TY - CONF A1 - Traub, Heike A1 - Büchner, T. A1 - Drescher, D. A1 - Merk, V. A1 - Kneipp, J. A1 - Jakubowski, Norbert T1 - Studying nanoparticle-cell interaction by ICP-MS based techniques N2 - Nanoparticles (NPs) have found a wide range of applications in research and industry. Thereby the interaction of NPs with biological systems like cells has become a major field of interest, ranging from medical applications to nanotoxicology. Size, shape and surface modification of the nanomaterials determine the uptake rate and pathway into the cells, and therefore impact specific cell components and processes. Inductively coupled plasma mass spectrometry (ICP-MS) is a well-established analytical method offering high sensitivity and multi-element capability. By coupling a laser ablation (LA) system to an ICP-MS the analysis of different kinds of solid samples is possible. In recent years, it was shown that LA-ICP-MS can provide quantitative as well as distribution information of metal containing nanoparticles (NPs) in cell samples. Here LA-ICP-MS was applied for the imaging of individual fibroblast cells to study the uptake and intracellular processing of NPs. Our results show that LA-ICP-MS can be used to localize nanoparticle aggregates within cellular compartments. The studied NPs accumulate in the perinuclear region in the course of intracellular processing, but do not enter the cell nucleus. The uptake efficiency depends strongly on the physico-chemical properties of the nanostructures as well as on the incubation conditions like concentration and incubation time. ICP-MS was used to determine the composition of the nanomaterials as well as the number of NPs in cells after acid digestion of the samples. T2 - Workshop on Reference Nanomaterials CY - Berlin, Germany DA - 14.05.2018 KW - ICP-MS KW - Laser ablation KW - Nanoparticle KW - Cell PY - 2018 AN - OPUS4-45073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Büchner, T. A1 - Drescher, D. A1 - Merk, V. A1 - Kneipp, J. A1 - Jakubowski, Norbert T1 - Studying nanoparticle-cell interaction by ICP-MS based techniques N2 - Nanoparticles (NPs) have found a wide range of applications in research and industry. Thereby the interaction of NPs with biological systems like cells has become a major field of interest, ranging from medical applications to nanotoxicology. Size, shape and surface modification of the nanomaterials determine the uptake rate and pathway into the cells, and therefore impact specific cell components and processes. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is an established quantitative multi-elemental analysis and mapping technique. In recent years, it was shown that LA-ICP-MS can provide quantitative as well as distribution information of metal containing nanoparticles (NPs) in cell samples. Here LA-ICP-MS was applied for the imaging of individual fibroblast cells to study the uptake and intracellular processing of NPs. Our results show that LA-ICP-MS can be used to localize nanoparticle aggregates within cellular compartments. The studied NPs accumulate in the perinuclear region in the course of intracellular processing, but do not enter the cell nucleus. The uptake efficiency depends strongly on the physico-chemical properties of the nanostructures as well as on the incubation conditions like concentration and incubation time. ICP-MS was used to determine the composition of the nanomaterials as well as the number of NPs in cells after acid digestion of the samples. T2 - 13. Symposium „Massenspektrometrische Verfahren der Element­spurenanalyse“ & 26. ICP-MS-Anwendertreffen CY - Berlin, Germany DA - 03.09.2018 KW - ICP-MS KW - Nanoparticle KW - Cell KW - Laser ablation PY - 2018 AN - OPUS4-45860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - A new approach of using polyethylene frits for the quantification of sulphur in copper metals by isotope dilution LA-ICP-MS N2 - For the first time polyethylene (PE) frits were used to quantify sulphur in copper metal and its alloys by isotope dilution combined with LA-ICP-MS: an alternative approach for sample preparation. The properties of the PE frit meet the requirements for isotope dilution LA-ICPMS which are porous material, thermal and chemical resistance and high absorption efficiency. The breakthrough, however, as a support material, is the low sulphur blank, which is only two times of the gas flow blank (2.3-4.0 x 10⁴ cps). Additionally, the porosity of the frit was considered, as it directly affects the absorption efficiency for the sample solution, which is present in the cavities of the frit. The absorption efficiency was studied by loading sulphur standards with varying sulphur amounts (0 - 80 µg S) onto the frits. The remaining sulphur which was not absorbed by the frit was rinsed off and was measured by ICP-MS. This indirect method shows that more than 99.5 % of the loaded sulphur was absorbed by the frit. The so prepared frits with increasing sulphur amount were measured by LA-ICP-MS showing a good linearity between 0 µg S and 40 µg S with a coefficient of determination, r2 of 0.9987 and a sensitivity of 3.4x10⁴ cps µgˉ¹ for 32S. Three copper reference materials produced by BAM (BAM-M376a, BAM-228 and BAM-227) were selected to develop and validate the LA-ICP-IDMS procedure. The IDMS technique was applied to these samples as follows: the samples were spiked, dissolved, digested and then the digested solution was absorbed on the frits. The dried frit samples were then analyzed by LA-ICP-IDMS and it could be demonstrated that the sample solution dispersed on the frits did not influence the 32S/34S ratio significantly even though the sulphur intensities were fluctuating along the scan lines. Relative standard deviations of the isotope ratios were below 5 % in average between 3 lines (except for the pure spike solution and procedure blank). The measurement results were validated by comparing them with the results obtained by conventional ICP-IDMS. Plotting the mass fraction of sulphur in copper obtained by LA-ICP-IDMS versus those obtained by ICP-IDMS yields a linear curve with a correlation coefficient of 0.9999 showing a strong agreement between both techniques. The metrological traceability to the SI for the mass fraction of sulphur in copper is established by an unbroken chain of comparisons, each accompanied by an uncertainty budget. Thus, the measurement results are considered reliable, acceptable and comparable within the stated measurement uncertainty. The metrological traceability chain from the kg down to the final mass fraction in the samples obtained by LA-ICP-IDMS is illustrated in this presentation. T2 - ESAS & CANAS 2018 CY - Berlin, Germany DA - 20.03.2018 KW - Laser ablation KW - Isotope dilution mass spectrometry KW - SI traceability KW - Measurement uncertainty PY - 2018 AN - OPUS4-44641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Quantification of sulphur in copper metals by isotope dilution LA-ICP-MS using polyethylene frits N2 - Sulphur is one of the relevant impurities in copper and its alloys affecting their material properties. To ensure the quality of copper products, fast direct solid sampling techniques are very attractive. However, for the calibration suitable matrix reference materials are required. For the certification of such reference materials appropriate, SI-traceable analytical methods are essential. Therefore, a procedure was developed to quantify total sulphur in copper by combining the classical isotope dilution (ID) technique and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Here, for the first time, polyethylene (PE) frits were used to prepare appropriate solid samples for the sulphur quantification in copper metals (alloyed/unalloyed) by isotope dilution LA-ICP-MS. The properties of the PE frit meet the requirements as porous material with high absorption efficiency, thermal and chemical resistance as well as low sulphur blank. Different copper reference materials were used to develop and validate the procedure. The copper samples were spiked with 34S, digested with nitric acid and then the digests were absorbed on PE frits. After drying, the frits were analysed by LA-ICP-IDMS using a Nd:YAG laser at 213 nm coupled to an ICP sector field mass spectrometer. It could be demonstrated, that the sample solution dispersed on the frits did not influence the 32S/34S ratio significantly even though the sulphur intensities were fluctuating along the scanned lines. Relative standard deviations of the isotope ratios were below 5 % in average between three line scans (except for the pure spike solution and procedure blank). The measurement results were validated by comparing them with the results obtained by conventional ICP-IDMS after analyte-matrix separation. Plotting the mass fraction of sulphur in copper obtained by LA-ICP-IDMS versus those obtained by ICP-IDMS yields a linear curve with a correlation coefficient of 0.9999 showing a strong agreement between both techniques. The metrological traceability to the SI from the kg down to the sulphur mass fraction in copper is established by an unbroken chain of comparisons, each accompanied by an uncertainty budget. Thus, the measurement results are considered reliable, acceptable and comparable within the stated measurement uncertainty. T2 - 14th European Workshop on Laser Ablation (EWLA) CY - Pau, France DA - 26.06.2018 KW - ICP-MS KW - Laser ablation KW - Isotope dilution KW - Copper PY - 2018 AN - OPUS4-45569 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -