TY - JOUR A1 - Kothavale, S. A1 - Jadhav, A. G. A1 - Scholz, Norman A1 - Nirmalananthan-Budau, Nithiya A1 - Behnke, Thomas A1 - Resch-Genger, Ute A1 - Sekar, N. T1 - Corrigendum to "Deep red emitting triphenylamine based coumarin-rhodamine hybrids with large stokes shift and viscosity sensing: Synthesis, photophysical properties and DFT studies of their spirocyclic and open forms" [Dyes Pigments 137 (2017) 329-341] N2 - We designed and synthesized triphenylamine based and coumarin fused rhodamine hybrid dyes and characterized using 1H, 13C NMR and HR-LCMS analysis. Both the newly synthesized hybrid dyes were found to show red shifted absorption as well as emissions and large Stokes shift (40e68 nm) as compared to the small Stokes shift (25e30 nm) of reported dyes Rhodamine B and 101. Photophysical properties of these dyes were studied in different solvents and according to the solvents acidity or basicity they preferred to remain in their spirocyclic or open form in different ratio. We studied the spirocyclic as well as open form derivatives of these dyes for their viscosity sensitivity in three different mixture of solvents i.e. polar-protic [EtOH-PEG 400], polar-aprotic [toluene-PEG 400] and non-polaraprotic [toluene-paraffin]. They are found to show very high viscosity sensitivity in polar-protic mixture of solvents [EtOH-PEG 400] and hence concluded that both polarity as well as viscosity factor worked together for the higher emission enhancement rather than only viscosity factor. As these dyes showed very high viscosity sensitivity in their spirocyclic as well as open form, they can be utilized as viscosity sensors in visible as well as deep red region. We also correlated our experimental finding theoretically by using Density Functional theory computations. KW - Dye KW - Fluorescence KW - Synthesis KW - Quantum yield KW - Lifetime KW - Coumarin KW - Rhodamine KW - Probe KW - Viscosity PY - 2018 U6 - https://doi.org/10.1016/j.dyepig.2017.06.021 SN - 0143-7208 SN - 1873-3743 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. VL - 149 SP - 929 PB - Elsevier CY - Amsterdam AN - OPUS4-44038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute ED - Wang, Cui ED - Otto, S. ED - Dorn, M. ED - Kreidt, E. ED - Lebon, J. ED - Srsan, L. ED - di Martino-Fumo, P. ED - Gerhards, M. ED - Seitz, M. ED - Heinze, K. T1 - Deuterated Molecular Ruby with Record Luminescence Quantum Yield N2 - The recently reported luminescent chromium(III) complex 13+ ([Cr(ddpd)2]3+; ddpd=N,N’-dimethyl-N,N’-dipyridine-2-yl-pyridine-2,6-diamine) shows exceptionally strong near-IR emission at 775 nm in water under ambient conditions (F=11%) with a microsecond lifetime as the ligand design in 13+ effectively eliminates non-radiative decay pathways, such as photosubstitution, back-intersystem crossing, and trigonal twists. In the absence of energy acceptors, such as dioxygen, the remaining decay pathways are energy transfer to high energy solvent and ligand oscillators, namely OH and CH stretching vibrations. Selective deuteration of the solvents and the ddpd ligands probes the efficiency of these oscillators in the excited state deactivation. Addressing these energytransfer pathways in the first and second coordination sphere furnishes a record 30% quantum yield and a 2.3 millisecond lifetime for a metal complex with an earth-abundant metal ion in solution at room temperature. KW - Fluorescence KW - Quantum yield KW - Ligand design KW - Cr(III) KW - Complex KW - Oxygen sensor KW - NIR KW - Fluorescence lifetime PY - 2018 U6 - https://doi.org/10.1002/ange.201711350 SN - 1521-3773 VL - 57 IS - 4 SP - 1112 EP - 1116 PB - Wiley-VCH Verlag & Co. KGaA CY - Weinheim AN - OPUS4-44045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Keller, Julia A1 - Moldenhauer, Daniel A1 - Byrne, L. A1 - Haase, H. A1 - Resch-Genger, Ute A1 - Koch, Matthias T1 - Complexes of the mycotoxins citrinin and ochratoxin A with aluminum ions and their spectroscopic properties N2 - The sensitive detection of the mycotoxin citrinin (CIT) utilizing ist fluorescence requires approaches to enhance the emission. In this respect, we studied the complexation of CIT and ochratoxin A (OTA) with Al3+ in methanol using absorption and fluorescence spectroscopy. In this context, an isocratic high performance liquid chromatography (HPLC) method using a polymer column and a fluorescence detector was also developed that enables the separation of the metal ion complexes from the free ligands and non-complexed Al3+. CIT and OTA showed distinct changes in their absorption and fluorescence properties upon Al3+-coordination, and the fluorescence of CIT was considerably enhanced. Analysis of the photometrically assessed titration of CIT and OTA with Al3+ using the Job plot method revealed 1:2 and 1:1 stoichiometries for the Al3+ complexes of CIT (Al:CIT) and OTA (Al:OTA), respectively. In the case of CIT, only one -diketone moiety participates in Al3+ coordination. These findings can be elegantly exploited for signal amplification and provide the base to reduce the limit of detection for CIT quantification by about an order of magnitude, as revealed by HPLC measurements using a fluorescence detector. KW - Complexation KW - Aluminum KW - Fluorescence KW - Job plot KW - HPLC-DAD/FLD PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-470502 SN - 2072-6651 VL - 10 IS - 12 SP - 538, 1 EP - 8 PB - MDPI CY - Basel AN - OPUS4-47050 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Billimoria, K. A1 - Diaz Fernandez, Y. A. A1 - Andresen, Elina A1 - Sorzabal-Bellido, I. A1 - Huelga-Suarez, G. A1 - Bartczak, D. A1 - Ortiz de Solórzano, C. A1 - Resch-Genger, Ute A1 - Goenaga Infante, H. T1 - The potential of bioprinting for preparation of nanoparticle-based calibration standards for LA-ICP-ToF-MS quantitative imaging N2 - This paper discusses the feasibility of a novel strategy based on the combination of bioprinting nano-doping technology and laser ablation-inductively coupled plasma time-of-flight mass spectrometry analysis for the preparation and characterization of gelatin- based multi-element calibration standards suitable for quantitative imaging. To achieve this, lanthanide up-conversion nanoparticles were added to a gelatin matrix to produce the bioprinted calibration standards. The features of this bioprinting approach were com- pared with manual cryosectioning standard preparation, in terms of throughput, between batch repeatability and elemental signal homogeneity at 5 μm spatial resolution. By using bioprinting, the between batch variability for three independent standards of the same concentration of 89 Y (range 0–600 mg/kg) was reduced to 5% compared to up to 27% for cryosectioning. On this basis, the relative standard deviation ( RSD ) obtained between three independent calibration slopes measured within 1 day also reduced from 16% (using cryosectioning ) to 5% (using bioprinting), supporting the use of a single standard preparation replicate for each of the concentrations to achieve good calibration performance using bioprinting. This helped reduce the analysis time by approximately 3-fold. With cryosectioning each standard was prepared and sectioned individually, whereas using bio-printing it was possible to have up to six different standards printed simultaneously, reducing the preparation time from approximately 2 h to under 20 min (by approxi- mately 6-fold). The bio-printed calibration standards were found stable for a period of 2 months when stored at ambient temperature and in the dark. KW - Environmental analysis KW - LA-ICP-MS KW - Lanthanide KW - Tag KW - Fluorescence KW - Nanoparticles KW - Reference material KW - Quality assurance KW - 3D-printing KW - Synthesis KW - Production KW - Multimodal PY - 2022 U6 - https://doi.org/10.1093/mtomcs/mfac088 SN - 1756-591X VL - 14 IS - 12 SP - 1 EP - 9 PB - Oxford University Press CY - Oxford AN - OPUS4-57018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Recknagel, Sebastian A1 - Bresch, Harald A1 - Kipphardt, Heinrich A1 - Resch-Genger, Ute A1 - Koch, Matthias A1 - Rosner, M. T1 - Trends in selected fields of reference material production N2 - For more than 110 years, BAM has been producing reference materials for a wide range of application fields. With the development of new analytical methods and new applications as well as continuously emerging more stringent requirements of laboratory accreditation with regard to quality control and metrological traceability, the demand and requirements for reference materials are increasing. This trend article gives an overview of general developments in the field of reference materials as well as developments in selected fields of application in which BAM is active. This includes inorganic and metal analysis, gas analysis, food and consumer products, and geological samples. In addition to these more traditional fields of application, developments in the areas of optical spectroscopy, particulary fluorescence methods, and nanomaterials are considered. T2 - 150 years BAM: Science with impact CY - Berlin, Germany DA - 01.01.2021 KW - Reference material KW - ISO REMCO KW - Gas analysis KW - Food KW - Nanomaterials KW - Fluorescence PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-548407 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - Topical collection: Analytical methods and applications in the materials and life sciences SP - 4281 EP - 4289 PB - Springer CY - Berlin AN - OPUS4-54840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Potopnyk, M. A1 - Mech-Piskorz, J. A1 - Angulo, G. A1 - Ceborska, M. A1 - Luboradzki, R. A1 - Andresen, Elina A1 - Gajek, A. A1 - Wisniewska, A. A1 - Resch-Genger, Ute T1 - Aggregation/Crystallization-Induced Emission in Naphthyridine-Based Carbazolyl-Modified Donor-Acceptor Boron Dyes Tunable by Fluorine Atoms N2 - Four donor-acceptor boron difluoride complexes based on the carbazole electron donor and the [1,3,5,2]oxadiazaborinino[3,4-a][1,8]naphthyridine acceptor were designed, synthesized, and systematically spectroscopically investigated in solutions, in the solid states, and dye-doped polymer films. The dyes exhibit an intense blue to red solid-state emission with photoluminescence quantum yields of up to 56% in pure dye samples and 86% in poly(methyl methacrylate) films. All boron complexes show aggregation-induced emission and reversible mechanofluorochromism. The optical properties of these dyes and their solid state luminescence can be tuned by substitution pattern, i.e., the substituents at the naphthyridine unit. Exchange of CH3- for CF3-groups does not only increase the intramolecular charge transfer character, but also provides a crystallization-induced emission enhancement. KW - Spectroscopy KW - Dye KW - Luminescence KW - Sensor KW - Fluorescence KW - Quantum yield KW - Lifetime KW - Quality assurance KW - Synthesis PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-597426 SN - 0947-6539 SP - 1 EP - 12 PB - Wiley VHC-Verlag AN - OPUS4-59742 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fiedler, Saskia A1 - Frenzel, Florian A1 - Würth, Christian A1 - Tavernaro, Isabella A1 - Grüne, M. A1 - Schweizer, S. A1 - Engel, A. A1 - Resch-Genger, Ute T1 - Interlaboratory Comparison on Absolute Photoluminescence Quantum Yield Measurements of Solid Light Converting Phosphors with Three Commercial Integrating Sphere Setups N2 - Scattering luminescent materials dispersed in liquid and solid matrices and luminescent powders are increasingly relevant for fundamental research and industry. Examples are luminescent nano- and microparticles and phosphors of different compositions in various matrices or incorporated into ceramics with applications in energy conversion, solid-state lighting, medical diagnostics, and security barcoding. The key parameter to characterize the performance of these materials is the photoluminescence/fluorescence quantum yield (Φf), i.e., the number of emitted photons per number of absorbed photons. To identify and quantify the sources of uncertainty of absolute measurements of Φf of scattering samples, the first interlaboratory comparison (ILC) of three laboratories from academia and industry was performed by following identical measurement protocols. Thereby, two types ofcommercial stand-alone integrating sphere setups with different illumination and detection geometries were utilized for measuring the Φf of transparent and scattering dye solutions and solid phosphors, namely, YAG:Ce optoceramics of varying surface roughness, used as converter materials for blue light emitting diodes. Special emphasis was dedicated to the influence of the measurement geometry, the optical properties of the blank utilized to determine the number of photons of the incident excitation light absorbed by the sample, and the sample-specific surface roughness. While the Φf values of the liquid samples matched between instruments, Φf measurements of the optoceramics with different blanks revealed substantial differences. The ILC results underline the importance of the measurement geometry, sample position, and blank for reliable Φf data of scattering the YAG:Ce optoceramics, with the blank’s optical properties accounting for uncertainties exceeding 20%. KW - Nano KW - Fluorescence KW - Reference material KW - Luminescence KW - Quantitative spectroscopy KW - Particle KW - Quantum yield KW - Quality assurance KW - Phosphor KW - Converter material KW - Lifetime KW - Interlaboratory comparison KW - Method KW - Uncertainty PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-600945 SN - 0003-2700 SP - 6730 EP - 6737 PB - ACS Publications AN - OPUS4-60094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geißler, Daniel A1 - Wegner, Karl David A1 - Fischer, C. A1 - Resch-Genger, Ute T1 - Exploring Simple Particle-Based Signal Amplification Strategies in a Heterogeneous Sandwich Immunoassay with Optical Detection N2 - Heterogeneous sandwich immunoassays are widely used for biomarker detection in bioanalysis and medical diagnostics. The high analyte sensitivity of the current “gold standard” enzyme-linked immunosorbent assay (ELISA) originates from the signal-generating enzymatic amplification step, yielding a high number of optically detectable reporter molecules. For future point-of-care testing (POCT) and point-of-need applications, there is an increasing interest in more simple detection strategies that circumvent time-consuming and temperature-dependent enzymatic reactions. A common concept to aim for detection limits comparable to those of enzymatic amplification reactions is the usage of polymer nanoparticles (NP) stained with a large number of chromophores. We explored different simple NP-based signal amplification strategies for heterogeneous sandwich immunoassays that rely on an extraction-triggered release step of different types of optically detectable reporters. Therefore, streptavidinfunctionalized polystyrene particles (PSP) are utilized as carriers for (i) the fluorescent dye coumarin 153 (C153) and (ii) hemin (hem) molecules catalyzing the luminol reaction enabling chemiluminescence (CL) detection. Additionally, (iii) NP labeling with hemin-based microperoxidase MP11 was assessed. For each amplification approach, the PSP was first systematically optimized regarding size, loading concentration, and surface chemistry. Then, for an immunoassay for the inflammation marker C- eactive protein (CRP), the analyte sensitivity achievable with optimized PSP ystems was compared with the established ELISA concept for photometric and CL detection. Careful optimization led to a limit of detection (LOD) of 0.1 ng/mL for MP11-labeled PSP and CL detection, performing similarly well to a photometric ELISA (0.13 ng/mL), which demonstrates the huge potential of our novel assay concept. KW - Nanoparticle KW - Fluorescence KW - Immunoassay KW - Quality assurance KW - Antibody KW - Polymer KW - Dye KW - Signal enhancement KW - CRP KW - Biosensing PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-597853 SN - 1520-6882 VL - 96 IS - 13 SP - 5078 EP - 5085 PB - American Chemical Society CY - Columbus, Ohio AN - OPUS4-59785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -