TY - JOUR A1 - Moldenhauer, Laura A1 - Helmerich, Rosemarie A1 - Köppe, E. A1 - Wittmann, H.-J. T1 - Experimental modeling approach for determining the moisture damping exponent of a bluetooth low energy signal in moist building material N2 - The presented development of a damping model is a research component of an experimental feasibility study about moisture in building materials measured with Bluetooth® Low Energy (BLE) signals. This study may be part of a structural health- and long-term monitoring aiming at early damage detection in the built infrastructure and is increasingly focusing on wireless sensor network technology. It is investigated, how the Received Signal Strength Indicator (RSSI) of a BLE signal, transmitted from the BLE-module embedded in building materials with changing moisture content is damped. The aim of the modelling is the derivation of a damping equation for the formal model to determine the moisture damping exponent to finding a correlation. T2 - 34th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Trieste, Italy DA - 19.09.2017 KW - BLE Bluetooth low energy KW - Sensor network KW - RSSI Received Signal Strength Indicator KW - Structural Health Monitoring KW - Moisture measurements PY - 2018 DO - https://doi.org/10.1016/j.matpr.2018.08.124 SN - 2214-7853 VL - 5 IS - Issue 13, Part 2 SP - 26469 EP - 26792 PB - Elsevier Ltd. CY - Radarweg 29, 1043 NX Amsterdam, The Netherlands AN - OPUS4-47171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Detjens, Marc A1 - Hübert, Thomas A1 - Tiebe, Carlo A1 - Banach, Ulrich T1 - Coulometric trace humidity measurement in technical gases N2 - Trace humidity was measured by using miniaturized planar coulometric sensors in technical gases such as hydrogen, nitrogen, helium, nitrous oxide, and synthetic air. Frost point temperatures tf in the gases ranged from −60 °C to −30 °C, which is equivalent to a vapour mole fraction xv from 10 μmol mol−1 to 376 μmol mol−1. In addition, the generated humidity was determined by using a precision dew point hygrometer as reference. Nonlinear calibration functions were calculated that correlated electric current (sensor signal) and reference humidity. Parameters of functions were tested with one-way analysis of variances (ANOVA) to prove if all used sensors had a similar behavior in the same gas during experiments. Results of ANOVA confirmed that averaged functions can be applied for trace humidity measurement in nitrogen, helium, nitrous oxide, and synthetic air. The calculated functions were negligibly different for nitrogen, helium, and synthetic air. In humidified nitrous oxide, a minor change of parameters was observed due to lower electrical currents. In total contrast to that, the measured sensor signals were significantly higher in humidified hydrogen and each sensor required its own calibration function. The reason was a recombination effect that favoured multiple measurements of water molecules. Nevertheless, it was possible to measure continuously trace humidity in all tested gases by using coulometric sensors with an expanded uncertainty below 2 K (k = 2). KW - ANOVA KW - Trace humdity measurement KW - Coulometric sensors KW - Chemical sensors KW - Measurement uncertainty PY - 2018 DO - https://doi.org/10.1063/1.5008463 SN - 0034-6748 SN - 1089-7623 VL - 89 IS - 8 SP - 085004, 1 EP - 8 PB - American Institute of Physics (AIP) CY - Maryland (USA) AN - OPUS4-45956 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -