TY - JOUR A1 - Simon, Fabian A1 - Gehrenkemper, Lennart A1 - Becher, S. A1 - Dierckes, G. A1 - Langhammer, Nicole A1 - Cossmer, Antje A1 - von der Au, Marcus A1 - Göckener, B. A1 - Fliedner, A. A1 - Rüdel, H. A1 - Koschorreck, J. A1 - Meermann, Björn T1 - Quantification and characterization of PFASs in suspended particulate matter (SPM) of German rivers using EOF, dTOPA, (non-)target HRMS JF - Science of the total environment N2 - In this study, we compare analytical methods for PFAS determination–target analysis, non-target screening (NTS), direct total oxidizable precursor assay (dTOPA) and extractable organically bound fluorine (EOF). Therefore, suspended particulate matter (SPM) samples from German rivers at different locations in time series from2005 to 2020 were analyzed to investigate temporal and spatially resolved trends. In this study 3 PFAS mass balances approaches were utilized: (i) PFAA target vs. PFAS dTOPA, (ii) PFAS target vs. EOF and (iii) PFAS target vs. PFAS dTOPA vs. organofluorines NTS vs. EOF. Mass balance approach (i) revealed high proportions of precursor substances in SPM samples. For the time resolved analysis an increase from 94% (2005) to 97% in 2019 was observable. Also for the spatial resolved analysis precursor proportions were high with >84% at all sampling sites. Mass balance approach (ii) showed that the unidentified EOF (uEOF) fraction increased over time from82% (2005) to 99% (2019). Furthermore, along the river courses the uEOF increased. In the combined mass balance approach (iii) using 4 different analytical approaches EOF fractions were further unraveled. The EOF pattern was fully explainable at the sampling sites at Saar and Elbe rivers. For the time resolved analysis, an increased proportion of the EOF was now explainable. However, still 27% of the EOF for the time resolved analysis and 25% of the EOF for the spatial resolved analysis remained unknown. Therefore, in a complementary approach, both the EOF and dTOPA reveal unknown gaps in the PFAS mass balance and are valuable contributions to PFAS risk assessment. Further research is needed to identify organofluorines summarized in the EOF parameter. KW - PFAS KW - HR-CS-GFMAS KW - Fluorine KW - SPM KW - LC-MS/MS PY - 2023 DO - https://doi.org/10.1016/j.scitotenv.2023.163753 SN - 1879-1026 SN - 0048-9697 VL - 885 SP - 1 EP - 12 PB - Elsevier Science CY - Amsterdam AN - OPUS4-57429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ecke, Alexander A1 - Westphalen, Tanja A1 - Retzmann, Anika A1 - Schneider, Rudolf T1 - Factors affecting the hydrolysis of the antibiotic amoxicillin in the aquatic environment JF - Chemosphere N2 - The environmental fate of the frequently used broad-spectrum β-lactam antibiotic amoxicillin (AMX) is of high concern regarding the potential evolution of antimicrobial resistance (AMR). Moreover, it is known that AMX is prone to hydrolysis, yielding a variety of hydrolysis products (HPs) with yet unknown effects. Studies to identify those HPs and investigate their formation mechanisms have been reported but a long-term study on their stability in real water samples was missing. In this regard, we investigated the hydrolysis of AMX at two concentration levels in four distinct water types under three different storage conditions over two months. Concentrations of AMX and four relevant HPs were monitored by an LC-MS/MS method revealing pronounced differences in the hydrolysis rate of AMX in tap water and mineral water on the one hand (fast) and surface water on the other(slow). In this context, the occurrence, relative intensities, and stability of certain HPs are more dependent on the water type than on the storage condition. As clarified by ICP-MS, the main difference between the water types was the content of the metals copper and zinc which are supposed to catalyze AMX hydrolysis demonstrating an effective method to degrade AMX at ambient conditions. KW - β-lactam KW - Stability KW - Degradation KW - Hydrolysis products KW - LC-MS/MS KW - ICP-MS PY - 2023 DO - https://doi.org/10.1016/j.chemosphere.2022.136921 SN - 0045-6535 VL - 311 SP - 136921 PB - Elsevier Ltd. AN - OPUS4-56124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -