TY - JOUR A1 - Phukphatthanachai, P. A1 - Panne, Ulrich A1 - Traub, Heike A1 - Pfeifer, Jens A1 - Vogl, Jochen T1 - Quantification of sulphur in copper and copper alloys by GDMS and LA-ICP-MS, demonstrating metrological traceability to the international system of units JF - Journal of Analytical Atomic Spectrometry N2 - The quantification of the sulphur mass fraction in pure copper and copper alloys by GDMS and LA-ICP-MS revealed a lack of traceability mainly due to a lack of suitable certified reference materials for calibrating the instruments. Within this study GDMS and LA-ICP-MS were applied as routine analytical tools to quantify sulphur in copper samples by applying reference materials as calibrators, which were characterized for their sulphur mass fraction by IDMS beforehand. Different external calibration strategies were applied including a matrix cross type calibration. Both techniques with all calibration strategies were validated by using certified reference materials (others than those used for calibration) and good agreement with the reference values was achieved except for the matrix cross type calibration, for which the agreement was slightly worse. All measurement results were accompanied by an uncertainty statement. For GDMS, the relative expanded (k = 2) measurement uncertainty ranged from 3% to 7%, while for LA-ICP-MS it ranged from 11% to 33% when applying matrix-matched calibration in the sulphur mass fraction range between 25 mg kg-1 and 1300 mg kg-1. For cross-type calibration the relative expanded (k = 2) measurement uncertainty need to be increased to at least 12% for GDMS and to at least 54% for LA-ICP-MS to yield metrological compatibility with the reference values. The so obtained measurement results are traceable to the international system of units (SI) via IDMS reference values, which is clearly illustrated by the unbroken chain of calibrations in the metrological traceability scheme. KW - Sulfur KW - Copper KW - GDMS KW - LA-ICP-MS KW - Uncertainty KW - Traceability KW - SI PY - 2021 DO - https://doi.org/10.1039/d1ja00137j SN - 0267-9477 VL - 36 IS - 11 SP - 2404 EP - 2414 PB - Royal Society of Chemistry AN - OPUS4-53412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Lopez-Linares, F. A1 - Poirier, L. A1 - Jakubowski, Norbert A1 - Recknagel, Sebastian A1 - Panne, Ulrich T1 - Shake, shut, and go – A fast screening of sulfur in heavy crude oils by highresolution continuum source graphite furnace molecular absorption spectrometry via GeS molecule detection JF - Spectrochimica Acta Part B N2 - A fast and simple method for sulfur quantification in crude oils was developed by using high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS). For this, heavy crude oil samples were prepared as microemulsion (shake) and injected into a graphite furnace (shut). Finally, the concentration of sulfur was determined by monitoring in situ the transient molecular spectrum of GeS at wavelength 295.205nm after adding a germanium solution as molecular forming agent (and go). Zirconium dioxide in the form of nanoparticles (45–55nm) was employed as a permanent modifier of the graphite furnace. Calibration was done with an aqueous solution standard of ammonium sulfate, and a characteristic mass (m0) of 7.5ng was achieved. The effectiveness of the proposed method was evaluated analizing, ten heavy crude oil samples with Sulfur amounts ranging between 0.3 and 4.5% as well as two NIST standard reference materials, 1620c and 1622e. Results were compared with those obtained by routine ICP-OES analysis, and no statistical relevant differences were found. KW - Heavy crude oil KW - Sulfur KW - HR-CS-MAS KW - Germanium sulfide KW - Microemulsion PY - 2019 DO - https://doi.org/10.1016/j.sab.2019.105671 SN - 0584-8547 VL - 160 SP - 105671 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-48747 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -