TY - JOUR A1 - Vogl, Jochen A1 - Kipphardt, Heinrich A1 - Richter, Silke A1 - Bremser, Wolfram A1 - Arvizu Torres, M. A1 - Lara Manzano, J. A1 - Buzoianu, M. A1 - Hill, S. A1 - Petrov, P. A1 - Goenaga-Infante, H. A1 - Sargent, M. A1 - Fisicaro, P. A1 - Labarraque, G. A1 - Zhou, T. A1 - Turk, G. C. A1 - Winchester, M. A1 - Miura, T. A1 - Methven, B. A1 - Sturgeon, R. A1 - Jährling, R. A1 - Rienitz, O. A1 - Mariassy, M. A1 - Hankova, Z. A1 - Sobina, E. A1 - Krylov, A. I. A1 - Kustikov, Y. A. A1 - Smirnov, V. V. T1 - Establishing comparability and compatibility in the purity assessment of high purity zinc as demonstrated by the CCQM-P149 intercomparison N2 - For the first time, an international comparison was conducted on the determination of the purity of a high purity element. Participants were free to choose any analytical approach appropriate for their institute’s applications and services. The material tested was a high purity zinc, which had earlier been assessed for homogeneity and previously used in CCQM-K72 for the determination of six defined metallic impurities. Either a direct metal assay of the Zn mass fraction was undertaken by EDTA titrimetry, or an indirect approach was used wherein all impurities, or at least the major ones, were determined and their sum subtracted from ideal purity of 100 %, or 1 kg/kg. Impurity assessment techniques included glow discharge mass spectrometry, inductively coupled plasma mass spectrometry and carrier gas hot extraction/combustion analysis. Up to 91 elemental impurities covering metals, non-metals and semi-metals/metalloids were quantified. Due to the lack of internal experience or experimental capabilities, some participants contracted external laboratories for specific analytical tasks, mainly for the analysis of non-metals. The reported purity, expressed as zinc mass fraction in the high purity zinc material, showed excellent agreement for all participants, with a relative standard deviation of 0.011 %. The calculated reference value, w(Zn) = 0.999 873 kg/kg, was assigned an asymmetric combined uncertainty of + 0.000025 kg/kg and – 0.000028 kg/kg. Comparability amongst participating metrology institutes is thus demonstrated for the purity determination of high purity metals which have no particular difficulties with their decomposition / dissolution process when solution-based analytical methods are used, or which do not have specific difficulties when direct analysis approaches are used. Nevertheless, further development is required in terms of uncertainty assessment, quantification of non-metals and the determination of purity of less pure elements and/or for those elements suffering difficulties with the decomposition process. KW - Purity assessment KW - Direct metal assay KW - Impurity assessment KW - Non-metal analysis KW - High-purity elements KW - SI-traceability PY - 2018 DO - https://doi.org/10.1088/1681-7575/aaa677 SN - 1681-7575 SN - 0026-1394 VL - 55 IS - 2 SP - 211 EP - 221 PB - Institute of Physics Publishing CY - Bristol AN - OPUS4-44257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rienitz, O. A1 - Pramann, A. A1 - Vogl, Jochen A1 - Lee, K.-S. A1 - Yim, Y.-H. A1 - Malinovskiy, D. A1 - Hill, S. A1 - Dunn, P. A1 - Goenaga-Infante, H. A1 - Ren, T. A1 - Wang, J. A1 - Vocke jr., R. D. A1 - Rabb, S: A. A1 - Narukawa, T. A1 - Yang, L. A1 - Mester, Z. A1 - Meija, J. A1 - Aref'ev, D. G. A1 - Marchin, V. A1 - Sharin, A. G. A1 - Bulanov, A. D. A1 - Potapov, A. M. A1 - Otopkova, P. A. A1 - Kessel, R. T1 - The comparability of the determination of the molar mass of silicon highly enriched in 28Si: results of the CCQM-P160 interlaboratory comparison and additional external measurements N2 - An international comparison study on the accurate determination of the molar mass M(Si) of silicon artificially enriched in 28Si (x(28Si) > 0.9999 mol mol−1) has been completed. The measurements were part of the high level CCQM-P160 pilot study assessing the ability of National Metrology Institutes (NMIs) and Designated Institutes (DIs) to make such measurements at the lowest possible levels of measurement uncertainty and to identify possible difficulties when measuring this kind of sample. This study supports the molar mass measurements critical to disseminating the silicon route to realizing the new definitions for the kilogram and the mole. Measurements were also made by one external research institute and an external company. The different institutes were free to choose their experimental (mass spectrometric) set-ups and equipment, thereby enabling also the comparison of different techniques. The investigated material was a chemically pure, polycrystalline silicon material. The subsequent modified single crystalline secondary product of this material was intended for the production of silicon which was used for two additional spheres in the context of the redetermination of the Avogadro constant NA, required for the revision of the International System of Units (SI) via fundamental constants which came into force from May 2019. The CCQM pilot study was organized by Physikalisch-Technische Bundesanstalt (PTB). Aqueous silicon solutions were shipped to all participating institutions. The data analysis as well as the uncertainty modelling and calculation of the results was predefined. The participants were provided with an uncertainty budget as a GUM Workbench® file as well as a free software license for the duration of the comparison. The agreement of the values of the molar mass (M(Si) = 27.976 942 577 g mol−1) was excellent with ten out of 11 results reported within the range of relative uncertainty of 1 × 10−8 required for the revision of the SI. KW - Absolute isotope ratio KW - Molar mass KW - Avogadro constant KW - Revision of the SI PY - 2020 DO - https://doi.org/10.1088/1681-7575/abbdbf VL - 57 IS - 6 SP - 065028 PB - IOP Science CY - Cambridge AN - OPUS4-51500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ogrinc, N. A1 - Rossi, A. M. A1 - Durbiano, F. A1 - Becker, Roland A1 - Milavec, M. A1 - Bogozalec Kosir, A. A1 - Kakoulides, E. A1 - Ozer, H. A1 - Akcadag, F. A1 - Goenaga-Infante, H. A1 - Quaglia, M. A1 - Mallia, S. A1 - Umbricht, G. A1 - O'Connor, G. A1 - Guettler, B. T1 - Support for a European metrology network on food safety Food-MetNet N2 - This paper describes Food-MetNet, a coordinated preparatory initiative to establish the European Metrology Network on Food Safety (EMN-FS). Food-MetNet aims to establish a long-term ongoing dialogue between the metrology community and relevant stakeholders, in particular, European Union Reference Laboratories (EURLs), National Reference Laboratories (NRLs) and the Joint Research Centre (JRC). This dialogue is meant to support the collection of needs from stakeholders, the take-up of metrological research output and the development of the roadmaps needed to navigate future research. KW - Network KW - Metrology KW - Food KW - Safety KW - Stakeholders PY - 2021 DO - https://doi.org/10.1016/j.measen.2021.100285 VL - 18 SP - 1 EP - 4 PB - Elsevier AN - OPUS4-53740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Billimoria, K. A1 - Andresen, Elina A1 - Resch-Genger, Ute A1 - Goenaga-Infante, H. T1 - A Strategy for Quantitative Imaging of Lanthanide Tags in A549 Cells Using the Ratio of Internal Standard Elements N2 - One remaining handicap for spatially resolved elemental quantification in biological samples is the lack of a suitable internal standard (IS) that can be reliably measured across both calibration standards and samples. In this work, multielement quantitative intracellular imaging of cells tagged with lanthanide nanoparticles containing key lanthanides, e.g., Eu and Ho, is described using a novel strategy that uses the ratio of IS elements and LA-ICP-TOFMS analysis. To achieve this, an internal standard layer is deposited onto microscope slides containing either gelatin calibration standards or Euand Ho-tagged cell samples. This IS layer contains both gallium (Ga) and indium (In). Monitoring either element as an IS individually showed significant variability in intensity signal between sample or standards prepared across multiple microscope slides, which is indicative of the difficulties in producing a homogeneous film at intracellular resolution. However, normalization of the lanthanide signal to the ratio of the IS elements improved the calibration correlation coefficients from 0.9885 to 0.9971 and 0.9805 to 0.9980 for Eu and Ho, respectively, while providing a consistent signal to monitor the ablation behavior between standards and samples. By analyzing an independent quality control (QC) gelatin sample spiked with Eu and Ho, it was observed that without normalization to the IS ratio the concentrations of Eu and Ho were highly biased by approximately 20% in comparison to the expected values. Similarly, this overestimation was also observed in the lanthanide concentration distribution of the cell samples in comparison with the normalized data. KW - Nanoparticle KW - Nano KW - Luminescence KW - Quality assurance KW - Synthesis KW - Standardization KW - Reference material KW - ICP-MS KW - LA-ICP-MS KW - Quantification KW - Bioimaging PY - 2024 DO - https://doi.org/10.1021/acs.analchem.4c02763 SN - 0003-2700 VL - 96 IS - 30 SP - 12570 EP - 12576 AN - OPUS4-60768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -