TY - JOUR A1 - López-Serrano Oliver, Ana A1 - Baumgart, S. A1 - Bremser, Wolfram A1 - Flemig, Sabine A1 - Wittke, D. A1 - Grützkau, A. A1 - Luch, A. A1 - Haase, A. A1 - Jakubowski, Norbert T1 - Quantification of silver nanoparticles taken up by single cells using inductively coupled plasma mass spectrometry in the single cell measurement mode JF - Journal of Analytical Atomic Spectrometry N2 - The impact of nanoparticles, NPs, at the single cell level has become a major field of toxicological research and different analytical methodologies are being investigated to obtain biological and toxicological information to better understand the mechanisms of cell–NP interactions. Here, inductively coupled plasma mass spectrometry in the single cell measurement mode (SC-ICP-MS) is proposed to study the uptake of silver NPs, AgNPs, with a diameter of 50 nm by human THP-1 monocytes in a proof-ofprinciple experiment. The main operating parameters of SC-ICP-MS have been optimized and applied for subsequent quantitative analysis of AgNPs to determine the number of particles in individual cells using AgNP suspensions for calibration. THP-1 cells were incubated with AgNP suspensions with concentrations of 0.1 and 1 µg/mL for 4 and 24 hours. The results reveal that the AgNP uptake by THP-1 monocytes is minimal at the lower dose of 0.1 µg/mL (roughly 1 AgNP per cell was determined), whereas a large cell-to-cell variance dependent on the exposure time is observed for a 10 times higher concentration (roughly 7 AgNPs per cell). The method was further applied to monitor the AgNP uptake by THP-1 cells differentiated macrophages incubated at the same AgNP concentration levels and exposure times demonstrating a much higher AgNP uptake (roughly from 9 to 45 AgNPs per cell) that was dependent on exposure concentration and remained constant over time. The results have been compared and validated by sample digestion followed by ICP-MS analysis as well as with other alternative promising techniques providing single cell analysis. KW - Silbernanopartikel KW - ICP-MS KW - Einzelzellanalyse PY - 2018 DO - https://doi.org/10.1039/C7JA00395A SN - 0267-9477 VL - 33 IS - 7 SP - 1256 EP - 1263 PB - Royal Society of Chemistry CY - London AN - OPUS4-45473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Löhr, Konrad A1 - Traub, Heike A1 - Wanka, Antje Jutta A1 - Panne, Ulrich A1 - Jakubowski, Norbert T1 - Quantification of metals in single cells by LA-ICP-MS: Comparison of single spot analysis and imaging JF - Journal of Analytical Atomic Spectrometry N2 - LA-ICP-MS is increasingly used for single cell analysis in two different detection modes using either the imaging mode with subcellular resolution or alternatively single spot analysis of cells with a larger laser spot size. This study compares the analytical figures of merit of both detection modes (signal to noise, precision, accuracy, throughput), as well as ease of operation and data evaluation. Adherent 3T3 fibroblast cells were stained with two metal dyes (mDOTA-Ho, Ir-DNA-intercalator) and several dozen cells were measured using both modes. We found a ten times higher throughput for single spot analysis, which has as well a straightforward data analysis, shortening the total analysis time further. The signal to noise ratio for single spot analysis was found to be slightly better compared to the signal to noise of pixels in imaging. The mean metal intensity per single cell differed by only 10% between both modes and obtained distributions were found to show no statistically significant differences. Using matrix matched calibration based on standards spotted onto nitrocellulose membrane, we achieved detection limits (10s) of 12 fg for Ir and 30 fg for Ho and quantified 57 +/-35 fg Ir and 1192 +/- 707 fg Ho per single cell. Compared to a conventional ICP-MS measurement of a digest of about 60000 cells, 54% of Ir content and 358% Ho content was found using quantitative LA-ICP-MS. The difference might be a consequence of the two metal dyes binding to different structures of the cell and therefore might behave differently in sample preparation for conventional and LA-ICP-MS. KW - Cells KW - Laser ablation KW - ICP-MS KW - Metals KW - Quantification PY - 2018 DO - https://doi.org/10.1039/c8ja00191j SN - 0267-9477 VL - 33 IS - 9 SP - 1579 EP - 1587 PB - RSC Royal Society of Chemistry CY - London AN - OPUS4-46441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pisonero, J. A1 - Bouzas-Ramos, D. A1 - Traub, Heike A1 - Cappella, Brunero A1 - Alvarez-Llamas, C. A1 - Richter, Silke A1 - Mayo, J. C. A1 - Costa-Fernandez, J. M. A1 - Bordel, N. A1 - Jakubowski, Norbert T1 - Critical evaluation of fast and highly resolved elemental distribution in single cells using LA-ICP-SFMS JF - Journal of Analytical Atomic Spectrometry N2 - The analytical potential of a nanosecond laser ablation inductively coupled plasma mass spectrometer (ns-LA-ICP-SFMS) system, equipped with an ultra-fast wash-out ablation chamber, is critically investigated for fast and highly spatially resolved (∼μm) qualitative elemental distribution within single cells. Initially, a low surface roughness (< 10 nm) thin In–SnO2 layer (total coating thickness ∼200 nm) deposited on glass is employed to investigate the size, morphology and overlapping of laser-induced craters obtained at different laser repetition rates, making use of Atomic Force Microscopy (AFM). Conical craters with a surface diameter of about 2 µm and depths of about 100 nm were measured after a single laser shot. Furthermore, the influence of the sampling distance (i.e. distance between the sample surface and the inner sniffer of the ablation chamber) on the LA-ICP-MS ion signal wash-out time is evaluated. A significant decrease of the transient 120Sn+ ion signal is noticed after slight variations (±200 μm) around the optimum sampling position. Ultra-fast wash-outs (< 10 ms) are achieved reducing the aerosol mixing from consecutive laser shots even when operating the laser at high repetition rates (25 – 100 Hz). Fast and highly spatially resolved images of elemental distribution within mouse embryonic fibroblast cells (NIH/3T3 fibroblast cells) and human cervical carcinoma cells (HeLa cells), incubated with gold nanoparticles (Au NPs) and Cd-based quantum dots (QDs), respectively, are determined at the optimized operating conditions. Elemental distribution of Au and Cd in single cells is achieved using a high scanning speed (50 µm/s) and high repetition rate (100 Hz). The results obtained for the distribution of fluorescent Cd-based QDs within the HeLa cells are in good agreement with those obtained by confocal microscopy. The size, morphology and overlapping of laser-induced craters in the fixed cells are also investigated using AFM, observing conical craters with a surface diameter of about 2.5 µm and depths of about 800 nm after a single laser shot. KW - Laser ablation KW - ICP-MS KW - Nanoparticle KW - Atomic Force Microscopy KW - Cell PY - 2018 DO - https://doi.org/10.1039/c8ja00096d SP - 1 EP - 9 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-45564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cruz-Alonso, M. A1 - Fernandez, B. A1 - Alvarez, L. A1 - Gonzalez-Iglesias, H. A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Pereiro, R. T1 - Bioimaging of metallothioneins in ocular tissue sections by laser ablation-ICP-MS using bioconjugated gold nanoclusters as specific tags JF - Microchimica Acta N2 - An immunohistochemical method is described to visualize the distribution of metallothioneins 1/2 (MT 1/2) and metallothionein 3 (MT 3) in human ocular tissue. It is making use of (a) antibodies conjugated to gold nanoclusters (AuNCs) acting as labels, and (b) laser ablation (LA) coupled to inductively coupled plasma – mass spectrometry (ICP-MS). Water-soluble fluorescent AuNCs (with an average size of 2.7 nm) were synthesized and then conjugated to antibody by carbodiimide coupling. The surface of the modified AuNCs was then blocked with hydroxylamine to avoid nonspecific interactions with biological tissue. Immunoassays for MT 1/2 and MT 3 in ocular tissue sections (5 μm thick) from two post mortem human donors were performed. Imaging studies were then performed by fluorescence using confocal microscopy, and LA-ICP-MS was performed in the retina to measure the signal for gold. Signal amplification by the >500 gold atoms in each nanocluster allowed the antigens (MT 1/2 and MT 3) to be imaged by LA-ICP-MS using a laser spot size as small as 4 μm. The image patterns found in retina are in good agreement with those obtained by conventional fluorescence immunohistochemistry which was used as an established reference method. KW - Nanocluster KW - Immunohistochemistry KW - Laser ablation KW - ICP-MS KW - Fluorescence KW - Bioimaging PY - 2018 DO - https://doi.org/10.1007/s00604-017-2597-1 SN - 1436-5073 SN - 0026-3672 VL - 185 IS - 1 SP - 64 EP - 72 PB - Springer CY - Vienna AN - OPUS4-44637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -