TY - CONF A1 - Winckelmann, Alexander A1 - Wichser, A. A1 - Abad Andrade, Carlos Enrique A1 - Bleiner, D. T1 - Study of lithium-ion battery aging using laser-induced XUV spectroscopy (LIXS) N2 - Laser-induced XUV spectroscopy (LIXS) is an emerging technique for elemental mapping. In comparison to conventional laser-induced breakdown spectroscopy in UV-vis (LIBS), it has a higher precision and wider dynamic range, and it is well suited for the quantification light elements like lithium and fluorine. Further it can spot oxidation states. The XUV spectra are produced at a very early stage of the plasma formation. Therefore, effects from plasma evolution on the reproducibility can be neglected. It has been shown, that high-precision elemental quantification in precursor materials for lithium-ion batteries (LIBs) can be performed using LIXS. Based on these results, LIXS mapping was used to investigate aging processes in LIBs. Different cathode materials with varying compositions of fluorine containing polymer binders were compared at different stages of aging. Due to effects comparable to X-ray photoelectron spectroscopy but in reverse, monitoring of changes in the oxidation state is envisioned, which makes information about the chemical environment of the observed elements accessible. The combination of elemental distribution and structural information leads to a better understanding of aging processes in LIBs, and the development of more sustainable and safe batteries. T2 - Conference on Applied Surface and Solid Material Analysis - AOFKA 2023 CY - Zurich, Switzerland DA - 11.09.2023 KW - Lithium Ion Batteries KW - Laser-induced XUV spectroscopy KW - Multivariate data analysis PY - 2023 AN - OPUS4-58587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander A1 - Wichser, A. A1 - Abad Andrade, Carlos Enrique A1 - Bleiner, D. T1 - Multivariate data analysis for laser-induced XUV spectroscopy (LIXS) N2 - The application of multivariate data analysis is essential in extracting the full potential of laser-induced XUV spectroscopy (LIXS) for high-precision elemental mapping. LIXS offers significant advantages over traditional laser-induced breakdown spectroscopy in UV-vis (LIBS), including higher precision and a wider dynamic range,[1,2] while making it possible to determine light elements like lithium and fluorine. However, it is challenged by the presence of unresolved transition arrays (UTAs) for heavier elements. These UTAs add considerable complexity to the spectral data, often concealing crucial information. In this study, we employ well-established multivariate data analysis techniques and intensive data preprocessing to unravel this contained information. The refined analysis reveals a high level of detail, enabling the precise identification of inhomogeneities within material samples. Our approach has particular relevance for studying aging processes in lithium-ion batteries (LIBs), specifically in relation to varying cathode materials and fluorine-containing polymer binder content. By combining elemental distribution with structural information, this improved method can offer a more comprehensive understanding of sample inhomogeneities and aging processes in LIBs, contributing to the development of more reliable and sustainable battery technologies. T2 - Berliner Chemie in Praxis Symposium - BCPS 2023 CY - Berlin, Germany DA - 06.10.2023 KW - Lithium Ion Batteries KW - Laser-induced XUV spectroscopy KW - Multivariate data analysis PY - 2023 AN - OPUS4-58588 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -