TY - CONF A1 - Remmler, Dario A1 - Schwaar, Timm A1 - Weller, Michael G. A1 - Börner, H. G. T1 - Two-dimensional screening of large peptide libraries to identify solubilizers with tailored release capabilities N2 - Small organic molecule drugs are one of the key classes, taking increasingly important roles in modern drug development strategies. With the focus on small molecule drugs, difficulties originate frequently from a pronounced lipophilic character, resulting in poor water solubility, low bioavailability and unfavored pharmacokinetics. Recently, peptide-poly(ethylene glycol) conjugates (peptide-PEG conjugates) were described as precisely tunable platforms to solubilize a broad scope of fluorescent or non-fluorescent small organic molecules [1-2]. Selection of drug hosting peptides was achieved by combinatorial means, which can further be extended by implementation of a drug release screening step. One-bead-one-compound peptide libraries are powerful tools to select high affinity binders. However, the selection of positive hits from the peptide libraries remains tedious as it occurs by handpicking, strongly limiting the pool of investigated beads. Here we report our recent results on improving the analytical platform, using automated fluorescence scanning and MALDI-ToF-ToF MS/MS imaging to screen larger sets of beads, broadening the statistical base and unraveling more precisely suitable peptides. The screening puts special emphasis on loading capacities and drug-release of transporters by performing additional washing steps in different media (cf. Fig. 1). Peptides representing strong, medium, weak releaser were chosen for further analysis and synthesized as peptide-polymer transporters. Release was analyzed by fluorescence anisotropy and fluorescence correlation spectroscopy, due to the fluorescent characteristics of the drug. Solubilization studies confirmed sufficient loading capacities for a potential anti-Alzheimer disease drug of three transporter molecules representing strong/weak drug releaser, reaching solubilization of up to 1:3.4 (µmol drug/µmol conjugate). Fluorescence anisotropy and fluorescence correlation spectroscopy of the drug-loaded transporter showed significant differences in drug releasing properties, confirming the screening process. T2 - 15th European Symposium on Controlled Drug Delivery CY - Egmond aan Zee, The Netherlands DA - 11.04.2018 KW - Combinatorial library KW - Bioconjugates KW - Screening KW - Pharmaceuticals KW - Biotechnology KW - Drugs PY - 2018 AN - OPUS4-44713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas A1 - Liehr, Sascha A1 - Wander, Lukas A1 - Bornemann-Pfeiffer, Martin A1 - Kern, Simon A1 - Müller, S. A1 - Kowarik, Stefan T1 - Integrated and Networked Systems and Processes – A Perspective for Digital Transformation in (Bio) Process Engineering N2 - The competitiveness of the process industry is based on ensuring the required product quality while making optimum use of equipment, raw materials and energy. Chemical companies have to find new paths to survive successfully in a changing environment, while also finding more flexible ways of product and process development to bring their products to market more quickly – especially high-quality high-end products like fine chemicals or pharmaceuticals. The potential of digital technologies belongs to these. One way is knowledge-based production, taking into account all essential equipment, process and regulatory data of plants and laboratories. Today, the potential of this data is often not yet consistently used for a comprehensive understanding of production. Another approach uses flexible and modular chemical plants, which can produce different high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce the time to market of new products. Digital transformation is enabling completely new production concepts that are being used increasingly. Intensified continuous production plants also allow for difficult to produce compounds. This contribution aims to encourage a more holistic approach to the digitalization and use of machine-assisted methods in (bio) process engineering by introduction of integrated and networked systems and processes, which have the potential to speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - 6th BioProScale Symposium - industrial scale bioprocess intensification from process development to large-scale understanding CY - Online meeting DA - 29.03.2021 KW - Industry 4.0 KW - Biotechnology KW - Bio engineering KW - Process Analytical Technology KW - BioProScale KW - Artificial Neural Networks PY - 2021 UR - https://biotechnologie.ifgb.de/node/648 AN - OPUS4-52371 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -