The surfaces of the test specimens (aged and stored references) were analyzed by ESEM as well as by LA-ICP-MS and by XRF. The surface of PS and PP specimens aged outdoors present the aging under real conditions and allow the comparison to the accelerated aged specimens by means of the weathering chamber. This way, we explore the efficiency of the accelerated aging procedure, which provides the advantage of well-defined and reproducible conditions compared to natural weathering, as a tool for testing different plastic materials. Additionally “in soil” experiments were conducted in-door in a well characterized testing soil. The soil (boulder-clay, sand with 12 % loam, particle size in total 0.2-4 mm) is filled in a free-draining concrete basin inside of an air-conditioned room. In this manner, TOC, water capacity and humidity are recorded parameters. To assure a washing out process from the samples by the raining water, the target water content is calculated to 8%. The actual humidity is measured by a tensiometer, assuring the duration of the raining period. The water content is additionally monitored by weight of the basin, capturing water from raining periods. The correct humidity is a fundamental parameter for biological activity. Samples of PS resp. PP were of dimension 10x1cm and 5 specimens were placed up to the half in the soil per basin. Microbial activity of the soil, monitored by the reference polyurethane, sets HBCD resp. BDE-209 of the samples free and will be leached from the samples by raining water. Thereafter these will be captured by passive samplers placed in a distinct distance to the samples in the soil. The “in soil” experiments are complementary to the weathering experiments due to the biological activity in the soil. These experiments simulate the fate of the brominated flame retardants in the biosphere. N2 - Gegenstand der vorzustellenden Arbeiten ist die Prüfung der Umweltbeständigkeit und -verträglichkeit von Materialien und Produkten hinsichtlich der Emission von potenziellen Schadstoffen in die Umwelt. Hierzu werden chemisch-physikalische Einflüsse (Bewitterung) und mikrobielle Beanspruchungen an Modellmaterialien evaluiert. So werden die Freisetzungsraten von Schadstoffen in Abhängigkeit der Beanspruchung beschrieben. Als Modellmaterialien kommen die Polymere Polystyrol (PS) und Polypropylen (PP) zum Einsatz, die jeweils mit polybromierten Flammschutzmitteln (PBFSM) versehen sind. Synergistische Effekte der Bewitterungsparameter und der mikrobiologischen Beanspruchung sollen dabei ebenso betrachtet werden, wie die gezielte Alterung. Auch findet eine Beschreibung des Verhaltens der ausgetragenen Schadstoffe in den Umweltkompartimenten Boden oder Wasser statt. Hier sind mit Hilfe der zu entwickelnden Screening- und non-Target-Analyseverfahren die Transformation und der Metabolismus durch Mikroorganismen zu beschreiben. Auch soll mit Hilfe der RFA und der LA-ICP-MS die Abreicherung der PBFSM in den Modellmaterialien beschrieben werden. Aus den Ergebnissen sollen Korrelationen zwischen den künstlichen Alterungsverfahren und realen Szenarien abgeleitet werden. T2 - 47. Jahrestagung der GUS 2018 CY - Stutensee - Blankenloch, Germany DA - 21.03.2018 KW - Polypropylen KW - Polystyrol KW - Flammschutzmittel KW - XRF KW - LA-ICP-MS PY - 2018 AN - OPUS4-47024 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Phukphatthanachai, P. A1 - Panne, Ulrich A1 - Traub, Heike A1 - Pfeifer, Jens A1 - Vogl, Jochen T1 - Quantification of sulphur in copper and copper alloys by GDMS and LA-ICP-MS, demonstrating metrological traceability to the international system of units JF - Journal of Analytical Atomic Spectrometry N2 - The quantification of the sulphur mass fraction in pure copper and copper alloys by GDMS and LA-ICP-MS revealed a lack of traceability mainly due to a lack of suitable certified reference materials for calibrating the instruments. Within this study GDMS and LA-ICP-MS were applied as routine analytical tools to quantify sulphur in copper samples by applying reference materials as calibrators, which were characterized for their sulphur mass fraction by IDMS beforehand. Different external calibration strategies were applied including a matrix cross type calibration. Both techniques with all calibration strategies were validated by using certified reference materials (others than those used for calibration) and good agreement with the reference values was achieved except for the matrix cross type calibration, for which the agreement was slightly worse. All measurement results were accompanied by an uncertainty statement. For GDMS, the relative expanded (k = 2) measurement uncertainty ranged from 3% to 7%, while for LA-ICP-MS it ranged from 11% to 33% when applying matrix-matched calibration in the sulphur mass fraction range between 25 mg kg-1 and 1300 mg kg-1. For cross-type calibration the relative expanded (k = 2) measurement uncertainty need to be increased to at least 12% for GDMS and to at least 54% for LA-ICP-MS to yield metrological compatibility with the reference values. The so obtained measurement results are traceable to the international system of units (SI) via IDMS reference values, which is clearly illustrated by the unbroken chain of calibrations in the metrological traceability scheme. KW - Sulfur KW - Copper KW - GDMS KW - LA-ICP-MS KW - Uncertainty KW - Traceability KW - SI PY - 2021 DO - https://doi.org/10.1039/d1ja00137j SN - 0267-9477 VL - 36 IS - 11 SP - 2404 EP - 2414 PB - Royal Society of Chemistry AN - OPUS4-53412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moraleja, I. A1 - Mena, M. L. A1 - Lázaro, A. A1 - Neumann, B. A1 - Tejedor, A. A1 - Jakubowski, Norbert A1 - Gómez-Gómez, M. M. A1 - Esteban-Fernández, D. T1 - An approach for quantification of platinum distribution in tissues by LA-ICP-MS imaging using isotope dilution analysis JF - Talanta N2 - Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been revealed as a convenient technique for trace elemental imaging in tissue sections, providing elemental 2D distribution at a quantitative level. For quantification purposes, in the last years several approaches have been proposed in the literature such as the use of CRMs or matrix matched standards. The use of Isotope Dilution (ID) for quantification by LA-ICP-MS has been also described, being mainly useful for bulk analysis but not feasible for spatial measurements so far. In this work, a quantification method based on ID analysis was developed by printing isotope-enriched inks onto kidney slices from rats treated with antitumoral Pt-based drugs using a commercial ink-jet device, in order to perform an elemental quantification in different areas from bio-images. For the ID experiments ¹⁹⁴Pt enriched platinum was used. The methodology was validated by deposition of natural Pt standard droplets with a known amount of Pt onto the surface of a control tissue, where could be quantified even 50 pg of Pt, with recoveries higher than 90%. The amount of Pt present in the whole kidney slices was quantified for cisplatin, carboplatin and oxaliplatin-treated rats. The results obtained were in accordance with those previously reported. The amount of Pt distributed between the medullar and cortical areas was also quantified, observing different behavior for the three drugs. KW - Isotopic dilution KW - LA-ICP-MS KW - Quantification KW - Imaging KW - Kidney KW - Pt-based drugs PY - 2018 DO - https://doi.org/10.1016/j.talanta.2017.09.031 SN - 0039-9140 VL - 178 SP - 166 EP - 171 PB - Elsevier AN - OPUS4-43627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Loehr, Konrad A1 - Jakubowski, Norbert A1 - Wanka, Antje Jutta A1 - Traub, Heike A1 - Panne, Ulrich T1 - Quantification of metals in single cells by LA-ICP-MS comparison of single spot analysis and imaging JF - Journal of Analytical Atomic Spectrometry N2 - LA-ICP-MS is increasingly used for single cell analysis in two different detection modes using either the imaging mode with subcellular resolution or alternatively single spot analysis of cells with a larger laser spot size. This study compares the analytical figures of merit of both detection modes (signal to noise, precision, accuracy, throughput), as well as ease of operation and data evaluation. Adherent 3T3 fibroblast cells were stained with two metal dyes (mDOTA-Ho, Ir-DNA-intercalator) and several dozen cells were measured using both modes. We found a ten times higher throughput for single spot analysis, which has as well a straightforward data analysis, shortening the total analysis time further. The signal to noise ratio for single spot analysis was found to be slightly better compared to the signal to noise of pixels in imaging. The mean metal intensity per single cell differed by only 10% between both modes and obtained distributions were found to show no statistically significant differences. Using matrix matched calibration based on standards spotted onto nitrocellulose membrane, we achieved detection limits (10 σ) of 12 fg for Ir and 30 fg for Ho and quantified 57 ± 35 fg Ir and 1,192 ± 707 fg Ho per single cell. Compared to a conventional ICP-MS measurement of a digest of ~60,000 cells, 54 % of Ir content and 358 % Ho content was found using quantitative LA-ICP-MS. The difference might be a consequence of the two metal dyes binding to different structures of the cell and therefore might behave differently in sample preparation for conventional and LA-ICP-MS. KW - Single cell analysis KW - LA-ICP-MS PY - 2018 DO - https://doi.org/10.1039/c8ja00191j SN - 0267-9477 SN - 1364-5544 VL - 33 IS - 9 SP - 1579 EP - 1587 PB - Royal Society of Chemistry AN - OPUS4-45903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert A1 - Müller, L. A1 - Wanka, Antje T1 - Development of immuno-assays and metal-staining techniques for bioimaging of cells and tissues using LA-ICP-MS N2 - We are using LA-ICP-MS to quantify metals in biological cells and thin cuts of tissues from varies organs. Different applications will be presented to demonstrate the state of the art of bioimaging to visualize the elemental distribution pattern in soft bio-materials (tissue, single cells) of metals, metal containing stains and metal-tagged antibodies. For this purpose, different strategies for metal tagging will be presented and will be compared in terms of analytical figures of merit. First applications for detection of biomarkers in animal and human tissue samples will be presented. In a first example, we have applied LA-ICP-MS to visualize the local distribution of proteins, which are used as bio-markers for neurodegenerative diseases. For this purpose, brain tissues from mice experiments have been stained by metal-tagged antibodies. House-keeping proteins have been investigated as internal cellular standards. Additionally, ink-jet printing of metal doped inks onto the surface of tissue samples has been applied for drift corrections and quantification. Validation of our results are achieved in comparison to immune-histochemical staining and optical microscopy. In a second example, we used specific metal-tagged antibodies for detection of biomarker specific for prostate cancer. For this purpose, micro tissue arrays are incubated with metal-tagged antibodies for bioimaging of samples from many patients using simultaneous detection of all relevant biomarkers and their tags. For improvement of sensitivity in the next example application nanoparticle tagged antibodies for detection of metallothionines in eye lens tissue samples will be discussed. Recently we have used our tagging and staining strategies to determine the cell cycle of single cells, which is of future interest for toxicological studies. Finally, future trends in elemental microscopy and mass cytometry imaging will be discussed. T2 - Workshop on Laser Bioimaging Mass Spectrometry CY - Münster, Germany DA - 24.05.2018 KW - Single cell analysis KW - LA-ICP-MS KW - Immuno-Assays PY - 2018 AN - OPUS4-45160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Billimoria, K. A1 - Diaz Fernandez, Y. A. A1 - Andresen, Elina A1 - Sorzabal-Bellido, I. A1 - Huelga-Suarez, G. A1 - Bartczak, D. A1 - Ortiz de Solórzano, C. A1 - Resch-Genger, Ute A1 - Goenaga Infante, H. T1 - The potential of bioprinting for preparation of nanoparticle-based calibration standards for LA-ICP-ToF-MS quantitative imaging JF - Metallomics N2 - This paper discusses the feasibility of a novel strategy based on the combination of bioprinting nano-doping technology and laser ablation-inductively coupled plasma time-of-flight mass spectrometry analysis for the preparation and characterization of gelatin- based multi-element calibration standards suitable for quantitative imaging. To achieve this, lanthanide up-conversion nanoparticles were added to a gelatin matrix to produce the bioprinted calibration standards. The features of this bioprinting approach were com- pared with manual cryosectioning standard preparation, in terms of throughput, between batch repeatability and elemental signal homogeneity at 5 μm spatial resolution. By using bioprinting, the between batch variability for three independent standards of the same concentration of 89 Y (range 0–600 mg/kg) was reduced to 5% compared to up to 27% for cryosectioning. On this basis, the relative standard deviation ( RSD ) obtained between three independent calibration slopes measured within 1 day also reduced from 16% (using cryosectioning ) to 5% (using bioprinting), supporting the use of a single standard preparation replicate for each of the concentrations to achieve good calibration performance using bioprinting. This helped reduce the analysis time by approximately 3-fold. With cryosectioning each standard was prepared and sectioned individually, whereas using bio-printing it was possible to have up to six different standards printed simultaneously, reducing the preparation time from approximately 2 h to under 20 min (by approxi- mately 6-fold). The bio-printed calibration standards were found stable for a period of 2 months when stored at ambient temperature and in the dark. KW - Environmental analysis KW - LA-ICP-MS KW - Lanthanide KW - Tag KW - Fluorescence KW - Nanoparticles KW - Reference material KW - Quality assurance KW - 3D-printing KW - Synthesis KW - Production KW - Multimodal PY - 2022 DO - https://doi.org/10.1093/mtomcs/mfac088 SN - 1756-591X VL - 14 IS - 12 SP - 1 EP - 9 PB - Oxford University Press CY - Oxford AN - OPUS4-57018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ascher, Lena A1 - Häckel, A. A1 - Schellenberger, E. A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Imaging of Eu doped very small iron oxide nanoparticle in atherosclerotic plaques via LA-ICP-MS N2 - Atherosclerotic lesions can be visualized by magnetic resonance imaging (MRI) using very small iron oxide nanoparticles (VSOP). VSOP accumulate in atherosclerotic plaques and thus serve as an atherosclerosis probe. The aim of this project was to image the distribution of europium doped VSOP (Eu-VSOP) by laser ablation ICP-MS in histological thin cuts of the aortic root region of ApoE knockout mouse model that is rich in atherosclerotic plaques. In addition, it was investigated whether VSOP accumulation in the plaques correlates with other biomarkers of inflammation for example macrophages and altered endothelium to assess whether it correlates with instability or vulnerability of the plaque regions. For this purpose, antibodies were labeled with various lanthanide elements and correlated with the Eu-VSOP distribution using LA-ICP-MS in a multiplex measurement mode. T2 - ESAS/CANAS 2018 CY - Berlin, Germany DA - 20.03.2018 KW - Bioimaging KW - LA-ICP-MS KW - Immunoassay KW - Nanoparticle KW - Labeling PY - 2018 AN - OPUS4-45131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ascher, Lena A1 - Häckel, Akvile A1 - Schellenberger, Eyk A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Imaging of Eu doped very small iron oxide nanoparticle in atherosclerotic plaques via LA ICP-MS N2 - Atherosclerotic lesions can be visualized by magnetic resonance imaging (MRI) using very small iron oxide nanoparticles (VSOP). VSOP accumulate in atherosclerotic plaques and thus serve as an atherosclerosis probe. The aim of this project was to image the distribution of europium doped VSOP (Eu-VSOP) by laser ablation ICP-MS in histological thin cuts of the aortic root region of ApoE knockout mouse model that is rich in atherosclerotic plaques. In addition, it was investigated whether VSOP accumulation in the plaques correlates with other biomarkers of inflammation for example macrophages and altered endothelium to assess whether it correlates with instability or vulnerability of the plaque regions. For this purpose, antibodies were labeled with various lanthanide elements and correlated with the Eu-VSOP distribution using LA-ICP-MS in a multiplex measurement mode. A possible correlation of reactive oxygen species (ROS) with endogenous iron or Eu-VSOP can also be detected by LA-ICP-MS. For this purpose, ROS-specific antibodies were also labeled with lanthanides. T2 - BI(MS)2 2018 – First Workshop on Laser Bioimaging Mass Spectrometry CY - Münster, Germany DA - 23.05.2018 KW - Bioimaging KW - LA-ICP-MS KW - Immunoassay KW - Nanoparticle KW - Labeling PY - 2018 AN - OPUS4-45133 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ascher, Lena A1 - Häckel, A. A1 - Schellenberger, E. A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Imaging of Eu doped very small iron oxide nanoparticle in atherosclerotic plaques via LA-ICP-MS N2 - Atherosclerotic lesions can be visualized by magnetic resonance imaging (MRI) using very small iron oxide nanoparticles (VSOP). VSOP accumulate in atherosclerotic plaques and thus serve as an atherosclerosis probe. The aim of this project was to image the distribution of europium doped VSOP (Eu-VSOP) by laser ablation ICP-MS in histological thin cuts of the aortic root region of ApoE knockout mouse model that is rich in atherosclerotic plaques. In addition, it was investigated whether VSOP accumulation in the plaques correlates with other biomarkers of inflammation for example macrophages and altered endothelium to assess whether it correlates with instability or vulnerability of the plaque regions. For this purpose, antibodies were labeled with various lanthanide elements and correlated with the Eu-VSOP distribution using LA-ICP-MS in a multiplex measurement mode. A possible correlation of reactive nitrogen species (RNS) with endogenous iron or Eu-VSOP can also be detected by LA-ICP-MS. For this purpose, RNS-specific antibodies were also labeled with lanthanides. T2 - 26. ICPMS-Anwendertreffen CY - Berlin, Germany DA - 03.09.2018 KW - Bioimaging KW - LA-ICP-MS KW - Immunoassay KW - Nanoparticle KW - Labeling PY - 2018 AN - OPUS4-45920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ascher, Lena A1 - Häckel, A. A1 - Schellenberger, E. A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Bildgebung von Eu-dotierten sehr kleinen Eisenoxid-Nanopartikeln in atherosklerotischen Plaques mittels LA-ICP-MS N2 - Atherosklerotische Läsionen können durch Magnetresonanztomographie (MRT) unter Verwendung von sehr kleinen Eisenoxidnanopartikeln (VSOP) sichtbar gemacht werden. VSOP akkumulieren in atherosklerotischen Plaques und dienen somit als Atherosklerosesonde. Das Ziel dieses Projektes war die Abbildung der Verteilung von Europium-dotierten VSOP (Eu-VSOP) durch Laserablation ICP-MS in histologischen Dünnschnitten der Aortenwurzelregion des ApoE-Knockout-Mausmodells, das reich an atherosklerotischen Plaques ist. Darüber hinaus wurde untersucht, ob die VSOP-Akkumulation in den Plaques mit anderen Biomarkern der Entzündung wie Makrophagen und verändertem Endothel korreliert. Somit wäre eine Beurteilung, ob es sich hierbei um instabile bzw. vulnerable Plaque-Regionen handelt möglich. Zu diesem Zweck wurden Antikörper mit verschiedenen Lanthaniden markiert und mit der Eu-VSOP-Verteilung unter Verwendung von LA-ICP-MS in einem Multiplex-Messmodus korreliert. Eine mögliche Korrelation von reaktiven Stickstoffspezies (RNS) mit endogenem Eisen oder Eu-VSOP kann ebenfalls durch LA-ICP-MS nachgewiesen werden. Zu diesem Zweck wurden RNS-spezifische Antikörper auch mit Lanthaniden markiert. T2 - 26. ICPMS-Anwendertreffen CY - Berlin, Germany DA - 03.09.2018 KW - Bioimaging KW - LA-ICP-MS KW - Nanopartikel KW - Antikörpermarkierung PY - 2018 AN - OPUS4-45921 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -