TY - CHAP A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Guerra, M.F. A1 - Martinón-Torres, M. A1 - Lemasson, Q. A1 - Moignard, B. A1 - Pacheco, C. A1 - Pichon, L. A1 - Macdonald, L. A1 - Hess, M. A1 - Tissot, I. ED - Guerra, M. F. ED - Martinón-Torres, M. ED - Quirke, S. T1 - Analytical approaches to Egyptian goldwork T2 - Ancient Egyptian gold: Archaeology and science in jewellery (3500–1000 bc) N2 - The structure and composition of ancient gold objects retain information about their long history of manufacture, from the exploitation of the ore to the finishing touches, as well as evidence of their use, deposition, and degradation. By developing an efficient analytical strategy, it is possible to retrieve that information. This chapter sets the necessary foundation 131to explore fully the analytical results presented in the following chapters of this volume. The techniques employed in the analyses of the Egyptian jewellery are described and the analytical parameters provided. For more established techniques, only brief introductions are presented, while more recent developments are presented in greater detail. KW - Gold KW - Synchrotron KW - D2XRF KW - Egypt PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586039 DO - https://doi.org/10.17863/CAM.99681 SP - 131 EP - 191 AN - OPUS4-58603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - Artificial intelligence for spectroscopy examples from BAMline N2 - Various applications for artificial intelligence in the context of spectroscopy will be presented. in particular, examples from bamline will be featured. After a short introduction to synchrotron radiation, artificial intelligence algorithms for the quantification of X-ray fluorescence measurement are discussed. In the second example, information retrieval by natural language processing is reviewed. As a last example the reconstruction of measurements with the X-ray color camera and coded apertures is presented. T2 - Seminar Strahlenphysikalische Anwendungen in Technik und Medizin CY - ATi Wien, Austria DA - 22.01.2020 KW - Machine learning KW - Natural language processing KW - Neural networks KW - Synchrotron KW - BAMline PY - 2020 AN - OPUS4-51891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manso, M. A1 - Pessanha, S. A1 - Guerra, M. A1 - Reinholz, Uwe A1 - Afonso, C. A1 - Radtke, Martin A1 - Lourenco, H. A1 - Carvalho, M. L. A1 - de Oliveira Guilherme Buzanich, Ana T1 - Assessment of Toxic Metals and Hazardous Substances in Tattoo Inks Using Sy-XRF, AAS, and Raman Spectroscopy JF - Biological Trace Element Research N2 - Synchrotron radiation X-ray fluorescence spectroscopy, in conjunction with atomic absorption and Raman spectroscopy, was used to analyze a set of top brand tattoo inks to investigate the presence of toxic elements and hazardous substances. The Cr, Cu, and Pb contents were found to be above the maximum allowed levels established by the Council of Europe through the resolution ResAP(2008)1 on requirements and criteria for the safety of tattoos and permanent makeup. Raman analysis has revealed the presence of a set of prohibited substances mentioned in ResAP(2008)1, among which are the pigments Blue 15, Green 7, and Violet 23. Other pigments that were identified in white, black, red, and yellow inks are the Pigment White 6, Carbon Black, Pigment Red 8, and a diazo yellow, respectively. The present results show the importance of regulating tattoo ink composition. KW - Synchrotron KW - Tattoo inks KW - XRF KW - Toxic metals KW - Hazardous substances PY - 2019 DO - https://doi.org/10.1007/s12011-018-1406-y VL - 187 IS - 2 SP - 596 EP - 601 PB - Springer AN - OPUS4-47369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Cakir, Cafer Tufan T1 - Big to Small - Getting Smarter@BAMline N2 - In this talk an overview about artificial intelligence/machine learning applications @BAMline is given. In the first part, the use of neural networks for the quantification of XRF measurements and the decoding of coded-aperture measurements are shown. Then it is shown how Gaussian processes and Bayesian statistics can be used to achieve an optimal alignment of the set-up and in general for optimization of measurements. T2 - Forschungsseminar Institut für Optik und Atomare Physik TU Berlin CY - Berlin, Germany DA - 25.10.2022 KW - Artificial Inelligence KW - Machine Learning KW - Bayesian Statistics KW - Gaussian process KW - Neural network KW - BAMline KW - Synchrotron PY - 2022 AN - OPUS4-56249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fittschen, U.E.A. A1 - Möckel, R. A1 - Schreiner, M. A1 - klinger, M. A1 - Radtke, Martin A1 - Meyer, B. A1 - Guhl, S. A1 - Renno, A. A1 - Godinho, J. A1 - Gloaguen, R. A1 - Gutzmer, J. T1 - Bundling analytical capacities to understand phase formation in recycling of functional materials JF - Materials Science Forum N2 - Transitioning from combustion engine-driven transportation to e-mobility demands a paradigm shift – from a system geared to maximize energy efficiency (i.e. fuel consumption) to a system that may be constrained by the availability of high technology (critical) metals required for electrical energy storage systems and drives. In the wake of these developments efforts in securing new resources of these metals from recycling of end-of-life products are increasing steadily. Recycling of Li-Ion batteries has recently been evaluated. The results pinpoint to a critical need for understanding slag Formation and its dependence on metal components like Mn under extreme conditions. This will allow researchers to predict optimal Operation setting and to react quickly to changing market demands (which may be Li or Co at one point but may also shift to Ni or rare earth elements (REE)). The long-term goal is to control the formation of specific phases in slags allowing for a Maximum yield of elements of interest and optimal recovery in the separation processes that follows. The combination of data on the physical micro structure and local chemistry of the multi-Phase products during and after processing will help to understand and derive thermodynamic and kinetic data on its formation. In this paper we are giving an overview on the analytical challenges and approaches to provide robust data on local element concentration and species (especially Mn which is a common component of next generation Li-ion batteries cathodes), spanning the dimensions from the nanometer scale to the bulk material. The complementary interactions of X-rays and electrons make them ideal probes to collect Interface and “in-depth” information. Before- and -after studies as well as in situ structural changes and Phase (trans)formation, changes in elemental and elemental species (e.g. oxidation state) distribution may be tracked by X-ray diffraction (XRD), X-ray fluorescence microscopy and X-ray Absorption spectroscopy. The application of such advanced analytical tools will not only provide essential clues during early lab-based experiments towards the development of new recycling technologies, but may also be deployed for on-line and in-line monitoring of industrial processes. KW - Synchrotron KW - XANES KW - Slags KW - Battery PY - 2019 DO - https://doi.org/10.4028/www.scientific.net/MSF.959.183 SN - 1662-9752 VL - 959 SP - 183 EP - 190 PB - Trans Tech Publ. AN - OPUS4-48900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe T1 - Das goldene Zeitalter war damals Analyse von Gold mit Synchrotronstrahlung N2 - Gold ist eines der sieben bereits in der Antike bekannten Metalle und wurde wegen seines Glanzes und seiner Seltenheit seit jeher als Tauschmittel und zur Herstellung von Schmuck verwendet. Außerdem ist es leicht zu bearbeiten und weitgehend resistent gegen chemische Einflüsse. Die Analyse von Gold mit der durch Synchrotronstrahlung angeregten Röntgenfluoreszenzanalyse ist zerstörungsfrei und liefert Informationen über die in der untersuchten Probe vorhandenen chemischen Elemente. Im Mittelpunkt der hier vorgestellten Untersuchungen an der BAMline stehen Fragen nach der Herkunft, dem Herstellungsprozess und der Zugehörigkeit von Goldfunden. Die verschiedenen Fragestellungen werden anhand einer Reihe von Beispielen erläutert, die vom Wikingerschatz von Hiddensee über die Himmelsscheibe von Nebra bis hin zu Funden aus Ägypten reichen. Darüber hinaus werden die heute am Synchrotron verfügbaren modernen Messmethoden vorgestellt. T2 - WISSENSCHAFT MIT WIRKUNG: Workshop Kulturguterhaltung – vom Dampfkessel zu Nanomaterialien CY - Berlin, Germany DA - 17.11.2021 KW - Gold KW - Synchrotron KW - Bernstorf KW - Nebra KW - XRF PY - 2021 AN - OPUS4-54139 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Kulow, A. A1 - Reinholz, Uwe A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska A1 - Streli, C. A1 - Fittschen, U. E. A. A1 - Hampel, S. T1 - Energy Resolved Imaging with Coded Apertures N2 - Our aim is to develop a simple and inexpensive method for full field X-ray fluorescence imaging.We combine an energydispersive array detector with a coded aperture to obtain high resolut ion images. To obtain the information from the recorded image a reconstruction step is necessary. The reconstruction methods we have developed, were tested on simulated data and then applied to experimental data. The first tests were carried out at the BAMline @BESSY II. This method enables the simultaneous detection of multiple elements,which is important e.g. in the field of catalysis. T2 - SRI 2021 CY - Online meeting DA - 28.3.2022 KW - Synchrotron KW - BAMline KW - Machine Learning KW - Coded Aperture PY - 2022 AN - OPUS4-56298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - From Egypt to Hiddensee – Analysis of Gold with Synchrotron Radiation IV N2 - Gold is one of the seven metals already known in antiquity and was used from time immemorial as a medium of exchange and for the production of jewelry because of its luster and rarity. In addition, it is easy to work and largely resistant to chemical influences. Investigations of gold using synchrotron radiation excited X-ray fluorescence analysis are non-destructive and provide information about the chemical elements present in the sample under investigation. The investigations presented here at BAMline focus on questions such as the origin, manufacturing process, and association of gold findings. The different questions are explained by a number of examples ranging from the Viking treasure from Hiddensee to the Nebra Sky Disk and finds from Egypt. The find from Bernstorf is discussed in detail. A Bayesian treatment of the authenticity is shown. T2 - Ringvorlesung Einführung in die Archäometrie CY - Berlin, Germany DA - 04.11.2022 KW - Synchrotron KW - BAMline KW - Bayesian Statistics KW - Gold KW - Röntgenfluoreszenz PY - 2022 AN - OPUS4-56252 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Guerra, M.F. A1 - Neri, E. A1 - Radtke, Martin T1 - Gold leaf tesserae: tracing the origins of gold using synchrotron-based techniques JF - The European Physical Journal Plus N2 - To gain insight into the possible origin of the gold used in the production of tesserae containing gold leaf less than 0.5 μm thick placed between two layers of glass, we propose a non-destructive synchrotron radiation (SR) XRF protocol based on sequential analysis under optimised analytical conditions. Using this protocol, trace element analysis is achieved with detection limits of 1–6 mg/kg. As Pt and Au have adjacent fluorescence energies, we tested the most challenging situation, when Pt is present in very low concentrations in gold. Data obtained by double-dispersive XRF (D2XRF) and μXRF for fourth–ninth-century mosaics decorating nine Eastern and Western religious buildings show that the Eastern and Western tesserae are made from different alloys. However, these alloys are identical to those used to make gold leaf for gilding, because plastic deformation requires the use of gold alloys with high ductility and malleability. Although trace element composition of gold used in the concerned period is only available for coins, by comparing the amounts of Pt contained in the tesserae and in the coins we show that Roman tesserae are made from Roman gold, as described in the documentary sources. We observe for the Byzantine period the use of a Byzantine gold and of gold supposedly from different stages of recycling, and we suggest the use of Umayyad and Abbasid gold for the production of Islamic tesserae. KW - Gold KW - XRF KW - Synchrotron KW - BAMline KW - D2XRF KW - Tesserae PY - 2023 DO - https://doi.org/10.1140/epjp/s13360-022-03638-y SN - 2190-5444 VL - 138 IS - 2 SP - 1 EP - 15 AN - OPUS4-57208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana T1 - Hard X-ray spectroscopy and imaging at the BAMline and MySpot beamlines at BESSY II (Berlin, Germany) N2 - Overview of the X-ray based analytical methods conducted at the BAMline and µSpot Beamline for structure analysis. T2 - Pccr2 + AfLS conference CY - Accra, Ghana DA - 29.01.2019 KW - X-ray spectroscopy KW - Synchrotron KW - Beamline KW - Material characterization PY - 2019 AN - OPUS4-47319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -