TY - CONF A1 - Traub, Heike A1 - Saatz, Jessica A1 - Ascher, Lena A1 - Boyraz, B. A1 - Hahndorf, J. A1 - Schnorr, J. A1 - Schellenberger, E. A1 - Tauber, R. T1 - Unraveling the interaction of MRI contrast agents with tissue using LA ICP MS N2 - Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is increasingly used to study the distribution of metal-containing drugs, imaging probes and nanomaterials in connection with disease related changes and therapy progress. Additionally, biomolecules can be detected indirectly by using metal-tagged antibodies. The extracellular matrix (ECM) is, besides the cells, an important component of all body tissues. The macromolecular network of the ECM consists of structural proteins (e.g., collagen, elastin) and proteoglycans composed of highly negatively charged carbohydrates, the glycosaminoglycans (GAGs), which are covalently linked to a protein core. Many diseases, including inflammatory processes and tumors, are associated with characteristic ECM changes at an early stage. Recent studies have shown that contrast agents for magnetic resonance imaging (MRI), which are based on gadolinium containing chelate complexes or iron oxide nanoparticles, can bind themselves to ECM components. To elucidate the role of GAGs like keratan sulfate (KS) and its modification state in disease, highly specific tools are necessary. As a complement to conventional immunohistochemistry LA-ICP-MS was applied to investigate the distribution of KS in tissue thin sections using a well characterized anti-KS antibody labelled with metal ions. Furthermore, LA-ICP-MS was used for the detection of MRI contrast agents and the identification of their target cells and molecules in tissue samples from animal models, e.g. for cardiovascular diseases. The results show the possibilities of LA-ICP-MS for the elucidation of pathological tissue changes. T2 - European Workshop on Laser Ablation (EWLA 2022) CY - Berne, Switzerland DA - 12.07.2022 KW - Laser ablation KW - Imaging KW - ICP-MS KW - Antibody PY - 2022 AN - OPUS4-55315 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raab, A. A1 - Vogl, Jochen A1 - Solovyev, N. A1 - El-Khatib, Platt A1 - Costas-Rodriguez, M. A1 - Schwab, K. A1 - Griffin, E. A1 - Platt, B. A1 - Theuring, F. A1 - Vanhaecke, F. T1 - Isotope signature of iron, copper and zinc in mouse models (L66 and 5XFAD) and their controls used for dementia research N2 - Introduction: The influence of copper, iron and zinc concentrations on the formation of ß-amyloid plaques and neurofibrillary tangles in Alzheimer’s disease (AD) is widely discussed in the community. The results from human and animal studies so far are mixed with some studies showing a correlation and others not. From a number of studies, it is known that disease state and isotopic composition of essential elements can be coupled. Aim: The aim of the study was to identify changes in element content and isotopic composition in two transgenic mouse models used in AD research compared to their genetic WT relatives and to establish whether element content and isotopic signature between different laboratories is comparable. Methods: ß-amyloid (5xFAD) and tau overexpressing (L66) mice together with their matching wild-types were bred at dedicated facilities in accordance with the European Communities Council Directive (63/2010/EU). Serum and brain were sampled after sacrifice and the samples distributed among the participants of the study. The tissues were acid digested for total element determination and high-precision isotope ratio determination. Element content was determined by either sector-field or quadrupole-based inductively coupled plasma mass spectrometry (ICPMS). For the determination of isotope ratios multi-collector ICPMS was used. Results: Total copper content was significantly higher for L66 and their matched WT compared to 5xFAD and WT. Brains of L66 mice contained more Fe in brain than their WT, Zn and Cu were not significantly different between L66 and WT. Whereas 5xFAD mice had a slightly lower Cu and slightly higher Zn concentration in brain compared to WT. The isotopic signature in brain of L66 mice for Fe was different from their controls, whereas Zn isotope ratios were influenced in 5xFAD mice compared to their WT. The Cu isotopic ratio did not seem to be influenced in either strain. In serum, the shifts were less pronounced. Conclusion: Even though neither Tau-protein nor amyloid precursor protein are known to be metal-dependent / -containing proteins, the overexpression of both influences the Fe, Cu and Zn metabolism in brain and to some extent also in serum as can be seen not only using total element determination but probably more clearly studying the isotopic signature of Fe, Cu and Zn. T2 - The International Conference of Trace Elements and Minerals (ICTEM) 2022 CY - Aachen, Germany DA - 05.06.2022 KW - Isotope ratio KW - Isotope delta value KW - Metrology KW - Alzheimer disease KW - Measurement uncertainty PY - 2022 AN - OPUS4-55204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - You, Zengchao A1 - Akkus, A. A1 - Weisheit, W. A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique T1 - Multi element analysis in soil using nitrogen microwave inductively coupled plasma mass spectrometry (MICAP MS) N2 - Due to the fast growth of industry and the use of metal-containing compounds such as sewage sludge in agricultural fields, soil pollution associated with heavy metals presents a terrifying threat to the environment. Throughout the world, there are already 5 million sites of soil contaminated by heavy metals1. Some heavy metals pollutants can influence food chain safety and food quality, which in turn affects human health. According to the German Federal Soil Protection and Contaminated Site Ordinance (BBodSchV) 13 heavy metals such as arsenic (As), lead (Pb) and cadmium (Cd) are classified as heavily toxic to human health2. Therefore, elemental analysis and precise quantification of the heavy metals in soil are of great importance. Inductively coupled plasma mass spectrometry (ICP-MS) emerged as a powerful technique for trace analysis of soil due to its multi-element capability, high sensitivity and low sample consumption. However, despite its success and widespread use, ICP-MS has several persistent drawbacks, such as high argon gas consumption, argon-based polyatomic interferences and the need for complicated RF-power generators. Unlike argon-based ICP, the nitrogen microwave inductively coupled atmospheric pressure mass spectrometry (MICAP-MS) uses nitrogen as plasma gas, which eliminates high operating costs associated with argon-gas consumption as well as the argon-based interferences3. For the first time, the applicability of MICAP-MS for elemental analysis of environmental soils is investigated in this work. For this purpose, 7 reference- and 3 random soil samples containing vanadium (V), cobalt (Co), zink (Zn), copper (Cu), chrome (Cr), mercury (Hg), As, Pb and Cd are digested with aqua regia and used for analysis. Concentrations of selected elements are determined using MICAP-MS and validated using ICP-MS. Sensitivities, limits of detection and gas consumption for both methods are compared and discussed in detail. Moreover, the performance of MICAP-MS under different nitrogen plasma gas concentrations is investigated and compared T2 - Spectroscopium Colloquium CY - Gijon, Spain DA - 30.05.2022 KW - Microwave inductively coupled atmospheric pressure mass spectrometry (MICAP-MS) KW - Multi-element analysis KW - Soil KW - Nitrogen plasma PY - 2022 AN - OPUS4-55181 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Optical spectrometry for isotope analysis N2 - Isotope analysis is a tool for material research. For example, it may provide information about the provenance of a sample or changes in dynamic systems. Here is presented optical spectroscopy as an analytical alternative to mass spectrometry for isotope quantification based on the isotopic shift of atoms and diatomic molecules. T2 - Isotopic Tools for the Investigation of Materials WS 21/22 CY - Leoben, Austria DA - 01.10.2021 KW - Isotopes KW - HR-CS-AAS KW - Lithium KW - Atomic absorption spectrometry KW - Diatomic molecules PY - 2022 AN - OPUS4-56495 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Laser spectroscopy methods for calcium isotope analysis N2 - Calcium isotope analysis can be an important tool for paleoclimate studies of the carbon cycle, as well in carbon capture technology, but its utility is limited by challenges using conventional mass spectrometry. We propose a new fast, precise, and high-throughput technology based on multiple complementary high-resolution spectroscopies analyzed by machine-learning. T2 - Seminars Chemical Physics Caltech CY - Pasadena, CA, USA DA - 13.04.2022 KW - Calcium KW - Atomic spectroscopy KW - CaF KW - Calcium monofluoride KW - Carbon cycle KW - Doppler effect KW - Sub-doppler spectroscopy KW - Laser spectroscopy PY - 2022 AN - OPUS4-56499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meermann, Björn A1 - Faßbender, Sebastian A1 - Tukhmetova, Dariya A1 - Rodiouchkina, K. A1 - Vanhaecke, F. T1 - On-line hyphenation of capillary electrophoresis with multicollector-ICP-MS (CE/MC-ICP-MS) for species-specific isotope ratio analysis of sulfur species N2 - In many scientific fields, isotopic analysis can offer valuable information, e.g., for tracing the origin of food products, environmental contaminants, forensic and archaeological samples (provenance determination), for age determination of minerals (geochronological dating) or for elucidating chemical processes. Up to date, typically bulk analysis is aimed at measuring the isotopic composition of the entire elemental content of the sample. However, the analyte element is usually present under the form of different elemental species. Thus, separating species of interest from one another and from matrix components prior to isotope ratio measurements can provide species-specific isotopic information, which could be used for tracing the origin of environmental pollutants and elucidation of (environmental) speciation. Using on-line hyphenations of separation techniques with multicollector-ICP-MS (MC-ICP-MS) can save time and effort and enables the analysis of different species during a single measurement. In this work, we developed an on-line hyphenation of CE with multicollector-ICP-MS (CE/MC-ICP-MS) for isotopic analysis of sulfur species. With this method, the isotopic composition of sulfur in sulfate originating from river water could be analyzed without sample preparation. The results were compared with data from off-line analysis of the same samples to ensure accuracy. The precision of the results of the on-line measurements was high enough to distinguish the rivers from one another by the isotopic signature of the river water sulfate. Next to environmental applications, a current field is species-specific isotopic analysis of biomolecules, as sulfur is the only covalently bound constituent of proteins which can be analyzed by MC-ICP-MS. Data analysis of transient signals in terms of isotope ratio determination is further issue - we developed a small free accessible App allowing for fast data analysis taking relevant aspects (e.g., mass bias correction, peak picking, …) into account. T2 - SCIX 2022 CY - Cincinnati, OH, USA DA - 02.10.2022 KW - CE KW - MC-ICP-MS KW - Speciation Analysis KW - Species-specific Isotope ratios PY - 2022 AN - OPUS4-56543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuner, Maximilian T1 - Quantification of ergot alkaloids - a glimpse into the future N2 - Mycotoxins (toxins formed by fungi) in food and have caused problems for mankind since the beginning of time. The group of ergot alkaloids plays a special role in human history. Several tens of thousands of deaths during the middle ages caused by to ergotism (the disease caused by continuous intake of ergot alkaloid contaminated food) underscore the importance of reliable analytical methods to ensure food safety. More than 50 compounds belong to the group of ergot alkaloids. The 12 most found structures – the major ergot alkaloids – are typically measured, when it comes to ergot alkaloid quantification. High performance liquid chromatography (HPLC) with a fluorescence detector (FLD) is typically used to quantify the ergot alkaloid content. The main disadvantage of this method are the high costs for calibration standards (12 different calibration substances are required). But also the time and effort required for the analysis of 12 peaks and overlapping signals that occur in complex food samples such as bread. As all ergot alkaloids share the ergoline structure and just differ in the substituents attached to this backbone, measurement of all ergot alkaloids in one sum parameter presents a time and cost saving alternative. The most important step for the development of such a sum parameter method is the reaction used to transfer all ergot alkaloids to one uniform structure. In the talk two promising reactions, the acidic esterification to lysergic acid methyl ester and hydrazinolysis to lysergic acid hydrazide, are examined for possible use in a routine analysis method. In addition to yield and reaction rate, factor such as the handling of the reaction and the possibility of parallelization play a role. Next to the current status of the ongoing research project, in this talk, current approaches to ergot alkaloid quantitation will be discussed. T2 - FOODMETNET MycoTWIN JOINT TRAINING COURSE 2022 CY - Gebze, Turkey DA - 22.11.2022 KW - Ergot alkaloids KW - Sum Parameter PY - 2022 AN - OPUS4-56586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von der Au, Marcus A1 - Meermann, Björn T1 - MDG-ICP-MS - A Versatile Tool for Quantification in the field of Single Particle ICP-MS Using Isotopic Dilution N2 - In the interest of exploring their potential in the field of single particle analysis, a Microdroplet Generator (MDG) was coupled to an ICP-ToF-MS. Isotopic Dilution Analysis was also incorporated for the size determination of three different Platinum Nanoparticles samples (50, 63 and 70 nm). The performance of the technique was validated by comparison to traditional size characterization techniques (sp-ICP-ToF-MS, TEM), while the robustness of the technique was proven by incorporating NaCl in the samples’ matrix, up to 100 mg/L. T2 - SciX 2022 CY - Cincinnati, OH, USA DA - 02.10.2022 KW - MDG KW - ICP-TOF-MS KW - Nanoparticle PY - 2022 AN - OPUS4-56554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meermann, Björn T1 - Elemental Analysis Methods in Material- & Environmental Analysis N2 - Materials in contact with the environment release e.g., metal-ions, elemental species and/or (nano-)particles. Once these species and/or particles are released, they are ingested by organisms and cells and thus, might have a negative impact on the environment. Thus, identification as well as quantification of potentially harmful substances is of utmost importance and highly needed to assess ecotoxicological impact of (emerging) pollutants. The oral presentation provides an overview on the power of elemental analytical techniques, in particular ICP-MS as well as HR-CS-GFMAS in environmental research. Current research topics from Division 1.1 @ BAM - Inorganic trace analysis will be highlighted: i) Elemental Speciation & Isotope analysis - new tools: Among elemental species separation and quantification, one of the main challenges in environmental elemental speciation analysis is the distinction between anthropogenic and natural elemental species. The on-line combination of elemental speciation and isotope analysis combines “the best from both worlds” - species specific isotopic information becomes available. As an application example the analysis of current anti-fouling agents via CE/MCICP-MS will be highlighted. ii) HR-CS-GFMAS for PFC analysis: Per- and polyfluorinated compounds (PFC) are emerging contaminants in particular in soil and surface water samples. Due to the large number of compounds (>4700), target analytical methods are not sufficient and sum parameter methods for organically bound fluorine are highly needed. High resolution-continuum source-graphite furnace molecular absorption spectroscopy (HR-CS-GFMAS) based methods for organically bound fluorine analysis will be presented. Application examples (soil and surface water) will be highlighted. iii) Single cell-ICP-ToF-MS - ecotox. assessment: Single cell and single organism analysis for e.g. ecotoxicological/medicinal assessment are hot topics in the research field of ICP-MS. In particular ICP-ToF-MS is a powerful, emerging techniques in terms of single cell/particle analysis. Automated single cell/diatom-ICP-ToF-MS as a potential tool in ecotoxicological testing will be presented. T2 - Eingeladener Fachvortrag Kolloquium AG Bleiner - EMPA CY - Online meeting DA - 03.11.2021 KW - HR-CS-GFMAS KW - SC-ICP-ToF-MS KW - Speciation analysis PY - 2021 AN - OPUS4-53707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dinter, Adelina-Elisa ED - Dinter, Adelina-Elisa T1 - Development of a MIC single archaea-ICP-ToF-MS-method for analysis of various elements in solid steel samples N2 - With the latest ICP-MS technology - ICP-ToF (time of flight)-MS - it is possible to analyze the multi-element fingerprint of individual cells. The interface between material and environmental analysis thus receives special attention, e.g. when considering corrosion processes. Microbiologically influenced corrosion (MIC) is highly unpredictable due to the diversity of microbial communities involved. The development of the MIC-specific ICP-ToF-MS analytical method presented here at the single cell level, in combination with the investigation of steel-MIC interactions, contributes significantly to progress in instrumental MIC analysis and will enable clarification of the processes taking place. The supplied document shows the basis of a four minutes lightning talk. T2 - EuroMIC 2021 CY - Online meeting DA - 22.06.2021 KW - SC-ICP-ToF-MS KW - Single cell analysis KW - Microbiologically influenced corrosion KW - Lightning talk PY - 2021 AN - OPUS4-52905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -