TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - On developments of continuum source atomic and molecular absorption spectrometry N2 - Der Bunsen-Kirchhoff-Preis 2022 wurde am 23.06.2022 anlässlich der analytica conference in München an Dr. Carlos Abad verliehen - in Anerkennung seiner exzellenten Entwicklungen im Bereich der continuum source atomic absorption spectrometry (CS-AAS). Dr. Carlos Abad ist ein herausragender Experte auf dem Gebiet der Atom- und molekularen Absorptionsspektrometrie. insbesondere trug er maßgeblich zur substanziellen Weiterentwicklung von Echelle-Spektrometern für die CS-AAS bei. So gelang es, einen quantitativen Zugang zu Elementen wie Bor, Chlor, Fluor und Schwefel, mittels AAS zu erreichen. Erstmals demonstriert Dr. Carlos Abad am Beispiel eines Zr-Modifier, dass durch die Zeitauflösung der eingesetzten Echelle-Systeme mechanistische Untersuchungen zur Wirkung des Modifiers im Graphitrohrofen möglich sind. Besonders hervorzuheben sind seine Arbeiten zum Einsatz der CS-AAS für die Analyse von Isotopen, die eine Genauigkeit aufweist, welche an die der Multikollektor-induktiv gekoppelten Plasma-Massenspektrometrie (MC-ICP-MS) heranreicht. Damit ergeben sich völlig neue Einsatzmöglichkeiten für technologisch hochrelevante Applikationen, wie z.B. die Untersuchung der Alterung von Lithium-Batterien oder die Lithium-Analyse in Blutserum. T2 - Analytica Conference: Bunsen-Kirchhoff-Preis 2022 der Deutsche Arbeitskreis für Analytische Spektroskopie (DAAS) CY - Munich, Germany DA - 23.06.2022 KW - Isotopes KW - Fluorine KW - Halogens KW - Non-metals KW - HR-CS-MAS KW - HR-CS-AAS KW - Bunsen-Kirchhoff-Preis KW - Continuum source atomic absorption spectrometry KW - Zr-Modifier KW - Graphite furnace KW - Lithium PY - 2022 AN - OPUS4-56500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Lopez-Linares, F. A1 - Poirier, L. A1 - Jakubowski, Norbert A1 - Recknagel, Sebastian A1 - Panne, Ulrich T1 - Shake, shut, and go – A fast screening of sulfur in heavy crude oils by highresolution continuum source graphite furnace molecular absorption spectrometry via GeS molecule detection N2 - A fast and simple method for sulfur quantification in crude oils was developed by using high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS). For this, heavy crude oil samples were prepared as microemulsion (shake) and injected into a graphite furnace (shut). Finally, the concentration of sulfur was determined by monitoring in situ the transient molecular spectrum of GeS at wavelength 295.205nm after adding a germanium solution as molecular forming agent (and go). Zirconium dioxide in the form of nanoparticles (45–55nm) was employed as a permanent modifier of the graphite furnace. Calibration was done with an aqueous solution standard of ammonium sulfate, and a characteristic mass (m0) of 7.5ng was achieved. The effectiveness of the proposed method was evaluated analizing, ten heavy crude oil samples with Sulfur amounts ranging between 0.3 and 4.5% as well as two NIST standard reference materials, 1620c and 1622e. Results were compared with those obtained by routine ICP-OES analysis, and no statistical relevant differences were found. KW - Heavy crude oil KW - Sulfur KW - HR-CS-MAS KW - Germanium sulfide KW - Microemulsion PY - 2019 U6 - https://doi.org/10.1016/j.sab.2019.105671 SN - 0584-8547 VL - 160 SP - 105671 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-48747 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Tatzel, Michael A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Stable isotope analysis of magnesium by optical spectrometry N2 - Magnesium (Mg) is a major element in a range of silicate and carbonate minerals, the hydrosphere and biosphere and plays important roles in (bio-) geochemical and physiological cycles. Mg has three stable isotopes, 24Mg, 25Mg and 26Mg with natural abundances of 79 %, 10 %, and 11 %, respectively. It is due to their relatively large mass difference (~8% between 24Mg and 26Mg) that isotope fractionation leads to slight variations of isotope amount ratios n(26Mg)/n(24Mg) in biological, environmental and geological samples. Traditionally, isotope ratios are measured by mass spectrometric methods and isotope ratios are expressed as deviation from an internationally agreed upon material, i.e. the zero-point of the δ-value scale. Drawbacks of this method include the high costs for instruments and their operation, experienced operators and elaborate, time-consuming chromatographic sample preparation. Recently, optical spectrometric methods have been proposed as faster and low-cost alternative for the analysis of isotope ratios of selected elements by means of high- resolution continuum source graphite furnace molecular absorption spectrometry (HR- CS-GFMAS) and laser ablation molecular isotopic spectrometry (LAMIS). For the determination of Mg isotope amount ratios, the molecular spectrum of the in-situ generated MgF and MgO molecules were studied. In the case of HR-CS-GFMAS, the absorption spectrum was recorded for MgF for the electronic transitions X2Σ → A2Πi and X 2Σ → B2Σ+ around wavelengths 358 nm and 268 nm, respectively. In the case of LAMIS, we investigated the MgF molecule for the electronic transition A2Πi → X2Σ as well as the MgO molecule for the electronic transition A1Π+ → X1Σ around 500 nm. The MgF and MgO spectra are described by the linear combination of their isotopic components or isotopologues: 24MgF, 25MgF, and 26MgF for the MgF and 24MgO, 25MgO, and 26MgO for the MgO (F is monoisotopic, and the isotope composition of O is assumed as constant). By HR-CS-GFMAS the analysis of Mg was done by deconvolution of the MgF spectrum by partial least square regression (PLS) calibrated with enriched isotope spikes. Isotope amount ratios in rock samples with and without matrix separation were analyzed. Calculated δ-values were accurate and obtained with precisions ranging between 0.2 ‰ and 0.5 ‰ (1 SD, n = 10). On the other hand, LAMIS allows the direct analysis of solid samples with the extended possibility of in-situ analysis. Main advantages, limitations, and scopes of both optical techniques are going to be discussed and compared to MC-ICP-MS. T2 - Seminars Earth Surface Geochemistry- Deutsches GeoForschungsZentrum GFZ CY - Potsdam, Germany DA - 06.08.2019 KW - Isotope analysis KW - Magnesium KW - HR-CS-MAS KW - LIBS KW - Diatomic KW - Optical spectroscopy PY - 2019 AN - OPUS4-49904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Muench, S. A1 - Okruss, M. A1 - Mao, X. A1 - Zorba, V. A1 - Recknagel, Sebastian A1 - Tatzel, Michael A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - A comparative analysis of optical spectrometry methods and MC-ICP-MS for stable isotope analysis of magnesium in geological samples N2 - Society for Applied Spectroscopy (SAS) Atomic Section Student Award. Magnesium is a major element in the hydrosphere and biosphere and plays important roles in (bio-) geochemical and physiological cycles. Mg has three stable isotopes, 24Mg, 25Mg and 26Mg. It is due to their relatively large mass difference (~8% between) that isotope fractionation leads to slight variations of isotope amount ratios in biological, environmental and geological samples. Traditionally, isotope ratios are measured by mass spectrometric methods. Their drawbacks include the high costs for instruments and their operation, experienced operators and elaborate time-consuming chromatographic sample preparation. Recently, optical spectrometric methods have been proposed as faster and low-cost alternative for the analysis of isotope ratios of selected elements by means of high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS), and laser ablation molecular isotopic spectrometry (LAMIS). For the determination of Mg isotope ratios in selected rock reference materials, the molecular spectrum of the in-situ generated MgF and MgO molecules were studied and their results compared with MC-ICP-MS. By HR-CS-MAS, samples were dissolved by acid digestion and Mg isotopes analyzed with and without matrix. The absorption spectrum was recorded for MgF for the electronic transitions X 2Σ → A 2 Πi, and X 2Σ → B 2Σ+. In the case of LAMIS, we investigated the MgF molecule for the electronic transition A 2Πi → X 2Σ, as well as direct analysis by the MgO molecule for the electronic transition A 1Π+ → X 1Σ. The MgF and MgO spectra are described as the linear combination of their isotopic components or isotopologues: 24MgF, 25MgF, and 26MgF for the MgF and 24MgO, 25MgO, and 26MgO for the MgO. The isotope analysis was done by deconvolution of the MgF spectrum by partial least square regression (PLS) calibrated with enriched isotope spikes. Results were accurate with precisions ranging between 0.2 ‰ and 0.8 ‰ (2 SD, n= 10) for HR-CS-GFMAS. No statistically significant differences were observed for samples w/o matrix extraction. On the other hand, LAMIS allows the direct analysis of solid samples with the extended possibility of direct analysis, however the precision is lower due the lack of solid isotopic calibration standards. T2 - SciX 2019. 46th Annual North American Meeting of the Federation of Analytical Chemistry and Spectroscopy Societies (FACSS) CY - Palm Springs, CA, USA DA - 13.10.2019 KW - Isotope analysis KW - Diatomic molecule KW - Magnesium KW - MC-ICP-MS KW - HR-CS-MAS KW - LIBS PY - 2019 AN - OPUS4-49883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Abad Andrade, Carlos Enrique T1 - Advances and Applications of Molecular Absorption Spectrometry: from Non-Metals to Isotope Analysis N2 - The present work covers two main aspects of high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS), an analytical technique for elemental trace analysis. First, a comprehensive mechanistic study of molecule formation in graphite furnaces is presented, which is a key step into the recovery of analytical signals. For this, the molecule formation of CaF was studied, which is used for the indirect analytical determination of fluorine in HR-CS-GFMAS. A zirconium coating catalyzes the CaF formation, and its structure was investigated. The kinetics of this reaction was established by monitoring its molecular spectrum at different atomisation temperatures. An Arrhenius plot showed a pseudo-first order reaction with respect to fluorine (n = 1). An intermediate state was isolated, and its structure was elucidated by spectroscopic methods: scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XANES and EXAFS), and Raman microspectroscopy. Here a mechanism is proposed, where ZrO2 works as a heterogeneous catalyst: after a pyrolytic step, an intermediate state of ZrO(OCaF) is activated, and at higher temperatures, CaF(g) is released from the zirconium-coated graphite surface. Second, analytical methods were developed by using HR-CS-MAS as detector for non-metals and isotope analysis. Therefore, the determination of organic absorbable chlorine in water, the quantification of fluorine in consume care products with declared perfluorinated ingredients, and the determination of sulfur content in crude oils were investigated. Finally, the high resolution of the instrumentation allows to measure isotopic shifts with high precision in some observed molecular spectra. Consequently, the molecular spectra of enriched isotopes of boron and magnesium were investigated, establishing so the potential of HR-CS-MAS for the accurate and precise determination of isotopic amount ratios. Zusammenfassung Die vorliegende Arbeit befasst sich mit zwei zentralen Aspekten der High-Resolution-Continuum-Source-Molekülabsorptionsspektrometrie mit Graphitrohrtechnik (HR-CS-GFMAS), einer Analysetechnik für elementare Spurenanalyse. Der erste Teil der Arbeit umfasst eine mechanistische Studie zur Molekülbildung auf Graphitoberflächen. Dies ist ein wichtiger Schritt, um analytische Signale zu entdecken. Dazu wurde die Molekülbildung von CaF analysiert, welches für die indirekte, analytische Bestimmung von Fluor in HR-CS-GFMAS genutzt wird. Die CaF Bildung wurde mittels einer Beschichtung aus Zirconium katalysiert und deren Struktur analysiert. Die Kinetik dieser Reaktion wurde durch Beobachtung des jeweiligen Molekülspektrums bei verschiedenen Atomisierungstemperaturen beobachtet. Ein Arrheniusplot zeigte für Fluor (n = 1) eine Reaktion Pseudo-erster Ordnung. Ein Übergangszustand wurde über die mit Zirconium überzogene Grafitoberfläche isoliert und seine Struktur mittels spektroskopischer Methoden Energiedispersive Rasterelektronenmikroskopie / Röntgenspektroskopie (REM-EDX), Röntgenphoto¬elektronenspektroskopie (XPS), Röntgenabsorptionsspektroskopie (XAS) und Raman Spektroskopie untersucht. Auf Grundlage dieser Ergebnisse wird ein Mechanismus vorgeschlagen, bei dem ZrO2 als heterogener Katalysator fungiert; in Folge einer Pyrolysestufe wird ein Übergangszustand des ZrO(OCaF) aktiviert, welcher bei höheren Temperaturen CaF(g) an der Zirconium-Graphitoberfläche freisetzt. Im zweiten Teil der Arbeit werden Analysemethoden entwickelt, in dem HR-CS-MAS als Detektor für Nichtmetalle und Isotopanalyse angewandt wird. Hierfür wurde organisch gebundenes Chlor im Wasser bestimmt, der Fluorgehalt in Pflegeprodukten mit perfluorierten Inhaltsstoffen quantifiziert und der Schwefelgehalt in Erdöl untersucht. Weiterhin ermöglicht die hohe Auflösung der Messgeräte eine präzise Bestimmung der Isotopenverschiebung einiger untersuchter Molekülspektren. Daher wurden die Molekülspektren angereicherter Bor- und Magnesiumisotope untersucht. Auf diese Weise wurde das Potential von HR-CS-MAS für die akkurate und präzise Bestimmung von Isotop-Mengenverhältnissen nachgewiesen. KW - Isotope analysis KW - Non-metals analysis KW - Molecular absorption spectrometry KW - Boron KW - Fluorine KW - Graphite furnace KW - HR-CS-MAS KW - Applied optical spectroscopy PY - 2019 UR - https://hu-berlin.hosted.exlibrisgroup.com/permalink/f/jl2ii5/HUB_UB_ALMA_DS21669801300002882 SP - X EP - 118 CY - Berlin, Germany AN - OPUS4-49891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Muench, S. A1 - Okruss, M. A1 - Mao, X. A1 - Gonzalez, J. A1 - Zorba, V. A1 - Recknagel, Sebastian A1 - Tatzel, Michael A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Critical evaluation of optical spectrometry vs mass spectrometry for stable isotope analysis N2 - Mass spectrometric Methods MC-ICP-MS and TIMS) are without doubt the working horse of stable isotope analysis. However, drawbacks of these methods include the high costs for instruments and their operation, experienced operators and elaborate chromatographic sample preparation which are time consuming. Optical spectrometric methods are proposed as faster and low-cost alternative for the analysis of isotope ratios of selected elements by means of high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS) and laser ablation molecular isotopic spectrometry (LAMIS). First, stable isotope amount compositions of boron (B) and magnesium (Mg) were determined based on the absorption spectra of in-situ generated heteronuclear diatomic molecules (MH or MX) in graphite furnace HR-CS-MAS. The use of a modular simultaneous echelle spectrograph (MOSES) helps to find the maximal isotope shift in the diatomic molecular spectra produced in a graphite furnace by using isotopic spike solutions. Isotopes of boron (10B and 11B) were studied via their hydrides for the electronic transition X 1Σ+ → A 1Π. The spectrum of a given sample is a linear combination of the 10BH molecule and its isotopologue 11BH. Therefore, the isotopic composition of samples can be calculated by a partial least square regression (PLS). For this, a spectral library was built by using samples and spikes with known isotope composition. Boron isotope ratios measured by HR-CS-MAS are identical with those measured by mass spectrometric methods at the 0.15 ‰ level. Similar results were obtained for a multiple isotope system like Mg (24Mg, 25Mg, and 26Mg), where isotope shifts of their isotopologues can be resolved in the MgF molecule for the electronic transition X 2Σ → A 2 Πi. Finally, the application of molecular spectrometry via emission by LAMIS is compared and discussed. T2 - European Winter Conference on Plasma Spectrochemistry EWCPS 2019 CY - Pau, France DA - 03.02.2019 KW - Isotope analysis KW - HR-CS-MAS KW - LIBS KW - MS-ICP-MS KW - Optical spectroscopy KW - Mass spectrometry PY - 2019 AN - OPUS4-49874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Muench, S. A1 - Okruss, M. A1 - Mao, X. A1 - Gonzalez, J. A1 - Zorba, V. A1 - Recknagel, Sebastian A1 - Tatzel, Michael A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Stable isotope analysis of magnesium by optical spectrometry N2 - Magnesium is a naturally occurring element that can be found in several mineral forms in the earth crust. This element presents three stable isotopes 24Mg, 25Mg and 26Mg with a natural abundance of 79%, 10%, and 11% respectively. It is due to their relatively large mass difference (~8% between 24Mg and 26Mg) that isotope fractionation leads to slight isotope amount ratio variations n(26Mg)/n(24Mg) in biological and geological samples. Traditionally, isotope amount ratios have been measured by mass spectrometric methods. However, drawbacks of these methods include the high costs for instruments and their operation, experienced operators and elaborate chromatographic sample preparation which are time-consuming. Recently, optical spectrometric methods have been proposed as faster and low-cost alternative for the analysis of isotope ratios of selected elements by means of high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) and laser ablation molecular isotopic spectrometry (LAMIS). For the determination of Mg isotope amount ratios, the molecular spectrum of the in-situ generated MgF and MgO molecules were studied. In the case of HR-CS-GFMAS, the absorption spectrum was recorded for MgF for the electronic transitions X 2Σ → A 2 Πi and X 2Σ → B 2Σ+ around wavelengths 358 nm and 268 nm respectively. In the case of LAMIS, it was studied the MgF molecule for the electronic transitions A 2Πi → X 2Σ as well as the MgO molecule for the electronic transition A 1Π+ → X 1Σ around 500 nm. The MgF and MgO spectra are composed by the linear combination of their isotopic components or isotopologues: 24MgF, 25MgF, and 26MgF for the MgF and 24MgO, 25MgO, and 26MgO for the MgO (F is monoisotopic, and the isotope composition of O is assumed as constant). By HR-CS-GFMAS the analysis of Mg was done by deconvolution of the MgF spectrum by a partial least square regression (PLS) calibrated with enriched isotope spikes. The isotope amount ratios in rock samples with and without matrix separation were analyzed. Resulting delta values were obtained with precisions ranging between 0.2-0.5 ‰. On the other hand, LAMIS allows the direct analysis of solid samples with the extended possibility of in-situ analysis. Main advantages, limitations, and scopes of both optical techniques are going to be discussed and compared with MC-ICP-MS. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2019 KW - Isotope analysis KW - HR-CS-MAS KW - LIBS KW - MC-ICP-MS KW - Magnesium PY - 2019 AN - OPUS4-49876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Mao-Dong, H. A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Determination of isotope ratios by molecular absorption spectrometry N2 - Boron and Magnesium present two and three stable isotopes respectevely. It is due to their relatively large mass difference (~ 10%) that isotope fractionation leads to considerable isotope amount ratio variations in the nature. These have been used as a proof of provenance of mineral and biological samples, to estimate a contamination source and to the determination of geological processes by erosion or subduction. Additionally, boron is employed in the nuclear industry due to the capability of its isotope 10B to thermal-neutron capture and therefore 10B enriched boric acid solutions are used in the cooling system of thermonuclear facilities and in the alloying of steel and carbides for protective shielding. Traditionally, isotope ratio variations have been determined by mass spectroscopic methods. Here an alternative faster and low cost method for isotope ratio determination is proposed: high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Isotope amount ratios have been determined by monitoring the absorption spectrum of boron monohydride (BH) for boron and Magnesium monofluoride (MgF) for magnesium in a graphite furnace HR-CS-MAS. Bands (0→0) and (1→1) were evaluated. Partial least square regression (PLS) for analysis of samples and reference materials were applied. For this, a spectral library with different isotopes ratios for PLS regression was built. Results obtained are metrologically compatible with those reported by mass spectrometric methods. Moreover, a precision and accuracy of the method of ± 0.5 ‰. This accuracy and precision is comparable with those obtained by thermal ionization mass spectrometry (TIMS) and multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) for boron isotope ratio measurements T2 - Analytik Jena Days CY - Idstein, Germany DA - 26.06.2019 KW - Isotope anaylsis KW - HR-CS-MAS KW - Boron KW - Magnesium KW - Optical spectroscopy KW - Diatomic molecule PY - 2019 AN - OPUS4-49877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Muench, S. A1 - Okruss, M. A1 - Tatzel, Michael A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Chemometric analysis of High resolution spectra for precise and accurate isotope amount ratio determination N2 - Magnesium is a major element in the hydrosphere and biosphere and plays important roles in (bio-) geochemical and physiological cycles. Mg has three stable isotopes, 24Mg, 25Mg and 26Mg. It is due to their relatively large mass difference (~8% between) that isotope fractionation leads to slight variations of isotope amount ratios in biological, environmental and geological samples. Traditionally, isotope amount ratios are measured by mass spectrometric methods. Their drawbacks include the high costs for instruments and their operation, experienced operators and elaborate time-consuming chromatographic sample preparation. Recently, an optical spectrometric method has been proposed as faster and low-cost alternative for the analysis of isotope ratios: high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS). For the determination of Mg isotope ratios in selected rock reference materials, the high-resolution molecular absorption spectrum of in-situ generated MgF molecule was studied applying multivariate analysis and the results compared with MC-ICP-MS. Samples were dissolved by acid digestion and Mg isotopes analyzed with and without matrix. The absorption spectra were recorded for MgF for the electronic transition X 2Σ → B 2Σ+. The MgF spectrum is described as the linear combination of their isotopic components or isotopologues: 24MgF, 25MgF, and 26MgF. The isotope analysis was done by deconvolution of the MgF spectrum by partial least square regression (PLS). A PLS model was built and calibrated with enriched isotope spikes and certified reference materials. Spectra data was preprocessed by a derivate of second order and venetian blinds cross-validation was employed for finding the optimum latent variables. Finally, the model was refined by a genetic algorithm which identified the best subset of variables for a precise and accurate regression. Results are compatible with those obtained by MC-ICP-MS with an accuracy of ± 0.3‰ with uncertainties ranging between 0.02 to 0.6‰. T2 - Colloquium Analytische Atomspektroskopie CANAS 2019 CY - Freiberg, Germany DA - 23.09.2019 KW - Isotope analysis KW - Chemometric KW - Multivariate analysis KW - HR-CS-MAS KW - Molecular spectrum KW - Magnesium PY - 2019 AN - OPUS4-49878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Recknagel, Sebastian A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Following fluorinated drugs by molecular absorption spectrometry – from cancer cells to body fluids N2 - Fluorine has been widely introduced into pharmaceutical drugs. Due to the high C-F bond strength, a single atom substitution with fluorine produces drastic desirable and tunable changes in the molecular properties. However, the clinical monitoring of these drugs is not straightforward. Organofluorine compounds are elusive for a non-targeted analysis; a significant problem in fluorine determination is the lack of suitable detection techniques. Standard atomic absorption and emission spectrometers cannot access fluorine, because their resonance lines lie in the VUV spectral range below 100 nm. In the case of conventional inductively coupled argon plasmas (ICP), the plasma energy is too low to generate a significant population of excited fluorine atoms. Recently, our group introduces high-resolution continuum source absorption spectrometry (HR-CS MAS) as a new way for the indirect monitoring of fluorinated compounds. Main benefits of HR-CS-MAS includes low limits of detection, complete analyte recovery, simple to no sample preparation, and short time analysis. T2 - 16th Annual Congress of International Drug Discovery Science and Technology 2018 CY - Cambridge, MA, USA DA - 16.08.2018 KW - Fluorine KW - Anti-cancer KW - Capecitabine KW - Fluorouracil KW - HR-CS-MAS PY - 2018 AN - OPUS4-45822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -