TY - JOUR A1 - Willms, Thomas A1 - Kryk, Holger A1 - Hampel, Uwe T1 - An improved method for the analysis of the reaction products of the partial isobutane oxidation by gas chromatography using a green solvent N2 - In the present work, an improved GC/MS method for the analysis of the reaction products of the non-catalytic partial oxidation of isobutane at a starting temperature of 25°C has been developed and compared to a previously published method. Two green GC-solvents (dimethyl carbonate (DMC), diethyl carbonate (DEC)) and several internal standards (hexane, benzene, toluene, DEC) have been tested. The separation of the products at low retention times (methanol, isobutane, isobutene) could be significantly improved. For the liquid main products t-butyl hydroperoxide (TBHP), di-t-butyl peroxide (DTBP), t-butanol (TBA), propanone and most trace products (isopropanol, isobutanal, methyl formate, isopropyl formate, t-butyl formate and some acetates – 24 compounds in total), a coefficient of determination CoD > 0.999 has been achieved. For all weighing and GC/MS measurements uncertainties have been calculated. The peaks of the peak pair t-butyl formate (CoD >0.999) and isobutanol (CoD >0.99), have been simulated and used for calibrations. DEC gave a decomposition of TBHP on the column. With DMC, a problem of peak purity of TBHP appeared but could be resolved. The use of the green solvent DMC, compared to also studied traditional solvents like heptane and toluene, proved to be very beneficial, since it also permitted to determine polar compounds, e. g. carbon dioxide and formic acid. KW - GC/MS KW - Green solvent KW - Method development KW - Peroxide KW - Measurement uncertainties KW - Oxidation products KW - Simulation PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-632026 DO - https://doi.org/10.1016/j.chroma.2025.465892 SN - 0021-9673 VL - 1753 SP - 1 EP - 16 PB - Elsevier CY - Amsterdam AN - OPUS4-63202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaeger, Carsten A1 - Lisec, Jan T1 - Towards Unbiased Evaluation of Ionization Performance in LC-HRMS Metabolomics Method Development N2 - As metabolomics increasingly finds its way from basic science into applied and regulatory environments, analytical demands on nontargeted mass spectrometric detection methods continue to rise. In addition to improved chemical comprehensiveness, current developments aim at enhanced robustness and repeatability to allow long-term, inter-study, and meta-analyses. Comprehensive metabolomics relies on electrospray ionization (ESI) as the most versatile ionization technique, and recent liquid chromatography-high resolution mass spectrometry (LC-HRMS) instrumentation continues to overcome technical limitations that have hindered the adoption of ESI for applications in the past. Still, developing and standardizing nontargeted ESI methods and instrumental setups remains costly in terms of time and required chemicals, as large panels of metabolite standards are needed to reflect biochemical diversity. In this paper, we investigated in how far a nontargeted pilot experiment, consisting only of a few measurements of a test sample dilution series and comprehensive statistical analysis, can replace conventional targeted evaluation procedures. To examine this potential, two instrumental ESI ion source setups were compared, reflecting a common scenario in practical method development. Two types of feature evaluations were performed, (a) summary statistics solely involving feature intensity values, and (b) analyses additionally including chemical interpretation. Results were compared in detail to a targeted evaluation of a large metabolite standard panel. We reflect on the advantages and shortcomings of both strategies in the context of current harmonization initiatives in the metabolomics field. KW - Mass Spectrometry KW - Non-targeted analysis KW - Method development PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548065 DO - https://doi.org/10.3390/metabo12050426 VL - 12 IS - 5 SP - 1 EP - 13 PB - MDPI AN - OPUS4-54806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Labrador-Paez, Lucia, L. A1 - Kankare, J. A1 - Hyppanen, I. A1 - Soukka, T. A1 - Andresen, Elina A1 - Resch-Genger, Ute A1 - Widengren, J A1 - Liu, H. T1 - Frequency-Domain Method for Characterization of Upconversion Luminescence Kinetics N2 - The frequency-domain (FD) method provides an alternative to the commonly used time-domain (TD) approach in characterizing the luminescence kinetics of luminophores, with its own strengths, e.g., the capability to decouple multiple lifetime components with higher reliability and accuracy. While extensively explored for characterizing luminophores with down-shifted emission, this method has not been investigated for studying nonlinear luminescent materials such as lanthanide-doped upconversion nanoparticles (UCNPs), featuring more complicated kinetics. In this work, employing a simplified rate-equation model representing a standard two-photon energy-transfer upconversion process, we thoroughly analyzed the response of the luminescence of UCNPs in the FD method. We found that the FD method can potentially obtain from a single experiment the effective decay rates of three critical energy states of the sensitizer/activator ions involved in the upconversion process. The validity of the FD method is demonstrated by experimental data, agreeing reasonably well with the results obtained by TD methods. KW - Quality assurance KW - Luminescence KW - Method KW - Quantitative spectroscopy KW - Nano KW - Particle KW - Lifetime KW - Method development PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597435 DO - https://doi.org/10.1021/acs.jpclett.3c00269 SP - 3436 EP - 3444 AN - OPUS4-59743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbrich, Adelina-Elisa T1 - Multielemental analysis of MIC organisms grown on solid steel samples by means of single cell-ICP-ToF-MS N2 - Inductively coupled plasma-time of flight-mass spectrometry (ICP-ToF-MS) enables the analysis of the multi-element fingerprint of individual cells due to a (quasi-)simultaneous detection of about 70 elements of the periodic table. The interface between material and environmental analysis thus receives special attention, e.g., when considering corrosion processes. Microbiologically influenced corrosion (MIC) is a highly unpredictable phenomenon due to the influence of the environment, microbial communities involved and the respective electron source. However, the interaction pathway between cells and the metal surface remains unclear. The development of the MIC-specific ICP-ToF-MS analytical method presented here, in combination with the investigation of steel-MIC interactions, contributes significantly to progress in instrumental MIC analysis and will enable clarification of the processes taking place. For this, a MIC-specific staining procedure was developed which ensures the analysis of intact cells. It allows the studies of archaea at a single cell level which is extremely scarce compared to other well characterized organisms. Additionally, the single cell ICP-ToF-MS is used for the analysis of archaea involved in MIC of steel. Hence, the possible uptake of individual elements from different steel samples is investigated - the information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts, thus combining modern methods of analytical sciences with materials research. T2 - DGMS Young Scientists Fall Meeting 2022 CY - Hünfeld, Germany DA - 28.09.2022 KW - Single cell KW - Microbiological influenced corrosion MIC KW - Sc-ICP-ToF-MS KW - Method development PY - 2022 AN - OPUS4-55910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbrich, Adelina-Elisa T1 - Deciphering microbiological influenced corrosion processes on steel with single cell-ICP-ToF-MS N2 - Microbiologically influenced corrosion (MIC) is a highly unpredictable process dictated by the environment, microorganisms, and the respective electron source. Interaction pathways between cells and the metal surface remain unclear. The development of this novel single cell-inductively coupled plasma-time of flight-mass spectrometry analytical method and a MIC-specific staining procedure facilitate the investigation of steel-MIC interactions. With this it is possible to analyze the multi-elemental fingerprint of individual cells. The detection method revealed elemental selectivity for the corrosive methanogenic archaeal strain Methanobacterium-affiliated IM1. The interface between material and environmental analysis thus receives special attention, e.g., when considering MIC on solid steel. Hence, the possible uptake of individual elements from different steel samples is investigated. Results showed the cells responded at a single-cell level to the different types of supplemented elements and displayed the abilities to interact with chromium, vanadium, titanium, cobalt, and molybdenum from solid metal surfaces. The information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts, thus combining modern methods of analytical sciences with materials research. References. T2 - Future WiNS CY - Berlin, Germany DA - 07.12.2022 KW - Single cell KW - Microbiological influenced corrosion MIC KW - Sc-ICP-ToF-MS KW - Method development KW - Ir DNA staining approach KW - Carbon steel corrosion PY - 2022 AN - OPUS4-56567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -