TY - JOUR A1 - Gehrenkemper, Lennart A1 - Simon, Fabian A1 - Roesch, Philipp A1 - Fischer, E. A1 - von der Au, Marcus A1 - Pfeifer, Jens A1 - Cossmer, Antje A1 - Wittwer, Philipp A1 - Vogel, Christian A1 - Simon, Franz-Georg A1 - Meermann, Björn T1 - Determination of organically bound fluorine sum parameters in river water samples - Comparison of combustion ion chromatography (CIC) and high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) N2 - In this study, we compare combustion ion chromatography (CIC) and high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) with respect to their applicability for determining organically Bound fluorine sum parameters. Extractable (EOF) and adsorbable (AOF) organically bound fluorine as well as total fluorine (TF) were measured in samples fromriver Spree in Berlin, Germany, to reveal the advantages and disadvantages of the two techniques used as well as the two established fluorine sum Parameters AOF and EOF. TF concentrations determined via HR-CS-GFMAS and CIC were comparable between 148 and 270 μg/L. On average, AOF concentrations were higher than EOF concentrations, with AOF making up 0.14–0.81% of TF (determined using CIC) and EOF 0.04–0.28% of TF (determined using HR-CSGFMAS). The results obtained by the two independent methods were in good agreement. It turned out that HR-CS-GFMAS is a more sensitive and precise method for fluorine analysis compared to CIC. EOF and AOF are comparable tools in Risk evaluation for the emerging pollutants per- and polyfluorinated alkyl substances; however, EOF is much faster to conduct. KW - High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) KW - Combustion ion chromatography (CIC) KW - Per- and polyfluorinated alkyl substances (PFASs) KW - Adsorbable organically bound fluorine (AOF) KW - Extractable organically bound fluorine (EOF) KW - Surface waters PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-515351 SN - 1618-2650 VL - 413 IS - 28 SP - 103 EP - 115 PB - Springer CY - Berlin AN - OPUS4-51535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Scholz, Philipp A1 - Kalbe, Ute A1 - Caliebe, W. A1 - Tayal, A. A1 - Vasala, S. J. A1 - Simon, Franz-Georg T1 - Speciation of antimony and vanadium in municipal solid waste incineration ashes analyzed by XANES spectroscopy N2 - The use of ashes from municipal solid waste incineration as secondary building materials is an important pillar for the circular economy in Germany. However, leaching of potential toxic elements from these materials must be at environmentally acceptable levels. Normally, a three-month ageing period immobilizes most hazardous heavy metals, but antimony (Sb) and vanadium (V) showed previously unusual leaching. In order to clarify the mechanisms, we analyzed the Sb and V species in various bottom and fly ashes from municipal waste incineration by XANES spectroscopy. Antimony oxidizes from Sb(+ III) species used as flame retardants in plastics to Sb(+ V) compounds during waste incineration. However, owing to the similarity of different Sb(+ V) compound in the Sb K- and L-edge XANES spectra, it was not possible to accurately identify an exact Sb(+ V) species. Moreover, V is mainly present as oxidation state + V compound in the analyzed ashes. However, the coarse and magnetic fraction of the bottom ashes contain larger amounts of V(+ III) and V(+ IV) compounds which might enter the waste incineration from vanadium carbide containing steel tools. Thus, Sb and V could be critical potential toxic elements in secondary building materials and long-term monitoring of the release should be taken into account in the future. KW - Müllverbrennung KW - XANES spectroscopy PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-599841 SP - 1 EP - 7 PB - Springer Science and Business Media LLC AN - OPUS4-59984 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Piechotta, Christian A1 - Lisec, Jan A1 - Sommerfeld, Thomas A1 - Kluge, Stephanie A1 - Herzel, Hannes A1 - Huthwelker, T. A1 - Borca, C. A1 - Simon, Franz-Georg T1 - Levels of per- and polyfluoroalkyl substances (PFAS) in various wastewater-derived fertilizers – analytical investigations from different perspectives N2 - Solid wastewater-based fertilizers were screened for per- and polyfluoroalkyl substances (PFAS) by the extractable organic fluorine (EOF) sum parameter method. The EOF values for ten sewage sludges from Germany and Switzerland range from 154 to 7209 mg kg−1. For thermal treated sewage sludge and struvite the EOF were lower with values up to 121 mg kg−1. Moreover, the application of PFAS targeted and suspect screening analysis of selected sewage sludge samples showed that only a small part of the EOF sum parameter values can be explained by the usually screened legacy PFAS. The hitherto unknown part of EOF sum parameter contains also fluorinated pesticides, pharmaceutical and aromatic compounds. Because these partly fluorinated compounds can degrade to (ultra-)short PFAS in wastewater treatment plants they should be considered as significant sources of organic fluorine in the environment. The combined results of sum parameter analysis and suspect screening reveal the need to update current regulations, such as the German fertilizer ordinance, to focus not solely on a few selected PFAS such as perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) but consider an additional sum parameter approach as a more holistic alternative. Moreover, diffusion gradient in thin-films (DGT) passive samplers were utilized as an alternative simplified extraction method for PFAS in solid wastewater-based fertilizers and subsequently quantified via combustion ion chromatography. However, the DGT method was less sensitive and only comparable to the EOF values of the fertilizers in samples with >150 mg kg−1, because of different diffusion properties for various PFAS, but also kinetic exchange limitations. KW - Combustion Ion Chromatography KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Sewage sludge KW - Fertilizer PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-583429 VL - 2 IS - 10 SP - 1436 EP - 1445 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Simon, Franz-Georg ED - Holm, O. ED - Thomé-Kozmiensky, E. ED - Quicker, P. ED - Kopp-Assenmacher, S. T1 - Per- und polyfluorierte Alkylsubstanzen (PFAS) im Klärschlamm N2 - Per- and polyfluoroalkyl substances (PFAS) are a group of more than 4700 anionic and cationic anthrophonic substances which have been used extensively in a variety of products and industries due to their inert chemical stability and resistance to degradation by heat or acids. As a result of continuous use, mainly in aviation firefighting foams, thousands of industrial and military installations have been found to contain contaminated soil and groundwater resources. However, because of the continuous use of fluorinated consumer products, also effluents and sewage sludge from wastewater treatment plants (WWTPs) have been shown to be an important source of PFAS contamination into the aquatic environment. Resulting from recent stricter regulations and restrictions in the last years on the use of long chain (≥C8) PFAS, there is a significant shift in the chemical industry towards production of short (C4-C7) and ultrashort (C1-C3) chain alternatives. With the amendment of the Sewage Sludge Ordinance in 2017 the German legislation banned sewage sludge application on agricultural land, and by 2029/2032 sewage sludge will be completely prohibited from agricultural application. While environmental exposure of organic pollutants like PFAS, pesticides and pharmaceuticals are no longer desirable, phosphorus (P) from sewage sludge must still be used to produce high-quality P-fertilizers for a circular economy. Currently, plant-available P-fertilizers from sewage sludge/wastewater can be produced using a variety of treatment approaches including precipitation, leaching, and thermal treatment. However, the fate of legacy and emerging PFAS compounds during P leaching, precipitation and treatment from sewage sludge and wastewater is for the most parts still unknown. KW - Combustion Ion Chromatography KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Klärschlamm KW - Düngemittel PY - 2022 SN - 978-3-944310-65-7 SP - 270 EP - 279 PB - Thomé-Kozmiensky Verlag GmbH CY - Neuruppin AN - OPUS4-56290 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -