TY - JOUR A1 - Wittwer, Philipp A1 - Roesch, Philipp A1 - Vogel, Christian A1 - Simon, Fabian A1 - Gehrenkemper, Lennart A1 - Feldmann, Ines A1 - Simon, Franz-Georg T1 - Less Is More: Influence of Cross-Linking Agent Concentration on PFOS Adsorption in Chitosan N2 - As a result of the continuous use of persistent per- and polyfluoroalkyl substances (PFAS), e.g., in aviation firefighting foams, contamination with PFAS has been found in soil, groundwater, and surface water around thousands of industrial and military installations. Due to their harmful (environmental) potential, further dispersion in the environment needs to be stopped, which can be achieved by appropriate absorption materials. In this work, the influence of the cross-linking agent epichlorohydrin (ECH) concentration on the perfluorooctanesulfonic acid (PFOS) adsorption capacity of chitosan gel was investigated. It was found that higher ECH concentration during the cross-linking step decreases the PFOS adsorption capacity of the cross-linked chitosan gel from 0% to 4% ECH solution by about 15%. Using a concentration of 1%, ECH resulted still in an acid-stable material, and a maximum PFOS loading capacity of 4.04 mmol/g was obtained, one of the highest described in the literature. Furthermore, we used a rapid small-scale column test to compare the PFOS adsorption capacity of chitosan and activated carbon, each in both milled and unmilled form. Unmilled chitosan showed the highest PFOS adsorption capacity considering adsorption material dry masses (>0.9 and <0.4 mmol/g for both types of chitosan and activated carbon, respectively). Milled activated carbon proved to be the better adsorption material, considering the fixed volume of the adsorber (>99.9% PFOS adsorbed). Overall, the cross-linking agent concentration in chitosan is a crucial factor influencing its PFOS absorption potential. Our results feature cross-linked chitosan as an effective economic and ecologic alternative for PFOS adsorption in aqueous solutions. KW - Combustion Ion Chromatography KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Remediation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-618406 DO - https://doi.org/10.3390/app142311145 VL - 14 IS - 23 SP - 1 EP - 13 PB - MDPI AN - OPUS4-61840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Döring, Sarah A1 - Wulfes, Birte S. A1 - Atanasova, Aleksandra A1 - Jaeger, Carsten A1 - Walzel, Leopold A1 - Tscheuschner, Georg A1 - Flemig, Sabine A1 - Gawlitza, Kornelia A1 - Feldmann, Ines A1 - Konthur, Zoltán A1 - Weller, Michael G. T1 - Corundum Particles as Trypsin Carrier for Efficient Protein Digestion N2 - Reusable enzyme carriers are valuable for proteomic workflows, yet many supports are expensive or lack robustness. This study describes the covalent immobilization of recombinant trypsin on micrometer-sized corundum particles and assesses their performance in protein digestion and antibody analysis. The corundum surface was cleaned with potassium hydroxide, silanized with 3-aminopropyltriethoxysilane and activated with glutaraldehyde. Recombinant trypsin was then attached, and the resulting imines were reduced with sodium cyanoborohydride. Aromatic amino acid analysis (AAAA) estimated an enzyme loading of approximately 1 µg/mg. Non-specific adsorption of human plasma proteins was suppressed by blocking residual aldehydes with a Tris-glycine-lysine buffer. Compared with free trypsin, immobilization shifted the temperature optimum from 50 to 60 °C and greatly improved stability in 1 M guanidinium hydrochloride. Activity remained above 80 % across several reuse cycles, and storage at 4 °C preserved functionality for weeks. When applied to digesting the NISTmAb, immobilized trypsin provided peptide yields and sequence coverage comparable to soluble enzyme and outperformed it at elevated temperatures. MALDI-TOF MS analysis of Herceptin digests yielded fingerprint spectra that correctly identified the antibody and achieved >60 % sequence coverage. The combination of low cost, robustness and analytical performance makes corundum-immobilized trypsin an attractive option for research and routine proteomic workflows. KW - Aluminum oxide KW - Mass spectrometry KW - Enzyme immobilization KW - Antibodies KW - Protein quantification PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647944 DO - https://doi.org/10.20944/preprints202510.2002.v1 SP - 1 EP - 22 PB - Preprints.org AN - OPUS4-64794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -