TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Stable isotope analysis via hydrides using molecular absorption spectrometry N2 - Small variations in the isotopic composition of some elements have been used as proof of provenance of mineral and biological samples, to describe geological processes, and to estimate a contamination source. Routinely, isotope compositions are measured by mass spectrometry; the working horse of the isotope analysis. However, mass spectrometric methods are expensive, time-consuming and they require a high qualified analyst. Here, an alternative faster and low-cost optical method for isotope ratio determination is investigated: high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Stable isotope amount composition of X = Li, B, Mg, Ca and Sr have been determined by monitoring the absorption spectra of their in situ generated hydrides (XH) in graphite furnace HR-CS-MAS. For example, the system of two stable isotopes of boron (10B and 11B) was studied via its hydride for the electronic transition X1Σ+ → A1Π (Fig. 1a). The spectrum of a given sample is a linear combination of the 10BH molecule and its isotopologue 11BH. Therefore, isotopic composition of samples and reference materials are calculated by a partial least square regression (PLS). For this, a spectral library is built by using samples with known isotope composition. Results are metrologically compatible with those reported by mass spectrometric methods. [1] Similar results are obtained for n isotope systems like Mg (24Mg, 25Mg, and 26Mg), where isotope shift of their isotopologues can be resolved as shown in Fig.1 b. The extension of this methodology to other elements like Li, Ca and Sr is discussed [2]. References: [1] C. Abad, S. Florek, H. Becker-Ross, M.-D. Huang, H.-J. Heinrich, S. Recknagel, J. Vogl, N. Jakubowski, U. Panne, Determination of boron isotope ratios by high-resolution continuum source molecular absorption spectrometry using graphite furnace vaporizers, Spectrochim. Acta, Part B, 136 (2017) 116-122. [2] C. Abad et al., unpublished results, 2018. T2 - ESAS & CANAS 2018 CY - Berlin, Germany DA - 20.03.2018 KW - Isotope KW - HR-CS-MAS KW - Mono-hydride KW - Spectrometry PY - 2018 AN - OPUS4-45826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Tatzel, Michael A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Stable isotope analysis of magnesium by optical spectrometry N2 - Magnesium (Mg) is a major element in a range of silicate and carbonate minerals, the hydrosphere and biosphere and plays important roles in (bio-) geochemical and physiological cycles. Mg has three stable isotopes, 24Mg, 25Mg and 26Mg with natural abundances of 79 %, 10 %, and 11 %, respectively. It is due to their relatively large mass difference (~8% between 24Mg and 26Mg) that isotope fractionation leads to slight variations of isotope amount ratios n(26Mg)/n(24Mg) in biological, environmental and geological samples. Traditionally, isotope ratios are measured by mass spectrometric methods and isotope ratios are expressed as deviation from an internationally agreed upon material, i.e. the zero-point of the δ-value scale. Drawbacks of this method include the high costs for instruments and their operation, experienced operators and elaborate, time-consuming chromatographic sample preparation. Recently, optical spectrometric methods have been proposed as faster and low-cost alternative for the analysis of isotope ratios of selected elements by means of high- resolution continuum source graphite furnace molecular absorption spectrometry (HR- CS-GFMAS) and laser ablation molecular isotopic spectrometry (LAMIS). For the determination of Mg isotope amount ratios, the molecular spectrum of the in-situ generated MgF and MgO molecules were studied. In the case of HR-CS-GFMAS, the absorption spectrum was recorded for MgF for the electronic transitions X2Σ → A2Πi and X 2Σ → B2Σ+ around wavelengths 358 nm and 268 nm, respectively. In the case of LAMIS, we investigated the MgF molecule for the electronic transition A2Πi → X2Σ as well as the MgO molecule for the electronic transition A1Π+ → X1Σ around 500 nm. The MgF and MgO spectra are described by the linear combination of their isotopic components or isotopologues: 24MgF, 25MgF, and 26MgF for the MgF and 24MgO, 25MgO, and 26MgO for the MgO (F is monoisotopic, and the isotope composition of O is assumed as constant). By HR-CS-GFMAS the analysis of Mg was done by deconvolution of the MgF spectrum by partial least square regression (PLS) calibrated with enriched isotope spikes. Isotope amount ratios in rock samples with and without matrix separation were analyzed. Calculated δ-values were accurate and obtained with precisions ranging between 0.2 ‰ and 0.5 ‰ (1 SD, n = 10). On the other hand, LAMIS allows the direct analysis of solid samples with the extended possibility of in-situ analysis. Main advantages, limitations, and scopes of both optical techniques are going to be discussed and compared to MC-ICP-MS. T2 - Seminars Earth Surface Geochemistry- Deutsches GeoForschungsZentrum GFZ CY - Potsdam, Germany DA - 06.08.2019 KW - Isotope analysis KW - Magnesium KW - HR-CS-MAS KW - LIBS KW - Diatomic KW - Optical spectroscopy PY - 2019 AN - OPUS4-49904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Muench, S. A1 - Okruss, M. A1 - Mao, X. A1 - Gonzalez, J. A1 - Zorba, V. A1 - Recknagel, Sebastian A1 - Tatzel, Michael A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Stable isotope analysis of magnesium by optical spectrometry N2 - Magnesium is a naturally occurring element that can be found in several mineral forms in the earth crust. This element presents three stable isotopes 24Mg, 25Mg and 26Mg with a natural abundance of 79%, 10%, and 11% respectively. It is due to their relatively large mass difference (~8% between 24Mg and 26Mg) that isotope fractionation leads to slight isotope amount ratio variations n(26Mg)/n(24Mg) in biological and geological samples. Traditionally, isotope amount ratios have been measured by mass spectrometric methods. However, drawbacks of these methods include the high costs for instruments and their operation, experienced operators and elaborate chromatographic sample preparation which are time-consuming. Recently, optical spectrometric methods have been proposed as faster and low-cost alternative for the analysis of isotope ratios of selected elements by means of high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) and laser ablation molecular isotopic spectrometry (LAMIS). For the determination of Mg isotope amount ratios, the molecular spectrum of the in-situ generated MgF and MgO molecules were studied. In the case of HR-CS-GFMAS, the absorption spectrum was recorded for MgF for the electronic transitions X 2Σ → A 2 Πi and X 2Σ → B 2Σ+ around wavelengths 358 nm and 268 nm respectively. In the case of LAMIS, it was studied the MgF molecule for the electronic transitions A 2Πi → X 2Σ as well as the MgO molecule for the electronic transition A 1Π+ → X 1Σ around 500 nm. The MgF and MgO spectra are composed by the linear combination of their isotopic components or isotopologues: 24MgF, 25MgF, and 26MgF for the MgF and 24MgO, 25MgO, and 26MgO for the MgO (F is monoisotopic, and the isotope composition of O is assumed as constant). By HR-CS-GFMAS the analysis of Mg was done by deconvolution of the MgF spectrum by a partial least square regression (PLS) calibrated with enriched isotope spikes. The isotope amount ratios in rock samples with and without matrix separation were analyzed. Resulting delta values were obtained with precisions ranging between 0.2-0.5 ‰. On the other hand, LAMIS allows the direct analysis of solid samples with the extended possibility of in-situ analysis. Main advantages, limitations, and scopes of both optical techniques are going to be discussed and compared with MC-ICP-MS. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2019 KW - Isotope analysis KW - HR-CS-MAS KW - LIBS KW - MC-ICP-MS KW - Magnesium PY - 2019 AN - OPUS4-49876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Muench, S. A1 - Okruss, M. A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Tatzel, Michael A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Optical spectrometry versus mass spectrometry for stable isotope analysis of B and Mg N2 - Mass spectrometric methods (MC-ICP-MS and TIMS) are without doubt the working horse of stable isotope analysis. However, drawbacks of these methods include the high costs for instruments and their operation, experienced operators and elaborate chromatographic sample preparation which are time consuming. We propose a lower-cost and faster optical alternative for the analysis of isotope ratios of selected elements: high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Stable isotope amount compositions of boron (B) and magnesium (Mg) were determined based on the absorption spectra of in-situ generated mono-hydrides and halide (MH and MX) using graphite furnace HR-CS-MAS. The use of a modular simultaneous echelle spectrograph (MOSES) helps to find the maximal isotope shift in the diatomic molecular spectra produced in a graphite furnace by using isotopic spike solutions. Isotopes of boron (10B and 11B) were studied via their hydrides for the electronic transition X 1Σ+ → A 1Π. The spectrum of a given sample is a linear combination of the 10BH molecule and its isotopologue 11BH. Therefore, the isotopic composition of samples can be calculated by a partial least square regression (PLS). For this, a spectral library was built by using samples and spikes with known isotope composition. Boron isotope ratios measured by HR-CS-MAS are identical with those measured by mass spectrometric methods at the 0.15 ‰ level. Similar results were obtained for a multiple isotope system like Mg (24Mg, 25Mg, and 26Mg), where isotope shifts of their isotopologues can be resolved in the MgF molecule for the electronic transition X 2Σ → A 2 Πi. The extension of this methodology to other elements like Li, Ca, Cu, and Sr is discussed. T2 - 13. Symposium „Massenspektrometrische Verfahren der Elementspurenanalyse“ zusammen mit dem 26. ICPMS-Anwendertreffen CY - Berlin, Germany DA - 03.09.2018 KW - Isotope KW - HR-CS-MAS KW - Isotopic shift KW - Spectrometry KW - Boron monohydride KW - Magnesium monofluoride KW - Molecular absorption spectrometry PY - 2018 AN - OPUS4-45868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - On developments of continuum source atomic and molecular absorption spectrometry N2 - Der Bunsen-Kirchhoff-Preis 2022 wurde am 23.06.2022 anlässlich der analytica conference in München an Dr. Carlos Abad verliehen - in Anerkennung seiner exzellenten Entwicklungen im Bereich der continuum source atomic absorption spectrometry (CS-AAS). Dr. Carlos Abad ist ein herausragender Experte auf dem Gebiet der Atom- und molekularen Absorptionsspektrometrie. insbesondere trug er maßgeblich zur substanziellen Weiterentwicklung von Echelle-Spektrometern für die CS-AAS bei. So gelang es, einen quantitativen Zugang zu Elementen wie Bor, Chlor, Fluor und Schwefel, mittels AAS zu erreichen. Erstmals demonstriert Dr. Carlos Abad am Beispiel eines Zr-Modifier, dass durch die Zeitauflösung der eingesetzten Echelle-Systeme mechanistische Untersuchungen zur Wirkung des Modifiers im Graphitrohrofen möglich sind. Besonders hervorzuheben sind seine Arbeiten zum Einsatz der CS-AAS für die Analyse von Isotopen, die eine Genauigkeit aufweist, welche an die der Multikollektor-induktiv gekoppelten Plasma-Massenspektrometrie (MC-ICP-MS) heranreicht. Damit ergeben sich völlig neue Einsatzmöglichkeiten für technologisch hochrelevante Applikationen, wie z.B. die Untersuchung der Alterung von Lithium-Batterien oder die Lithium-Analyse in Blutserum. T2 - Analytica Conference: Bunsen-Kirchhoff-Preis 2022 der Deutsche Arbeitskreis für Analytische Spektroskopie (DAAS) CY - Munich, Germany DA - 23.06.2022 KW - Isotopes KW - Fluorine KW - Halogens KW - Non-metals KW - HR-CS-MAS KW - HR-CS-AAS KW - Bunsen-Kirchhoff-Preis KW - Continuum source atomic absorption spectrometry KW - Zr-Modifier KW - Graphite furnace KW - Lithium PY - 2022 AN - OPUS4-56500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Recknagel, Sebastian A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Following fluorinated drugs by molecular absorption spectrometry – from cancer cells to body fluids N2 - Fluorine has been widely introduced into pharmaceutical drugs. Due to the high C-F bond strength, a single atom substitution with fluorine produces drastic desirable and tunable changes in the molecular properties. However, the clinical monitoring of these drugs is not straightforward. Organofluorine compounds are elusive for a non-targeted analysis; a significant problem in fluorine determination is the lack of suitable detection techniques. Standard atomic absorption and emission spectrometers cannot access fluorine, because their resonance lines lie in the VUV spectral range below 100 nm. In the case of conventional inductively coupled argon plasmas (ICP), the plasma energy is too low to generate a significant population of excited fluorine atoms. Recently, our group introduces high-resolution continuum source absorption spectrometry (HR-CS MAS) as a new way for the indirect monitoring of fluorinated compounds. Main benefits of HR-CS-MAS includes low limits of detection, complete analyte recovery, simple to no sample preparation, and short time analysis. T2 - 16th Annual Congress of International Drug Discovery Science and Technology 2018 CY - Cambridge, MA, USA DA - 16.08.2018 KW - Fluorine KW - Anti-cancer KW - Capecitabine KW - Fluorouracil KW - HR-CS-MAS PY - 2018 AN - OPUS4-45822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Mao-Dong, H. A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Determination of isotope ratios by molecular absorption spectrometry N2 - Boron and Magnesium present two and three stable isotopes respectevely. It is due to their relatively large mass difference (~ 10%) that isotope fractionation leads to considerable isotope amount ratio variations in the nature. These have been used as a proof of provenance of mineral and biological samples, to estimate a contamination source and to the determination of geological processes by erosion or subduction. Additionally, boron is employed in the nuclear industry due to the capability of its isotope 10B to thermal-neutron capture and therefore 10B enriched boric acid solutions are used in the cooling system of thermonuclear facilities and in the alloying of steel and carbides for protective shielding. Traditionally, isotope ratio variations have been determined by mass spectroscopic methods. Here an alternative faster and low cost method for isotope ratio determination is proposed: high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Isotope amount ratios have been determined by monitoring the absorption spectrum of boron monohydride (BH) for boron and Magnesium monofluoride (MgF) for magnesium in a graphite furnace HR-CS-MAS. Bands (0→0) and (1→1) were evaluated. Partial least square regression (PLS) for analysis of samples and reference materials were applied. For this, a spectral library with different isotopes ratios for PLS regression was built. Results obtained are metrologically compatible with those reported by mass spectrometric methods. Moreover, a precision and accuracy of the method of ± 0.5 ‰. This accuracy and precision is comparable with those obtained by thermal ionization mass spectrometry (TIMS) and multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) for boron isotope ratio measurements T2 - Analytik Jena Days CY - Idstein, Germany DA - 26.06.2019 KW - Isotope anaylsis KW - HR-CS-MAS KW - Boron KW - Magnesium KW - Optical spectroscopy KW - Diatomic molecule PY - 2019 AN - OPUS4-49877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Muench, S. A1 - Okruss, M. A1 - Mao, X. A1 - Gonzalez, J. A1 - Zorba, V. A1 - Recknagel, Sebastian A1 - Tatzel, Michael A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Critical evaluation of optical spectrometry vs mass spectrometry for stable isotope analysis N2 - Mass spectrometric Methods MC-ICP-MS and TIMS) are without doubt the working horse of stable isotope analysis. However, drawbacks of these methods include the high costs for instruments and their operation, experienced operators and elaborate chromatographic sample preparation which are time consuming. Optical spectrometric methods are proposed as faster and low-cost alternative for the analysis of isotope ratios of selected elements by means of high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS) and laser ablation molecular isotopic spectrometry (LAMIS). First, stable isotope amount compositions of boron (B) and magnesium (Mg) were determined based on the absorption spectra of in-situ generated heteronuclear diatomic molecules (MH or MX) in graphite furnace HR-CS-MAS. The use of a modular simultaneous echelle spectrograph (MOSES) helps to find the maximal isotope shift in the diatomic molecular spectra produced in a graphite furnace by using isotopic spike solutions. Isotopes of boron (10B and 11B) were studied via their hydrides for the electronic transition X 1Σ+ → A 1Π. The spectrum of a given sample is a linear combination of the 10BH molecule and its isotopologue 11BH. Therefore, the isotopic composition of samples can be calculated by a partial least square regression (PLS). For this, a spectral library was built by using samples and spikes with known isotope composition. Boron isotope ratios measured by HR-CS-MAS are identical with those measured by mass spectrometric methods at the 0.15 ‰ level. Similar results were obtained for a multiple isotope system like Mg (24Mg, 25Mg, and 26Mg), where isotope shifts of their isotopologues can be resolved in the MgF molecule for the electronic transition X 2Σ → A 2 Πi. Finally, the application of molecular spectrometry via emission by LAMIS is compared and discussed. T2 - European Winter Conference on Plasma Spectrochemistry EWCPS 2019 CY - Pau, France DA - 03.02.2019 KW - Isotope analysis KW - HR-CS-MAS KW - LIBS KW - MS-ICP-MS KW - Optical spectroscopy KW - Mass spectrometry PY - 2019 AN - OPUS4-49874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Muench, S. A1 - Okruss, M. A1 - Tatzel, Michael A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Chemometric analysis of High resolution spectra for precise and accurate isotope amount ratio determination N2 - Magnesium is a major element in the hydrosphere and biosphere and plays important roles in (bio-) geochemical and physiological cycles. Mg has three stable isotopes, 24Mg, 25Mg and 26Mg. It is due to their relatively large mass difference (~8% between) that isotope fractionation leads to slight variations of isotope amount ratios in biological, environmental and geological samples. Traditionally, isotope amount ratios are measured by mass spectrometric methods. Their drawbacks include the high costs for instruments and their operation, experienced operators and elaborate time-consuming chromatographic sample preparation. Recently, an optical spectrometric method has been proposed as faster and low-cost alternative for the analysis of isotope ratios: high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS). For the determination of Mg isotope ratios in selected rock reference materials, the high-resolution molecular absorption spectrum of in-situ generated MgF molecule was studied applying multivariate analysis and the results compared with MC-ICP-MS. Samples were dissolved by acid digestion and Mg isotopes analyzed with and without matrix. The absorption spectra were recorded for MgF for the electronic transition X 2Σ → B 2Σ+. The MgF spectrum is described as the linear combination of their isotopic components or isotopologues: 24MgF, 25MgF, and 26MgF. The isotope analysis was done by deconvolution of the MgF spectrum by partial least square regression (PLS). A PLS model was built and calibrated with enriched isotope spikes and certified reference materials. Spectra data was preprocessed by a derivate of second order and venetian blinds cross-validation was employed for finding the optimum latent variables. Finally, the model was refined by a genetic algorithm which identified the best subset of variables for a precise and accurate regression. Results are compatible with those obtained by MC-ICP-MS with an accuracy of ± 0.3‰ with uncertainties ranging between 0.02 to 0.6‰. T2 - Colloquium Analytische Atomspektroskopie CANAS 2019 CY - Freiberg, Germany DA - 23.09.2019 KW - Isotope analysis KW - Chemometric KW - Multivariate analysis KW - HR-CS-MAS KW - Molecular spectrum KW - Magnesium PY - 2019 AN - OPUS4-49878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Muench, S. A1 - Okruss, M. A1 - Mao, X. A1 - Zorba, V. A1 - Recknagel, Sebastian A1 - Tatzel, Michael A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - A comparative analysis of optical spectrometry methods and MC-ICP-MS for stable isotope analysis of magnesium in geological samples N2 - Society for Applied Spectroscopy (SAS) Atomic Section Student Award. Magnesium is a major element in the hydrosphere and biosphere and plays important roles in (bio-) geochemical and physiological cycles. Mg has three stable isotopes, 24Mg, 25Mg and 26Mg. It is due to their relatively large mass difference (~8% between) that isotope fractionation leads to slight variations of isotope amount ratios in biological, environmental and geological samples. Traditionally, isotope ratios are measured by mass spectrometric methods. Their drawbacks include the high costs for instruments and their operation, experienced operators and elaborate time-consuming chromatographic sample preparation. Recently, optical spectrometric methods have been proposed as faster and low-cost alternative for the analysis of isotope ratios of selected elements by means of high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS), and laser ablation molecular isotopic spectrometry (LAMIS). For the determination of Mg isotope ratios in selected rock reference materials, the molecular spectrum of the in-situ generated MgF and MgO molecules were studied and their results compared with MC-ICP-MS. By HR-CS-MAS, samples were dissolved by acid digestion and Mg isotopes analyzed with and without matrix. The absorption spectrum was recorded for MgF for the electronic transitions X 2Σ → A 2 Πi, and X 2Σ → B 2Σ+. In the case of LAMIS, we investigated the MgF molecule for the electronic transition A 2Πi → X 2Σ, as well as direct analysis by the MgO molecule for the electronic transition A 1Π+ → X 1Σ. The MgF and MgO spectra are described as the linear combination of their isotopic components or isotopologues: 24MgF, 25MgF, and 26MgF for the MgF and 24MgO, 25MgO, and 26MgO for the MgO. The isotope analysis was done by deconvolution of the MgF spectrum by partial least square regression (PLS) calibrated with enriched isotope spikes. Results were accurate with precisions ranging between 0.2 ‰ and 0.8 ‰ (2 SD, n= 10) for HR-CS-GFMAS. No statistically significant differences were observed for samples w/o matrix extraction. On the other hand, LAMIS allows the direct analysis of solid samples with the extended possibility of direct analysis, however the precision is lower due the lack of solid isotopic calibration standards. T2 - SciX 2019. 46th Annual North American Meeting of the Federation of Analytical Chemistry and Spectroscopy Societies (FACSS) CY - Palm Springs, CA, USA DA - 13.10.2019 KW - Isotope analysis KW - Diatomic molecule KW - Magnesium KW - MC-ICP-MS KW - HR-CS-MAS KW - LIBS PY - 2019 AN - OPUS4-49883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -