TY - CONF A1 - Saatz, Jessica A1 - Grunert, B. A1 - Jakubowski, Norbert T1 - Nanocrystals as labeling reagents for bioimaging of clinical cell assays N2 - Imaging of elemental distributions in single cell assays as well as tissue sections can be performed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). This powerful technique offers precise spatially resolved measurements at the trace and ultratrace level and has been established as an excellent tool to answer analytical, biological and biomedical questions. To date, imaging mass cytometry is already able to simultaneously detect up to 40 cellular targets due to conjugation of isotopically pure lanthanides to affinity binders, e.g. antibodies. To further enhance the ability of multiparametric analysis to more than 100 analytes at once, we investigated lanthanide nanocrystals as new, highly sensitive metal tags for identification of targets in clinical cell assays and tissue samples. Multiparametric analysis will be possible by encoding the lanthanide composition of nanocrystals associated to the affinity binders. Nanocrystals showed remarkable potential for sensitive detection in MS due to high stability and signal amplification compared to e.g. polymer tags, carrying fewer metal atoms. Synthesis of functionalized lanthanide nanocrystals for further bioconjugation was performed with high reproducibility and monodisperse size distribution. For proof of principle, the uptake and distribution of these nanocrystals within the monolayered cell line A549 were investigated by mapping the intensities at subcellular resolution using LA-ICP-MS. It could be shown, that the cells were efficiently labeled with the nanocrystals and mostly accumulate near the nucleus. Additionally, the bioconjugation of the nanocrystals to antibodies and particularly the preservation of the antibody specificity was investigated using Dot Blot experiments. All in all, the results imply high sensitivity and the possibility of multiparametric analysis by doting various lanthanides into the nanocrystals. T2 - ESAS & CANAS 2018 CY - Berlin, Germany DA - 20.03.2018 KW - Bioimaging KW - Nanoparticle KW - Immuno-assay KW - Lanthanide PY - 2018 AN - OPUS4-44593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saatz, Jessica A1 - Grunert, B. A1 - Jakubowski, Norbert T1 - Nanocrystals as tagging reagents for imaging mass cytometry N2 - Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is gaining importance for bioimaging cytometry to answer analytical, biological and biomedical questions. High sensitivity and spatial resolution make it an excellent tool for imaging of metal and heteroelement distribution in single cells. Comparable to CyTOF imaging mass cytometry, metal coded antibodies can be used for multiparametric analysis as well as quantification. In this project, nanocrystals are investigated as new highly sensitive metal tags for identification and quantification of biomarkers, like Alzheimer’s or breast cancer, in clinical cell assays and tissue samples. Of high significance is the simultaneous analysis of several biomarkers at once, which is possible by special coding of lanthanide tags on the biomarker associated antibody. Nanocrystals show potential for sensitive measurement in MS due to high stability and signal amplification compared to tags with fewer metal atoms. For proof of principle, synthesis and characterization of lanthanide doped nanocrystals was performed by a nanoPET pharma GmbH with great reproducibility and homogenous size. In A549 cell cultures, the uptake and distribution of these nanocrystals within the monolayered cells was investigated by LA-ICP-MS measurements using subcellular resolution. The nanocrystals showed high sensitivity and the possibility of multiparametric analysis by doting different lanthanides. Additionally, stability of the bioconjugation of the nanocrystals and target antibodies was investigated using Dot Blot experiments and LA-ICP-MS. T2 - CyTOF User Forum 2018 CY - Berlin, Germany DA - 01.02.2018 KW - Nanocrystal KW - Imaging mass cytometry KW - LA-ICP-MS KW - Bioconjugation KW - Metal-Tag KW - Multimodal PY - 2018 AN - OPUS4-44106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saatz, Jessica A1 - Traub, Heike A1 - Anderhalten, L. C. A1 - Infante-Duarte, C. T1 - Imaging mass cytometry for visualisation of neuroinflammation induced changes N2 - Multiple sclerosis (MS) is the most common acquired neurological disease affecting Young adults. It leads to myelin destruction and formation of lesions in the brain and permeabilization of the blood-brain barrier (BBB). Gadolinium based contrast agents (GBCA), used for diagnosis and monitoring by MRI, might accumulate in tissue, including brain. Using an animal model, application of linear and macrocyclic GBCA was investigated. Analysis was performed by laser ablation inductively coupled plasma (LA-ICP) MS. This method works as a bioimaging tool for sample thin sections and allows to identify regions of accumulated Gd in the samples. In healthy and diseased mice, inflammationmediated changes in the brain were investigated by application of GBCA. The mean objective is to understand the changes in inflamed tissue and correlate alterations of the BBB by LA-ICP-MS (Imaging Mass Cytometry). T2 - Colloquium Analytische Atomspektroskopie 2019 CY - Freiberg, Germany DA - 23.09.2019 KW - Bioimaging KW - LA-ICP-MS KW - Imaging Mass Cytometry KW - Gadolinium PY - 2019 AN - OPUS4-49853 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saatz, Jessica A1 - Grunert, B. A1 - Jakubowski, Norbert T1 - Nanocrystals as labeling reagents for bioimaging by LA-ICP-MS N2 - Imaging of elemental distributions in single cell assays as well as tissue sections can be performed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). This powerful technique offers precise spatially resolved measurements at trace and ultratrace levels and has been established as an excellent tool to answer analytical, biological and biomedical questions. To date, mass cytometry is already able to simultaneously detect up to 40 cellular targets due to conjugation of isotopically pure lanthanides to affinity binders, e.g. antibodies. To further enhance the ability of multiparametric analysis to more than 100 analytes at once, we investigated lanthanide nanocrystals as new, highly sensitive metal tags for identification of targets in clinical cell assays and tissue samples. Multiparametric analysis will be possible by encoding the lanthanide composition of nanocrystals associated to the affinity binders. Nanocrystals showed remarkable potential for sensitive detection in MS due to high stability and signal amplification compared to e.g. polymer tags, carrying fewer metal atoms. Furthermore, the nanocrystals allow multimodal imaging due fluorescence of Eu3+ as well as contrast enhancing properties of Gd3+ in magnetic resonance imaging. Synthesis of functionalized lanthanide nanocrystals for further bioconjugation was performed with high reproducibility and monodisperse size distribution. For proof of principle, the uptake and distribution of these nanocrystals within the monolayered cell line A549 were investigated by mapping the intensities at subcellular resolution using LA-ICP-MS. It could be shown, that the cells were efficiently labeled with the nanocrystals. Additionally, the bioconjugation of the nanocrystals to antibodies and particularly the preservation of the antibody specificity was investigated using Dot Blot experiments. All in all, the results imply high sensitivity and the possibility of multiparametric analysis by doting various lanthanides into the nanocrystals. T2 - ICPMS Anwendertreffen 2018 CY - Berlin, Germany DA - 03.09.2018 KW - Bioimaging KW - Nanoparticle KW - Immuno-assay KW - Lanthanide PY - 2018 AN - OPUS4-45865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saatz, Jessica A1 - Grunert, Bianca A1 - Jakubowski, Norbert A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Emmerling, Franziska T1 - Tagging reagents for imaging mass cytometry N2 - In der klinischen Diagnostik werden für zytometrische Messverfahren bereits eine Reihe von Reagenzien eingesetzt zur Markierung von Antikörper eingesetzt, um die Detektion von Biomarkern mittels Fluoreszenz- oder Flugzeitmassenspektrometrie zu ermöglichen. Seit kurzem ist auch eine Imaging Mass Cytometry Kombination direkt erhältlich, wodurch der Nachweis von Biomarkern in Gewebeschnitten erreicht werden kann. Dazu wird eine Kopplung von Laser Ablation und induktiv gekoppeltem Plasma Massenspektrometrie eingesetzt, wobei ähnlich der Massenzytometrie, zuvor Antikörper mit Metallen markiert, und im Anschluss mit dem Gewebeschnitt inkubiert werden. Durch die hohe Ortsauflösung können die Biomarker lokalisiert, und zukünftig vielleicht auch quantifiziert werden. Insbesondere Lanthanide eignen sich als Markierungsmetalle, da sie einen niedrigen Untergrund und chemisch ähnliches Verhalten zueinander aufweisen. Allein durch diese Elemente können bereits etwa 15 Parameter unterschieden werden, was durch isotopenreine Standards weiter gesteigert werden kann. Vom Markierungsgrad abhängig werden unterschiedlich viele Metalle am Antikörper gebunden, und beeinflussen so die Sichtbarkeit im ICP-MS. Nanopartikel könnten daher eine deutliche Steigerung der Sensitivität bewirken. GdVO4 Nanokristalle scheinen bisher sehr vielversprechend und bieten neben multiparametrischen Anwendungen auch Multimodalität. Die Synthese der Nanokristalle zeigte hohe Homogenität und Reproduzierbarkeit in Partikelgröße in der Zusammensetzung. Ein erstes Experiment mit einer Zellkultur konnte bereits die effiziente Markierung der Zellen unter Beweis stellen, wobei durch hohe Signalstärke auch subzelluläre Auflösung in der LA-ICP-MS erreicht werden konnte. T2 - ICPMS Anwendertreffen 2018 CY - Berlin, Germany DA - 03.09.2018 KW - LA-ICP-MS KW - Immuno assay KW - Bioimaging KW - Nanocrystal KW - Lanthanide KW - Metal-tag PY - 2018 AN - OPUS4-45866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saatz, Jessica A1 - Grunert, Bianca A1 - Jakubowski, Norbert T1 - Nanocrystals as labeling reagents for imaging mass cytometry N2 - Imaging of elemental distributions in single cell assays as well as tissue sections can be performed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). This powerful technique offers precise spatially resolved measurements at trace and ultratrace levels and has been established as an excellent tool to answer analytical, biological and biomedical questions. To date, mass cytometry is already able to simultaneously detect up to 40 cellular targets due to conjugation of isotopically pure lanthanides to affinity binders, e.g. antibodies. To further enhance the ability of multiparametric analysis to more than 100 analytes at once, we investigated lanthanide nanocrystals as new, highly sensitive metal tags for identification of targets in clinical cell assays and tissue samples. Multiparametric analysis will be possible by encoding the lanthanide composition of nanocrystals associated to the affinity binders. Nanocrystals showed remarkable potential for sensitive detection in MS due to high stability and signal amplification compared to e.g. polymer tags, carrying fewer metal atoms. Furthermore, the nanocrystals allow multimodal imaging due fluorescence of Eu3+ as well as contrast enhancing properties of Gd3+ in magnetic resonance imaging. Synthesis of functionalized lanthanide nanocrystals for further bioconjugation was performed with high reproducibility and monodisperse size distribution. For proof of principle, the uptake and distribution of these nanocrystals within the monolayered cell line A549 were investigated by mapping the intensities at subcellular resolution using LA-ICP-MS. It could be shown, that the cells were efficiently labeled with the nanocrystals. Additionally, the bioconjugation of the nanocrystals to antibodies and particularly the preservation of the antibody specificity was investigated using Dot Blot experiments. All in all, the results imply high sensitivity and the possibility of multiparametric analysis by doting various lanthanides into the nanocrystals. T2 - Bioimaging Workshop BI(MS)2 CY - Münster, Germany DA - 24.05.2018 KW - Bioimaging KW - Nanoparticle KW - LA-ICP-MS KW - Lanthanide PY - 2018 AN - OPUS4-45867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meermann, Björn A1 - Lisec, Jan A1 - Jaeger, Carsten A1 - Saatz, Jessica A1 - Traub, Heike A1 - von der Au, Marcus T1 - Mehr Analyten, kleinere Proben JF - Nachrichten aus der Chemie N2 - Molekülmassenspektrometrie entwickelt sich weg von klassischer Target- hin zu Nontarget-Analytik. Elementmassenspektrometrie liefert hohe Ortsauflösung beim Element-Imaging und analysiert einzelne Zellen. Aufgrund der Fortschritte bei den Geräten für Timeof-Flight-Massenspektrometrie mit induktiv gekoppeltem Plasma (ICPToF-MS) lässt sich das gesamte Periodensystem der Elemente in kurzen transienten Signalen quasi-simultan massenspektrometrisch erfassen. KW - Massenspektrometrie KW - Non-target KW - ICP-ToF-MS KW - Laser Ablation/Imaging PY - 2021 VL - 69 IS - Juni SP - 64 EP - 67 PB - Wiley-VCH AN - OPUS4-52800 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kader, A. A1 - Kaufmann, Jan Ole A1 - Mangarova, D. B. A1 - Moeckel, J. A1 - Brangsch, J. A1 - Adams, L. C. A1 - Zhao, J. A1 - Reimann, C. A1 - Saatz, Jessica A1 - Traub, Heike A1 - Buchholz, R. A1 - Karst, U. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Iron Oxide Nanoparticles for Visualization of Prostate Cancer in MRI JF - Cancers N2 - Prostate cancer (PCa) is one of the most common cancers in men. For detection and diagnosis of PCa, non-invasive methods, including magnetic resonance imaging (MRI), can reduce the risk potential of surgical intervention. To explore the molecular characteristics of the tumor, we investigated the applicability of ferumoxytol in PCa in a xenograft mouse model in two different tumor volumes, 500 mm3 and 1000 mm3. Macrophages play a key role in tumor progression, and they are able to internalize iron-oxide particles, such as ferumoxytol. When evaluating T2*-weighted sequences on MRI, a significant decrease of signal intensity between pre- and post-contrast images for each tumor volume (n = 14; p < 0.001) was measured. We, furthermore, observed a higher signal loss for a tumor volume of 500 mm3 than for 1000 mm3. These findings were confirmed by histological examinations and laser ablation inductively coupled plasma-mass spectrometry. The 500 mm3 tumors had 1.5% iron content (n = 14; sigma = 1.1), while the 1000 mm3 tumors contained only 0.4% iron (n = 14; sigma = 0.2). In vivo MRI data demonstrated a correlation with the ex vivo data (R2 = 0.75). The results of elemental analysis by inductively coupled plasma-mass spectrometry correlated strongly with the MRI data (R2 = 0.83) (n = 4). Due to its long retention time in the blood, biodegradability, and low toxicity to patients, ferumoxytol has great potential as a contrast agent for visualization PCa. KW - Imaging KW - Nanoparticle KW - Cancer KW - Iron oxide KW - ICP-MS KW - Magnetic resonance imaging PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550075 DO - https://doi.org/10.3390/cancers14122909 VL - 14 IS - 12 SP - 1 EP - 13 PB - MDPI CY - Basel, Switzerland AN - OPUS4-55007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grunert, B. A1 - Saatz, Jessica A1 - Hoffmann, Katrin A1 - Appler, F. A1 - Lubjuhn, Dominik A1 - Jakubowski, Norbert A1 - Resch-Genger, Ute A1 - Emmerling, Franziska A1 - Briel, A. T1 - Multifunctional rare-earth element nanocrystals for cell labeling and multimodal imaging JF - ACS Biomaterials Science & Engineering N2 - In this work, we describe a simple solvothermal route for the synthesis of Eu3+-doped gadolinium orthovanadate nanocrystals (Eu:GdVO4−PAA) functionalized with poly(acrylic)acid (PAA), that are applicable as cell labeling probes for multimodal cellular imaging. The Eu3+ doping of the vanadate matrix provides optical functionality, due to red photoluminescence after illumination with UV light. The Gd3+ ions of the nanocrystals reduce the T1 relaxation time of surrounding water protons, allowing these nanocrystals to act as a positive MRI contrast agent with a r1 relaxivity of 1.97 mM−1 s−1. Low background levels of Eu3+, Gd3+, and V5+ in biological systems make them an excellent label for elemental microscopy by Laser Ablation (LA)-ICP-MS. Synthesis resulted in polycrystalline nanocrystals with a hydrodynamic diameter of 55 nm and a crystal size of 36.7 nm, which were further characterized by X-ray diffraction (XRD), photoluminescence spectroscopy (PL) and transmission electron microscopy (TEM). The multifunctional nanocrystals were subsequently used for intracellular labeling of both human adipose-derived stem cells (MSCs) and A549 (adenocarcinomic human alveolar basal epithelial) cells. KW - Bioimaging KW - Nanoparticle KW - Multimodal KW - Lanthanide PY - 2018 DO - https://doi.org/10.1021/acsbiomaterials.8b00495 SN - 2373-9878 VL - 4 IS - 10 SP - 3578 EP - 3587 PB - ACS Publications CY - Washington, USA AN - OPUS4-46244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Golusda, L. A1 - Kühl, A. A. A1 - Lehmann, M. A1 - Dahlke, K. A1 - Mueller, S. A1 - Boehm-Sturm, P. A1 - Saatz, Jessica A1 - Traub, Heike A1 - Schnorr, J. A1 - Freise, C. A1 - Taupitz, M. A1 - Biskup, K. A1 - Blanchard, V. A1 - Klein, O. A1 - Sack, I. A1 - Siegmund, B. A1 - Paclik, D. T1 - Visualization of inflammation in experimental colitis by magnetic resonance imaging using very small superparamagnetic iron oxide particles JF - Frontiers in physiology N2 - Inflammatory bowel diseases (IBD) comprise mainly ulcerative colitis (UC) and Crohn´s disease (CD). Both forms present with a chronic inflammation of the (gastro) intestinal tract, which induces excessive changes in the composition of the associated extracellular matrix (ECM). In UC, the inflammation is limited to the colon, whereas it can occur throughout the entire gastrointestinal tract in CD. Tools for early diagnosis of IBD are still very limited and highly invasive and measures for standardized evaluation of structural changes are scarce. To investigate an efficient non-invasive way of diagnosing intestinal inflammation and early changes of the ECM, very small superparamagnetic iron oxide nanoparticles (VSOPs) in magnetic resonance imaging (MRI) were applied in two mouse models of experimental colitis: the dextran sulfate sodium (DSS)-induced colitis and the transfer model of colitis. For further validation of ECM changes and inflammation, tissue sections were analyzed by immunohistochemistry. For in depth ex-vivo investigation of VSOPs localization within the tissue, Europium-doped VSOPs served to visualize the contrast agent by imaging mass cytometry (IMC). VSOPs accumulation in the inflamed colon wall of DSS-induced colitis mice was visualized in T2* weighted MRI scans. Components of the ECM, especially the hyaluronic acid content, were found to influence VSOPs binding. Using IMC, colocalization of VSOPs with macrophages and endothelial cells in colon tissue was shown. In contrast to the DSS model, colonic inflammation could not be visualized with VSOP-enhanced MRI in transfer colitis. VSOPs present a potential contrast agent for contrast-enhanced MRI to detect intestinal inflammation in mice at an early stage and in a less invasive manner depending on hyaluronic acid content. KW - Inflammation KW - Imaging KW - Immunohistochemistry KW - MRI KW - Nanoparticle KW - Extracellular matrix KW - Laser ablation KW - ICP-MS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555395 DO - https://doi.org/10.3389/fphys.2022.862212 SN - 1664-042X VL - 13 IS - July 2022 SP - 1 EP - 15 PB - Frontiers Research Foundation CY - Lausanne AN - OPUS4-55539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -