TY - CONF A1 - Faßbender, Sebastian T1 - On-line species-specific isotopic analysis of sulfur by hyphenation of capillary electrophoresis with MC-ICP-MS N2 - In many scientific fields, isotopic analysis can offer valuable information. Up to date, typically bulk analysis is aimed at measuring the isotopic composition of the entire elemental content of the sample. However, the analyte element is usually present under the form of different species. Thus, separating species of interest from one another and from matrix components prior to isotope ratio measurements can provide species-specific isotopic information, which could be used for tracing the origin of environmental pollutants and elucidation of (environmental) speciation. Using on-line hyphenations of separation techniques with multicollector-ICP-MS (MC-ICP-MS) can save time and effort and enables the analysis of different species during a single measurement. Whereas some works hyphenating GC and IC with MC-ICP-MS have already been reported, LC and CE hyphenations are still inadequately represented based on the capabilities of these separation techniques. In this work, we developed an on-line hyphenation of CE with multicollector-ICP-MS (CE/MC-ICP-MS) for isotopic analysis of sulfur species using a multiple-injection approach for instrumental mass bias correction by standard-sample bracketing. With this method, the isotopic composition of sulfur in sulfate originating from river water could be analyzed without sample preparation. The results were compared to data from off-line analysis of the same samples to ensure accuracy. The precision of the results of the on-line measurements was promising regarding the differentiation of the river systems by the isotopic signature of river water sulfate. The great potential of this method is based on the versatility of the applied separation technique, not only in the environmental field but also for, e.g., biomolecules, as sulfur is the only covalently bound constituent of proteins that can be analyzed by MC-ICP-MS. T2 - Virtual Goldschmidt 2020 CY - Online meeting DA - 21.06.2020 KW - Isotopic analysis KW - Hyphenated techniques KW - Capillary electrophoresis KW - Multicollector-ICP-MS KW - Speciation analysis PY - 2020 AN - OPUS4-50922 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meermann, Björn T1 - Metal based pollutant assessment via diatoms - new possibilities via automated single cell-ICP-ToF-MS N2 - Diatoms are located at the bottom of the food chain. Toxicological relevant metals can possibly accumulate within the food web and cause harmful effects. Diatoms are a test system in ecotoxicology. Toxicological effects weaken the growth of algae which is by default investigated by means of fluorescence detection. On basis of the expose concentration as well as obtained fluorescence data potential threshold exceedance in e.g. surface waters is assessed. However, this approach does not allow for the determination of “real” accumulated metal concentration in diatoms. Common approaches are based on bulk analysis via e.g. ICP-MS, ICP-OES or AAS. But, biological variability is completely disregarded. To tackle this problem, alternative approaches are highly needed. Within the last years, sp-ICP-MS for nanoparticle as well as single cell analysis turned out as a powerful technique to analyze metal contents as well as size distributions on broad size range. But, common ICP-MS systems do not allow for multi-element detection within single particle/cell events. Thus, simultaneous MS detection devices are needed - just recently, ICP-ToF-MS experienced a revival. Within our previous work, we developed an automated sample introduction system based on a HPLC system on-line with single particle-ICP-MS, which allowed for ionic background separation and single algae analysis. However, for unambiguous tracing several fingerprint elements and multielement analysis in single algae (diatoms) is needed. Thus, we coupled our previous setup on-line to ICP-ToF-MS. Test diatom species were exposed to test substances (Zn) as well as nanoparticles (FeNPs). The developed setup allowed for a fast, automated and multielement analysis in single diatoms. Furthermore, we combined our approach with multivariate data assessment - multielement detection of characteristic fingerprint elements allowed for an unambiguous diatom tracing. Clustering of diatoms according to metal exposure concentration levels was enabled. Our approach is a new potential tool in ecotoxicological testing. T2 - 53. DGMS & 27th ICP-MS user meeting CY - Münster, Germany DA - 01.03.2020 KW - Single cell-ICP-ToF-MS KW - Diatoms KW - New ecotoxicological testing tools PY - 2020 AN - OPUS4-50644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Alfeld, M. A1 - Eckhardt, H.-S. A1 - Kraft, J. A1 - Maiwald, Michael A1 - Meermann, Björn A1 - Merz, K. A1 - Prikler, S. A1 - Richert, J. A1 - Steiner, G. A1 - von Tümpling, W. T1 - Trendbericht Analytische Chemie N2 - Zusätzlich zu Methodenentwicklung, Miniaturisierung und Kopplungsverfahren zeigen sich die Hyperspektroskopie zusammen mit Imaging‐Verfahren, der Einzelmolekülnachweis und der Einsatz von 3‐D‐Druckern als neue Schwerpunkte. Hinzu kommen künstliche Intelligenz bei Sensoren, Bildgebungsverfahren und Prozesssteuerung sowie die Vernetzung von Analyse‐ und Laborgeräten. Trends und Forschungsthemen aus der analytischen Chemie, zusammengestellt von elf Autoren, koordiniert von Günter Gauglitz. KW - Multielementanalytik KW - Multimodale Analytik KW - Kristallolgraphie KW - Prozessanalytik KW - Prozessindustrie KW - Industrielle Analytik KW - Chemometrik KW - Chemometrie PY - 2020 DO - https://doi.org/10.1002/nadc.20204095786 SN - 1868-0054 VL - 68 IS - 4 SP - 52 EP - 60 PB - Wiley CY - Weinheim AN - OPUS4-50609 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maiwald, Michael T1 - The internet of things in the lab and in process - The digital transformation challenges for the laboratory 4.0 T1 - Das Internet of Things in Labor und Prozess - Herausforderungen des digitalen Wandels für das Labor 4.0 N2 - It is a fact that much of the time spent on analytical laboratory instrumentation these days goes into system maintenance. Digital transformation could give us more time again for creativity and our actual laboratory work – if we shape it the right way. N2 - Fakt ist: Einen Großteil der Zeit, der an analytischen Laborgeräten verbracht wird, nimmt heute die Systempflege in Anspruch. Der digitale Wandel kann uns endlich wieder mehr Zeit für Kreativität und die eigentliche Laborarbeit geben – wenn wir ihn richtig gestalten. KW - Lab of the Future KW - Digitalisation KW - Automation KW - Data Analysis KW - Instrument Communication KW - Labor der Zukunft KW - Digitale Transformation KW - Automatisierung KW - Gerätekommunikation PY - 2020 IS - 4 SP - 1 EP - 3 PB - Lumitos AG CY - Darmstadt AN - OPUS4-50618 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von der Au, Marcus T1 - SPE HR-CS GF MAS – A New Sum Parameter Method for Extractable Organically Bound Fluorine (EOF) in Surface Water N2 - Introducing fluorine into organic molecules leads to new chemical/physical properties. Up to now, the OECD identified and categorized 4730 per- and polyfluoroalkyl substances-related CAS numbers. Especially in the field of technical applications (e.g. surface coatings, fire extinguishing foams) as well as pharmaceuticals, fluorinated substances gain in importance. Thus, an increasing release of fluorinated compounds into the environment is expected. The high environmental persistence of perfluorinated compounds leads to the risk of bioaccumulation. Partially fluorinated substances (polyfluorinated compounds) undergo degradation; thus, further possible fluorine species occur, which may exhibit different toxic/chemical properties. However, current target methods (e.g., HPLC/MS-MS) are not applicable for a comprehensive screening as well as assessment of pollution. Thus, the poster presents a new sum parameter method for quantitative determination of extractable organically bound fluorine (EOF) in surface water samples. The method is based on solid-phase extraction (SPE) for fluorinated compounds as well as quantitative separation of interfering inorganic fluoride in combination with high-resolution-continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) for quantitative analysis. By means of this technique, the detection of high resolution molecular absorption spectra (MAS) is enabled upon the addition of a modifier and the formation of a diatomic molecule (e.g. GaF) After successful optimization of the SPE procedure (maximum concentration of extractable organic fluorine), enrichment factors of about 1000 were achieved, allowing for highly sensitive fluorine detection. Next to a species-unspecific response, limits of detection in the low nanogram per liter range were achieved and real surface water samples were analyzed. EOF values in the range of about 50-300 ng/L were detected. The developed method allows for a fast and sensitive as well as selective screening of organically bound fluorine (EOF) in surface water samples, helping to elucidate pollution hotspots as well as discharge routes. T2 - 2020 Winter Conference on Plasma Spectrochemistry CY - Tucson, AZ, USA DA - 12.01.2020 KW - SPE HR-CS GF MAS KW - Sum parameter KW - Fluorine Detection PY - 2020 AN - OPUS4-50352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Isotope ratio working group at CCQM N2 - The presentation gives the reasons for initiation of an isotope ratio working group at CCQM level, describes the process and provides the auduince with the initial working plan. T2 - EURAMET TC-MC Workshop on Isotope Ratio Analysis CY - Bern, Switzerland DA - 05.02.2020 KW - Metrology KW - Absolute isotope ratio KW - Isotope ratio KW - Delta value PY - 2020 AN - OPUS4-50344 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - CCQM IRWG draft strategy for all elements except for noble gases and H, C, N, O N2 - The presentation describes the draft strategy for metalloids and semi-metals within the IRWG at CCQM. This includes the definition of the measurements space, a suitable set of key comparisons and pilot studies and a proposal for a harmonized CMC application. T2 - EURAMET TC-MC Workshop on Isotope Ratio Analysis CY - Bern, Switzerland DA - 05.02.2020 KW - CMC KW - Measurement space KW - Metrology KW - Isotope ratio PY - 2020 AN - OPUS4-50345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Absolute isotope ratios - a proposed research topic N2 - An introduction into absolute isotope ratios is given, with application fields ranging from fundamental science to geochronology and forensics. This is followed by a proposal for developing new calibration approaches for obtaining absolute isotope ratios at unrivaled uncertainty levels. This new developments will set the basis for improvements in all scientific fields. T2 - EURAMET TC-MC Workshop on Isotope Ratio Analysis CY - Bern, Switzerland DA - 05.02.2020 KW - Absolute isotope ratio KW - Isotope fractionation KW - Metrology KW - Fundamental science PY - 2020 AN - OPUS4-50346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Faßbender, Sebastian T1 - On-line hyphenation of CE with multicollector-ICP-MS for species-specific isotopic analysis of sulfur N2 - In many scientific fields, isotopic analysis can offer valuable information, e.g., for tracing the origin of food products, environmental contaminants, forensic and archaeological samples (provenance determination), for age determination of minerals (geochronological dating) or for elucidating chemical processes. Up to date, typically bulk analysis is aimed at measuring the isotopic composition of the entire elemental content of the sample. However, the analyte element is usually present under the form of different species. Thus, separating species of interest from one another and from matrix components prior to isotope ratio measurements can provide species-specific isotopic information, which could be used for tracing the origin of environmental pollutants and elucidation of (environmental) speciation. Using on-line hyphenations of separation techniques with multicollector-ICP-MS (MC-ICP-MS) can save time and effort and enables the analysis of different species during a single measurement. In this work, we developed an on-line hyphenation of CE with multicollector-ICP-MS (CE/MC-ICP-MS) for isotopic analysis of sulfur species. With this method, the isotopic composition of sulfur in sulfate originating from river water could be analyzed without sample preparation. The results were compared with data from off-line analysis of the same samples to ensure accuracy. The precision of the results of the on-line measurements was high enough to distinguish the rivers from one another by the isotopic signature of the river water sulfate. Next to environmental applications, a future field could be species-specific isotopic analysis of biomolecules, as sulfur is the only covalently bound constituent of proteins which can be analyzed by MC-ICP-MS. T2 - DGMS 2020 CY - Münster, Germany DA - 01.03.2020 KW - Capillary electrophoresis KW - Hyphenated techniques KW - Isotopic analysis KW - Multicollector-ICP-MS KW - Speciation analysis PY - 2020 AN - OPUS4-50501 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von der Au, Marcus T1 - HR-CS-GF-MAS as a new screening method for emerging pollutants - per- and polyfluorinated substances in the environment N2 - The introduction of fluorine in organic molecules leads to new chemical/physical properties. Especially in the field of pharmaceuticals, fluorinated organic molecules are becoming more and more popular and at present amount up to 25% of market share, with an upward trend. The main benefits of fluorinated pharmaceuticals are: (i) enhanced fat solubility; (ii) enhanced interaction of catalytic-center of enzymes with fluorine-drugs; (iii) a delayed metabolism within the human body. Highly fluorinated organic substances are also used in technical applications (e.g. coatings, fire-extinguishing agents). Due to the broad variety of fluorinated substances and increasing production volumes numerous and up to date unknown fluorine-species are most likely to be present in the (aquatic) environment. Analytical methods to assess the degree of contamination of surface waters with organically bound fluorine are highly needed and up to now only combustion ion chromatography based method is available, which is relatively laborious. Since a few years’ high resolution-continuum source-graphite furnace atomic absorption spectrometers (HR-CS-GFAAS) are commercially available from Analytik Jena. By means of this technique, the detection of high resolution molecular absorption spectra (MAS) is enabled. Thus, fluoride is detectable upon the addition of a modifier and the formation of a diatomic molecule (e.g. GaF). Just recently, we applied this technique for total fluorine (mainly dissolved fluoride) analysis in river water samples. In the present work a HR-CS-GFMAS method for extractable organically bound fluorine (EOF) analysis in surface water samples was developed by us. The method is based on SPE extraction of organically bound fluorine even in the presence of high fluoride concentrations followed by HR-CS-GFMAS analysis upon elution. Due to high enrichment factors, LODs in the low ng/L range were achieved. We successfully applied our SPE HR-CS-GFMAS method to Rhine water samples and EOF in the range of about 50-300 ng/L was detectable. T2 - DGMS 2020 CY - Münster, Germany DA - 01.03.2020 KW - SPE HR-CS GF MAS PY - 2020 AN - OPUS4-50503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -