TY - GEN A1 - Kern, Simon A1 - Wander, Lukas A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Gottu Mukkula, A. R. A1 - Holtkamp, M. A1 - Salge, M. A1 - Fleischer, C. A1 - Weber, N. A1 - Engell, S. A1 - Paul, Andrea A1 - King, R. A1 - Maiwald, Michael T1 - Raw data of pilot plant runs for CONSENS project (Case study 1) N2 - In case study one of the CONSENS project, two aromatic substances were coupled by a lithiation reaction, which is a prominent example in pharmaceutical industry. The two aromatic reactants (Aniline and o-FNB) were mixed with Lithium-base (LiHMDS) in a continuous modular plant to produce the desired product (Li-NDPA) and a salt (LiF). The salt precipitates which leads to the formation of particles. The feed streams were subject to variation to drive the plant to its optimum. The uploaded data comprises the results from four days during continuous plant operation time. Each day is denoted from day 1-4 and represents the dates 2017-09-26, 2017-09-28, 2017-10-10, 2017-10-17. In the following the contents of the files are explained. KW - Process Analytical Technology KW - Multivariate Data Analysis KW - Nuclear Magnetic Resonance KW - Near Infrared Spectroscopy KW - Continuous Manufacturing KW - CONSENS PY - 2018 DO - https://doi.org/10.5281/zenodo.1438233 PB - Zenodo CY - Geneva AN - OPUS4-48063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Wander, Lukas A1 - Bornemann-Pfeiffer, Martin A1 - Gräßer, Patrick A1 - Peters, Claudia A1 - Maiwald, Michael T1 - Quantitative NMR-Spektroskopie – Eine unverzichtbare Methode für die Analytische Chemie N2 - Die NMR-Spektroskopie stellt heutzutage eine der wichtigsten Analysenmethoden in der organischen Chemie dar. Während der Großteil aller Untersuchungen qualitativ mit dem Ziel der Stoffidentifikation und Strukturaufklärung erfolgt, erlangt die quantitative NMR-Spektroskopie (qNMR) zunehmend an Bedeutung in Forschung und Industrie. Der entscheidende Vorteil gegenüber anderen Analysenmethoden liegt in der direkten Proportionalität der Signalfläche zur Anzahl Kernspins im Messvolumen. Dies erlaubt eine kalibrationsfreie Relativquantifizierung. Zur Absolutquantifizierung reicht die Zugabe einer definierten Menge eines vom Analyten unabhängigen NMR-Standards aus. Trotz dieser Vorteile findet sich die qNMR bislang nur vereinzelt in Normen und Standardverfahren wieder. Zahlreiche Ringversuche in Metrologie und Industrie demonstrieren die Leistungsfähigkeit moderner NMR-Spektrometer und stärken das Vertrauen in die Methode. Die Entwicklung von Validierungskonzepten, sowie die kommerzielle Verfügbarkeit geeigneter zertifizierter Referenzmaterialien erleichtern die Anwendung, insbesondere im zumeist stark regulierten industriellen Umfeld. Neben etablierten Hochfeld-NMR Spektrometern hat sich in den letzten Jahren ein stark wachsender Markt für kompakte Benchtop-NMR Geräte auf Permanentmagnetbasis entwickelt. Die geringeren Anschaffungs- und Betriebskosten, sowie die einfache Bedienbarkeit erlaubt es auch kleineren Unternehmen in diese Analysenmethode einzusteigen. Weiterhin besteht die Möglichkeit diese mobilen Systeme näher an die Produktion zu bringen, welches von der klassischen Qualitätskontrolle bis hin zur Online-Prozesskontrolle als vollautomatisierter Analysator reicht. Die geringere Feldstärke der Systeme erfordert hier oft den Einsatz modellbasierter Ansätze zur Spektrenauswertung (z.B. Indirect Hard Modeling). Dieser Beitrag gibt eine Übersicht über aktuelle Anwendungen und Entwicklungen der qNMR von der universellen, hochgenauen Labormethode bis hin zur robusten Anwendung als Online-Analysator im Feld. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2019 KW - qNMR KW - NMR Spektroskopie KW - Messunsicherheit PY - 2019 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-47661 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Maiwald, Michael T1 - qNMR an der BAM - Aktuelle Aktivitäten und Strategie N2 - Der Vortrag gibt eine Übersicht über aktuelle qNMR-Aktivitäten im Fachbereich 1.4. Dies umfasst beispielsweise die Online-Anwendung zur Prozessüberwachung, aber auch die Reinheitsuntersuchung von Reinstoffkomponenten für die Herstellung von Referenzgasgemischen. Zusätzlich wird ein Ausblick in die aktuelle Strategie hinsichtlich der Rückführung von qNMR-Ergebnissen mittels primärer Referenzmaterialien gegeben. T2 - 10. Sitzung der Next-NMR-Arbeitsgruppe CY - Karlsruhe, Germany DA - 11.12.2018 KW - qNMR KW - NMR-Spektroskopie PY - 2018 AN - OPUS4-47131 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bernstein, Michael A1 - Diehl, Bernd W. K. A1 - Holzgrabe, Ulrike A1 - Maiwald, Michael A1 - Meyer, Klas A1 - Monakhova, Yulia A1 - Schönberger, Torsten T1 - qNMR - The handbook N2 - Quantitative NMR (qNMR) has been around for a long time, but also has great potential to solve future problems in any quantitative analysis. As a primary method, it differs fundamentally from chromatographic methods: it is better described as a quantum mechanical balance. Succesful implementation of qNMR requires certain attention to detail. "qNMR - the handbook" is intended to be a guide for analysts to help understand the fundamental principles of NMR and the significant points relating to its implementation for quantitation. Regulatory considerations of qNMR adoption are explained. NMR fundamentals are explained to provide understanding. Together with many useful examples, the book is a compelling addition to the laboratory's reference library, providing all the tools that any practitioner should know to successfully implement qNMR. The authors are qNMR pioneers and come from a variety of backgrounds including business, government and academia. KW - Quantitative NMR spectroscopy KW - NMR spectroscopy KW - Handbook KW - qNMR PY - 2023 SN - 978-3-7568-7891-8 SN - 978-3-7583-8050-1 SP - 1 EP - 302 PB - BoD – Books on Demand CY - Norderstedt AN - OPUS4-59839 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Meyer, Klas A1 - Wander, Lukas A1 - Bornemann-Pfeiffer, Martin A1 - Maiwald, Michael T1 - Produzieren Sie schon oder kalibrieren Sie noch? – Online-NMR-Spektrometer als Smarte Feldgeräte T2 - Chemie Ingenieur Technik N2 - Der Vortrag zeigt allgemeine Anforderungen an "smarte Feldgeräte" und deren Entwicklung in den vergangenen Jahren. Am Beispiel eines smarten Online-NMR-Sensors, der in einem EU-Projekt von der BAM entwickelt wurde, wird die Umsetzung der Anforderung aufgezeigt. Schließlich werden weitere Technologieanforderungen und Lösungsansätze vorgestellt. T2 - ProcessNet-Jahrestagung und 33. DECHEMA-Jahrestagung der Biotechnologen CY - Aachen, Germany DA - 10.09.2018 KW - Prozessanalytik KW - Prozessindustrie KW - Online-NMR-Spektroskopie KW - Datenkonzepte KW - Datenanalyse KW - CONSENS PY - 2018 UR - https://onlinelibrary.wiley.com/doi/abs/10.1002/cite.201855229 DO - https://doi.org/10.1002/cite.201855229 SN - 0009-286X N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. VL - 90 IS - 9 SP - 1236 EP - 1236 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-45901 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gottu Mukkula, A. R. A1 - Engell, S. A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Maiwald, Michael T1 - PAT-basierte iterative Optimierung der Fahrweise eines kontinuierlichen organischen Syntheseprozesses T2 - Chemie Ingenieur Technik N2 - Im Zuge der Digitalisierung der Prozessindustrie werden zunehmend modellbasiere Echtzeitoptimierungsverfahren eingesetzt, sog. „Advanced Process Control“. Mithilfe der sogenannten Modifier-Adaptation ist eine iterative Betriebspunktoptimierung auch mit ungenauen Modellen möglich, sofern zuverlässige Prozessdaten zur Verfügung stehen. Am Beispiel eines smarten Online-NMR-Sensors, der in einem EU-Projekt von der BAM entwickelt wurde, konnte das Konzept in einer modularen Produktionsanlage zur Herstellung eines pharmazeutischen Wirkstoffs erfolgreich getestet werden. T2 - ProcessNet-Jahrestagung und 33. DECHEMA-Jahrestagung der Biotechnologen CY - Aachen, Germany DA - 10.09.2018 KW - Prozessanalytik KW - Echtzeitoptimierungsverfahren KW - Modifier-Adaptation KW - Prozess-Steuerung KW - Betriebspunktoptimierung KW - CONSENS PY - 2018 UR - https://onlinelibrary.wiley.com/doi/abs/10.1002/cite.201855233 DO - https://doi.org/10.1002/cite.201855233 SN - 0009-286X VL - 90 SP - 1237 EP - 1237 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-45902 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Maiwald, Michael A1 - Acker, J. T1 - Online-NMR- und -Raman-Spektroskopie – Kombination von PAT-Methoden für mehr Prozessverständnis N2 - Die Verbesserung des Prozessverständnisses ist eine notwendige Voraussetzung für die Anwendung von Konzepten wie „Industrial Internet of Things (IIoT)“ oder „Industrie 4.0“. Online-Methoden der Prozessanalytik (PAT) ermöglichen die direkte Verfolgung der ablaufenden Reaktionen innerhalb chemischer und pharmazeutischer Produktionsschritte und können somit einen wichtigen Beitrag für die Entwicklung von neuen, innovativen Prozessführungsstrategien liefern. Während die Online-Raman-Spektroskopie bereits erfolgreich im industriellen Umfeld zum Einsatz kommt, ist der Entwicklungsstand für die Online-Niederfeld-NMR-Spektroskopie bislang noch nicht ausreichend für einen routinemäßigen Einsatz innerhalb industrieller Produktionsumgebungen. Der hohe Informationsgehalt der NMR-Daten in Verbindung mit einem geringen Kalibrieraufwand macht die Methode sehr interessant für moderne Konzepte flexibler Produktionsanlagen für die Herstellung vieler unterschiedlicher Produkte in wechselnden Kampagnen. Speziell in modularen Produktionskonzepten kann so die Rüstzeit der Prozessanalytik deutlich verkürzt werden. Am Beispiel der heterogen katalysierten Hydrogenierung von 2-Butin-1,4-diol wird der Einsatz der Kombination von Online-NMR und -Raman-Spektroskopie demonstriert. Dieser Prozessschritt aus der industriellen Synthese des Lösungsmittels Tetrahydrofuran verläuft über ein Zwischenprodukt, welches konkurrierende Reaktionspfade aufweist. Die Kombination von Informationen aus der PAT, sowie von klassischen Prozessgrößen, wie Druck, Temperatur und Durchfluss in einem hoch automatisierten Aufbau erleichtert die Entwicklung und Erprobung von neuen Konzepten für die Prozessführung. T2 - 10. ProcessNet-Jahrestagung CY - Online meeting DA - 21.09.2020 KW - Hydrogenierung KW - Benchtop-NMR KW - Raman-Spektroskopie KW - Prozessanalytik PY - 2020 AN - OPUS4-51363 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Bornemannn-Pfeiffer, Martin A1 - Kern, S. A1 - Abele, M. A1 - Falkenstein, S. A1 - Döring, T. A1 - Friedrich, Y. A1 - Maiwald, Michael T1 - Online-NMR Spektroskopie in der PAT - Entwicklungen zwischen Labor- und Feldeinsatz N2 - Die NMR-Spektroskopie ist eine der zentralen nicht-invasiven Analysenmethoden in der organischen Chemie und aus dem Laboralltag nicht mehr wegzudenken. Die direkte Proportionalität zwischen der Anzahl der Atomkerne im Messvolumen und der Signalfläche im Spektrum ist vergleichbar mit einem „Zählen der Kernspins“. Der Kalibrieraufwand für die Quantifizierung ist minimal und aus dem NMR-Spektrum sind Informationen zu Struktur und Identität zugänglich. Online-NMR-Spektroskopie wird unter Zuhilfenahme von speziellen Durchflussproben-köpfen und Messzellen bereits seit Jahrzehnten erforscht und eingesetzt. Durch die hohen Anforderungen an die Aufstellung und den Betrieb von klassischen Hochfeld-NMR-Spektrometern konnte sie allerdings nie den Sprung vom Labor in den Prozess schaffen. Dies hat sich durch die Entwicklungen im Bereich mobil einsetzbarer Benchtop-NMR-Spektrometer grundlegend verändert. Geringere Investitions- und Betriebskosten, sowie die Robustheit und einfache Bedienbarkeit dieser Systeme sind entscheidende Faktoren. Damit rückt eine Anwendung als Online-PAT-Methode technisch in greifbare Nähe. Designierte Prozess-NMR-Spektrometer sucht man heutzutage allerdings auf dem Markt meist noch vergebens. Die Reaktionsverfolgung im Labormaßstab konnte an unterschiedlichen Systemen erfolgreich demonstriert werden. Dabei zeigten sich allerdings Limitierungen in Hinblick auf einen möglichen Prozesseinsatz. Insbesondere die Temperaturempfindlichkeit der Magnetsysteme ist hier zu nennen. Anhand eines Prototyps wurde eine aktive Temperaturisolation mittels temperierter Luftströmungen entwickelt und erprobt. Eine Feldintegration von Laborsystemen geht sowohl technisch als auch regulatorisch mit zahlreichen Herausforderungen einher. Das raue Umfeld von Produktionsanlagen, sowie die Anforderungen an Explosionsschutz erfordern eine zugelassene Einhausung. Auf Basis von Erfahrungen mit einem ersten Prototyp erfolgte die gemeinsame Entwicklung eines möglichst flexibel einsetzbaren Analysenschranks. Neben der Hardware-Integration sind die automatisierte modellbasierte Auswertung der NMR-Spektren, sowie die Einbindung in die Prozessleittechnik essenziell für einen zuverlässigen Betrieb als PAT-Analysengerät. T2 - 18. Kolloquium AK Prozessanalytik CY - Krefeld, Germany DA - 27.11.2023 KW - Prozessanalytik KW - Online-NMR-Spektroskopie KW - NMR-Spektroskopie KW - Benchtop-NMR KW - Feldintegration PY - 2023 AN - OPUS4-58969 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Wander, Lukas A1 - Gräßer, Patrick A1 - Acker, J. A1 - Maiwald, Michael T1 - Online NMR and Raman Spectroscopy – Combination of PAT tools for Process Monitoring N2 - Improvement in deep process understanding is a mandatory prerequisite for the application of modern concepts like Industrial Internet of Things (IIoT) or “Industrie 4.0”. The direct hyphenation with online methods of process analytical technology (PAT) allows profound insights into the actual reactions within chemical and pharmaceutical production steps and provides necessary information for associated advanced control strategies. While the industrial application of online Raman spectroscopy has already been successfully demonstrated, low-field NMR spectroscopy is not yet adequately developed as a robust online method for use in process industry. The high information content combined with the low calibration effort makes NMR spectroscopy a highly promising method for modern process automation with a high flexibility due to short set-up times and novel calibration concepts. This is a major advantage compared to other analytical methods, especially regarding multi-purpose plant strategies, as well as processes suffering from fluctuating quality of raw materials. The work presented here focusses on the heterogeneous catalyzed hydrogenation of 2-butyne-1,4-diol, as a step of the synthesis of industrially important solvent tetrahydrofuran. This reaction is proceeding via an intermediate product and suffers from competitive reaction paths. In this application, online NMR and Raman spectroscopy were combined with data from classical process sensors, e.g., pressure, temperature, and flow transducers in a highly automated setup for the development of innovative control concepts. T2 - Quantitative NMR Methods for Reaction and Process Monitoring (NMRPM) CY - Kaiserslautern, Germany DA - 31.01.2019 KW - Process Analytical Technology KW - Hydrogenation KW - Compact NMR Spectroscopy KW - Online-NMR spectroscopy PY - 2019 AN - OPUS4-47310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kern, Simon A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Gräßer, Patrick A1 - Paul, Andrea A1 - King, R. A1 - Maiwald, Michael T1 - Online low-field NMR spectroscopy for process control of an industrial lithiation reaction—automated data analysis JF - Analytical and Bioanalytical Chemistry N2 - Monitoring specific chemical properties is the key to chemical process control. Today, mainly optical online methods are applied, which require time- and cost-intensive calibration effort. NMR spectroscopy, with its advantage being a direct comparison method without need for calibration, has a high potential for closed-loop process control while exhibiting short set-up times. Compact NMR instruments make NMR spectroscopy accessible in industrial and rough environments for process monitoring and advanced process control strategies. We present a fully automated data analysis approach which is completely based on physically motivated spectral models as first principles information (Indirect Hard Modelling – IHM) and applied it to a given pharmaceutical lithiation reaction in the framework of the European Union’s Horizon 2020 project CONSENS. Online low-field NMR (LF NMR) data was analysed by IHM with low calibration effort, compared to a multivariate PLS-R (Partial Least Squares Regression) approach, and both validated using online high-field NMR (HF NMR) spectroscopy. KW - Online NMR spectroscopy KW - Process analytical technology KW - Partial Least Squares Regression KW - Indirect Hard Modeling KW - Benchtop NMR Spectroscopy KW - Smart Sensors KW - CONSENS PY - 2018 UR - https://link.springer.com/article/10.1007/s00216-018-1020-z DO - https://doi.org/10.1007/s00216-018-1020-z SN - 1618-2642 SN - 1618-2650 VL - 410 IS - 14 SP - 3349 EP - 3360 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-44847 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -