TY - CONF A1 - Frenzel, Olivia A1 - Piechotta, C. T1 - Identification of Metabolites and Transformation Products of Bisphenols N2 - Bisphenol A (BPA) is used in Polycarbonate, Polyacrylic resins, Polysulfones, Epoxy resins, and Polyetherimides. It is also used in recycled Polyvinyl chloride [1–3]. BPA has been classified as a substance of very high concern (SVHC) under REACH [4] due to its endocrine disrupting properties. The German competent authorities want to reduce the content of BPA in the environment. Possible substitutes for BPA are Bisphenol B (BPB), Bisphenol E (BPE), Bisphenol F (BPF), or Bisphenol S (BPS), as they are similar in structure. BPA-based materials have a wide area of application especially outside. These outdoor applications are exposed to different external influences, including physical, biological, mechanical and chemical influences. This results in damage and aging of the material with leaching or migration into the environment. There, the substance is transformed by various transformation processes. The emerging metabolites and transformation products (TPs) can have different properties than the parent substance. Understanding the fate and behavior of the emerging pollutants is very important. Therefore, different transformation products of selected bisphenols will be generated and analyzed: To investigate the fate of different bisphenols in water treatment plants technical transformation products [5] will be generated by chlorination, ozonization, the Fenton reaction, and UV-radiation. For the investigation of the fate of Bisphenols in surface water global radiation will be simulated with UVA-lamps Simulation of phase-I-metabolism with an electrochemical cell coupled to mass spectrometry (EC-MS). T2 - Anakon 2023 CY - Vienna, Austria DA - 11.04.2023 KW - Transformation products KW - Bisphenols KW - Metabolites KW - Wastewater KW - Environment PY - 2022 AN - OPUS4-57374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -