TY - CONF A1 - Traub, Heike A1 - Saatz, Jessica A1 - Ascher, Lena A1 - Boyraz, B. A1 - Hahndorf, J. A1 - Schnorr, J. A1 - Schellenberger, E. A1 - Tauber, R. T1 - Unraveling the interaction of MRI contrast agents with tissue using LA ICP MS N2 - Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is increasingly used to study the distribution of metal-containing drugs, imaging probes and nanomaterials in connection with disease related changes and therapy progress. Additionally, biomolecules can be detected indirectly by using metal-tagged antibodies. The extracellular matrix (ECM) is, besides the cells, an important component of all body tissues. The macromolecular network of the ECM consists of structural proteins (e.g., collagen, elastin) and proteoglycans composed of highly negatively charged carbohydrates, the glycosaminoglycans (GAGs), which are covalently linked to a protein core. Many diseases, including inflammatory processes and tumors, are associated with characteristic ECM changes at an early stage. Recent studies have shown that contrast agents for magnetic resonance imaging (MRI), which are based on gadolinium containing chelate complexes or iron oxide nanoparticles, can bind themselves to ECM components. To elucidate the role of GAGs like keratan sulfate (KS) and its modification state in disease, highly specific tools are necessary. As a complement to conventional immunohistochemistry LA-ICP-MS was applied to investigate the distribution of KS in tissue thin sections using a well characterized anti-KS antibody labelled with metal ions. Furthermore, LA-ICP-MS was used for the detection of MRI contrast agents and the identification of their target cells and molecules in tissue samples from animal models, e.g. for cardiovascular diseases. The results show the possibilities of LA-ICP-MS for the elucidation of pathological tissue changes. T2 - European Workshop on Laser Ablation (EWLA 2022) CY - Berne, Switzerland DA - 12.07.2022 KW - Laser ablation KW - Imaging KW - ICP-MS KW - Antibody PY - 2022 AN - OPUS4-55315 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Even, Morgane A1 - Juritsch, Elevtheria A1 - Richter, Matthias T1 - Development of a procedure for the analysis of the emissions of VVOCs N2 - Several aspects were explored towards the standardization of a suitable procedure. The use of gaseous standards is necessary and a standard gas mixture containing 60 substances was successfully generated and employed for further investigations. The suitability of different chromatography columns was addressed: The use of PLOT (Porous Layer Open Tubular) columns is well suitable for VVOC analysis. The recoveries of the 60 analytes on several adsorbents and their combinations were determined: A combination of a graphitized carbon black and a carbon molecular sieve showed great results for all analytes. Carbon molecular sieves adsorb water which can impair the analysis. Different options such as purging, the use of a drying system or splitting were investigated for water removal. This contribution will present experimental results supporting the standardization of a method for VVOC analysis. T2 - Indoor Air conference CY - Kuopio, Finland DA - 12.06.2022 KW - Analytical method KW - EN 16516 KW - ISO 16000-6 KW - VVOCs PY - 2022 AN - OPUS4-55282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raab, A. A1 - Vogl, Jochen A1 - Solovyev, N. A1 - El-Khatib, Platt A1 - Costas-Rodriguez, M. A1 - Schwab, K. A1 - Griffin, E. A1 - Platt, B. A1 - Theuring, F. A1 - Vanhaecke, F. T1 - Isotope signature of iron, copper and zinc in mouse models (L66 and 5XFAD) and their controls used for dementia research N2 - Introduction: The influence of copper, iron and zinc concentrations on the formation of ß-amyloid plaques and neurofibrillary tangles in Alzheimer’s disease (AD) is widely discussed in the community. The results from human and animal studies so far are mixed with some studies showing a correlation and others not. From a number of studies, it is known that disease state and isotopic composition of essential elements can be coupled. Aim: The aim of the study was to identify changes in element content and isotopic composition in two transgenic mouse models used in AD research compared to their genetic WT relatives and to establish whether element content and isotopic signature between different laboratories is comparable. Methods: ß-amyloid (5xFAD) and tau overexpressing (L66) mice together with their matching wild-types were bred at dedicated facilities in accordance with the European Communities Council Directive (63/2010/EU). Serum and brain were sampled after sacrifice and the samples distributed among the participants of the study. The tissues were acid digested for total element determination and high-precision isotope ratio determination. Element content was determined by either sector-field or quadrupole-based inductively coupled plasma mass spectrometry (ICPMS). For the determination of isotope ratios multi-collector ICPMS was used. Results: Total copper content was significantly higher for L66 and their matched WT compared to 5xFAD and WT. Brains of L66 mice contained more Fe in brain than their WT, Zn and Cu were not significantly different between L66 and WT. Whereas 5xFAD mice had a slightly lower Cu and slightly higher Zn concentration in brain compared to WT. The isotopic signature in brain of L66 mice for Fe was different from their controls, whereas Zn isotope ratios were influenced in 5xFAD mice compared to their WT. The Cu isotopic ratio did not seem to be influenced in either strain. In serum, the shifts were less pronounced. Conclusion: Even though neither Tau-protein nor amyloid precursor protein are known to be metal-dependent / -containing proteins, the overexpression of both influences the Fe, Cu and Zn metabolism in brain and to some extent also in serum as can be seen not only using total element determination but probably more clearly studying the isotopic signature of Fe, Cu and Zn. T2 - The International Conference of Trace Elements and Minerals (ICTEM) 2022 CY - Aachen, Germany DA - 05.06.2022 KW - Isotope ratio KW - Isotope delta value KW - Metrology KW - Alzheimer disease KW - Measurement uncertainty PY - 2022 AN - OPUS4-55204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schühle, Florian A1 - Richter, Matthias T1 - Bereitstellung qualitätsgesicherter VOC-Aufnahmeraten für axiale Passivsammler N2 - Quality assured uptake rates for passive sampling of indoor air VOCs Passive sampling of VOCs with Tenax® TA and thermal desorption GC-MS analysis is a simple, cost efficient and representative method to determine VOCs concentrations in indoor air. In theory, the uptake into the passive sampler is only dependent on the diffusion coefficient of the analyte in air and the geometry of the sampler (ideal adsorption). For characterization, the uptake rate (UR) is used, defined as the ratio of the uptaken mass and the product of ambient concentration and exposure time. Various reported effective uptake rates (UR,eff) differ considerably from ideal values (UR,id). Literature values in national and international standards, are essentially sorted by the applicable exposure time, while detailed information about the corresponding concentration range is lacking. Moreover the number of itemized substances is limited. The aim of this study was to review and expand this set of uptake rates by determination of own quality assured laboratory values.The determined uptake rates are considered accurate in terms of RSD and comparability to literature values and can be recommended for exposure times of seven days at 50 100 µg/m³ (approximately 100 300 ppm min). Seven day uptake rates in ISO16017 2 and ASTM D6196 are not generally suited for this purpose, as has been exemplarily shown for benzene. N2 - Die passive Probenahme von VOC (Volatile Organic Compounds) mit Tenax® TA und Thermodesorption GC/MS Analytik ist eine einfache, kosteneffiziente und repräsentative Methode zur Bestimmung der VOC-Konzentrationen in der Innenraumluft. In der Theorie ist die Stoffaufnahme in den Passivsammler nur abhängig vom Diffusionskoeffizienten der Substanz in Luft und der Geometrie des Sammlers (ideale Adsorption). Um sie zu charakterisieren, wird die Aufnahmerate (UR), definiert als Quotient der Massenaufnahme und dem Produkt aus Konzentration und Expositionszeit, verwendet. Viele effektive Aufnahmeraten (UR,eff) unterscheiden sich beträchtlich von idealen (theoretischen) Werten (UR,id). Literaturwerte sind in nationalen und internationalen Normen lediglich für bestimmte Expositionszeiten vorgegeben, während detaillierte Informationen über den zugehörigen Konzentrationsbereich fehlen. Außerdem ist die Anzahl der insgesamt in der Literatur beschriebenen Substanzen begrenzt. Das Ziel der vorgestellten Studie ist es diesen Fundus an Aufnahmeraten zu begutachten und zu prüfen und ihn durch die Bestimmung eigener qualitätsgesicherter Laborwerte zu ergänzen. Die bestimmten Aufnahmeraten werden als akkurat bezüglich ihrer relativen Standardabweichung und Vergleichbarkeit zu Literaturwerten betrachtet und können für Expositionszeiten von 7 Tagen bei Konzentrationen von 50 100 µg/m³ (ca. 100 300 ppm min) empfohlen werden. Die Sieben Tage Aufnahmeraten aus ISO16017 2 und ASTM D6196 sind nicht generell für diesen Zweck geeignet, wie exemplarisch für Benzol gezeigt wurde. T2 - Kongress 29. WaBoLu-Innenraumtage CY - Berlin, Germany DA - 24.05.2022 KW - IAQ KW - VOC KW - Passive sampling KW - Uptake rate PY - 2022 SN - 978-3-949241-04-8 AN - OPUS4-55209 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Even, Morgane A1 - Juritsch, Elevtheria A1 - Richter, Matthias T1 - Weiterentwicklung und Validierung eines leistungsfähigen Verfahrens zur Bestimmung von VVOCs aus Bauprodukten und in der Innenraumluft N2 - Mehrere Aspekte wurden im Hinblick auf die Standardisierung eines geeigneten Verfahrens für die Analyse sehr flüchtiger organischer Verbindungen (VVOCs) untersucht. Die Verwendung gasförmiger Standards ist notwendig und es wurde ein stabiles Standardgasgemisch aus 60 Substanzen erfolgreich erzeugt und auf Stabilität und Reaktivität überprüft. Die Eignungsuntersuchung verschiedener Chromatographiesäulen ergab, dass PLOT-Säulen (Porous Layer Open Tubular) für die VVOC-Analytik gut geeignet sind. Für die 60 Analyten wurden Wiederfindungsraten auf mehreren Adsorbenzien und deren Kombinationen bestimmt. Dabei zeigte eine Kombination aus einem graphitierten Ruß und einem Kohlenstoff-Molekularsieb hervorragende Ergebnisse für alle Zielkomponenten. Nachteilig an Kohlenstoff-Molekularsieben ist, dass sie Wasser adsorbieren, was die Analyse beeinträchtigen kann. Zur Wasserentfernung wurden verschiedene Optionen wie das Trockenspülen oder der Einsatz eines Trocknungssystems untersucht. T2 - WaBoLu Innenraumtage CY - Berlin, Germany DA - 24.05.2022 KW - Analytische Methode KW - EN 16516 KW - ISO 16000-6 KW - VVOCs PY - 2022 AN - OPUS4-55281 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mi, W. A1 - Josephs, R. D. A1 - Melanson, J. E. A1 - Dai, X. A1 - Wang, Y. A1 - Zhai, R. A1 - Chu, Z. A1 - Fang, X. A1 - Thibeault, M.-P. A1 - Stocks, B. B. A1 - Meija, J. A1 - Bedu, M. A1 - Martos, G. A1 - Westwood, S. A1 - Wielgosz, R. I. A1 - Liu, Q. A1 - Teo, T. L. A1 - Liu, H. A1 - Tan, Y. J. A1 - Öztuğ, M. A1 - Saban, E. A1 - Kinumi, T. A1 - Saikusa, K. A1 - Schneider, Rudolf A1 - Weller, Michael G. A1 - Konthur, Zoltán A1 - Jaeger, Carsten A1 - Quaglia, M. A1 - Mussell, C. A1 - Drinkwater, G. A1 - Giangrande, C. A1 - Vaneeckhoutte, H. A1 - Boeuf, A. A1 - Delatour, V. A1 - Lee, J. E. A1 - O'Connor, G. A1 - Ohlendorf, R. A1 - Henrion, A. A1 - Beltrão, P. J. A1 - Naressi Scapin, S. M. A1 - Sade, Y. B. T1 - PAWG Pilot Study on Quantification of SARS-CoV-2 Monoclonal Antibody - Part 1 N2 - Under the auspices of the Protein Analysis Working Group (PAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a pilot study, CCQM-P216, was coordinated by the Chinese National Institute of Metrology (NIM), National Research Council of Canada (NRC) and the Bureau International des Poids et Mesures (BIPM). Eleven Metrology Institutes or Designated Institutes and the BIPM participated in the first phase of the pilot study (Part 1). The purpose of this pilot study was to develop measurement capabilities for larger proteins using a recombinant humanized IgG monoclonal antibody against Spike glycoprotein of SARS-CoV-2 (Anti-S IgG mAb) in solution. The first phase of the study was designed to employ established methods that had been previously studies by the CCQM Protein Analysis Working Group, involving the digestion of protein down to the peptide or amino acid level. The global coronavirus pandemic has also led to increased focus on antibody quantitation methods. IgG are among the immunoglobulins produced by the immune system to provide protection against SARS-CoV-2. Anti-SARS-CoV-2 IgG can therefore be detected in samples from affected patients. Antibody tests can show whether a person has been exposed to the SARS-CoV-2, and whether or not they potentially show lasting immunity to the disease. With the constant spread of the virus and the high pressure of re-opening economies, antibody testing plays a critical role in the fight against COVID-19 by helping healthcare professionals to identify individuals who have developed an immune response, either via vaccination or exposure to the virus. Many countries have launched large-scale antibody testing for COVID-19. The development of measurement standards for the antibody detection of SARS-CoV-2 is critically important to deal with the challenges of the COVID-19 pandemic. In this study, the SARS-CoV-2 monoclonal antibody is being used as a model system to build capacity in methods that can be used in antibody quantification. Amino acid reference values with corresponding expanded uncertainty of 36.10 ± 1.55 mg/kg, 38.75 ± 1.45 mg/kg, 18.46 ± 0.78 mg/kg, 16.20 ± 0.67 mg/kg and 30.61 ± 1.30 mg/kg have been established for leucine, valine, phenylalanine, isoleucine and proline, respectively. Agreement between nearly all laboratories was achieved for the amino acid analysis within 2 to 2.5 %, with one participant achieving markedly higher results due to a technical issue found in their procedure; this result was thus excluded from the reference value calculations. The relatively good agreement within a laboratory between different amino acids was not dissimilar to previous results for peptides or small proteins, indicating that factors such as hydrolysis conditions and calibration procedures could be the largest sources of variability. Peptide reference values with corresponding expanded uncertainty of 4.99 ± 0.28 mg/kg and 6.83 ± 0.65 mg/kg have been established for ALPAPIEK and GPSVFPLAPSSK, respectively. Not surprisingly due to prior knowledge from previous studies on peptide quantitation, agreement between laboratories for the peptide-based analysis was slightly poorer at 3 to 5 %, with one laboratory's result excluded for the peptide GPSVFPLAPSSK. Again, this level of agreement was not significantly poorer than that achieved in previous studies with smaller or less complex proteins. To reach the main text of this paper, click on Final Report. KW - Antibody quantification KW - Amino acid analysis KW - Peptide analysis KW - Round robin test PY - 2021 U6 - https://doi.org/10.1088/0026-1394/59/1a/08001 VL - 59 IS - 1A SP - 08001 AN - OPUS4-54972 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Theiner, S. A1 - Corte Rodriguez, M. A1 - Traub, Heike ED - Golloch, A. T1 - Novel applications of lanthanoids as analytical or diagnostic tools in the life sciences by ICP-MS based techniques N2 - Inductively coupled plasma-mass spectrometry (ICP-MS) is a well-established analytical method offering high sensitivity and multi-element analysis. ICP-MS has found acceptance in various application areas ranging from material analysis to applications in the life sciences. Within the last 15 years new strategies for the sensitive detection and accurate quantification of biomolecules in complex biomedical samples have been developed. Recent instrumental improvements have contributed to this progress. As most of the biomolecules do not contain endogenous metals etectable with ICP-MS, bioconjugation with artificial metal-containing tags based on metal-loaded chelate complexes or nanoparticles is increasingly applied to determine biomolecules indirectly. Especially, the combination of immunohistochemical workflows using lanthanoid-tagged antibodies and ICP-MS detection provides new insights in the complexity and interdependency of cellular processes. Single-cell ICP-MS, also termed as mass cytometry, allows high-dimensional analysis of biomarkers in cell populations at single-cell resolution. For that purpose, lanthanoid isotope labelled antibodies are used to detect their corresponding target molecules. The visualisation of the elemental distribution is possible with laser ablation ICP-MS (LA-ICPMS) at high spatial resolution. Especially, the combination of LA with ICP time-of-flight mass spectrometry, also referred to as imaging mass cytometry (IMC), opens new possibilities for multiparametric tissue imaging at the single-cell level and even below. The lanthanoid localisation and concentration can be linked to their conjugated antibody target providing valuable information about surface markers, intracellular signalling molecules to measure biological function, and the network state of an individual cell in a tissue. This book chapter focuses on new applications, where the multi-element capabilities of ICP-MS are used for the detection of lanthanoids applied as artificial elemental stains or tags for biomolecules and in particular antibodies. KW - ICP-MS KW - Laser ablation KW - Cell KW - Antibody KW - Immunohistochemistry KW - Lanthanoid KW - Mass cytometry KW - Imaging PY - 2022 SN - 978-3-11069-645-5 SN - 978-3-11069-636-3 U6 - https://doi.org/10.1515/9783110696455-013 SP - 399 EP - 444 PB - De Gruyter CY - Berlin, Boston ET - 2. rev. and exten. edition AN - OPUS4-55118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Fabian A1 - Gehrenkemper, Lennart A1 - Meermann, Björn T1 - A fast and simple PFAS extraction method for soil sample analysis using HR-CS-GFMAS N2 - Per- and polyfluorinated alkyl substances (PFASs) are a substance class of over 4730 individual compounds. Several PFASs are extremely persistent, bioaccumulative and toxic. The analysis of PFASs is challenging because of their different chemical and physical properties as well as the high number of target substances. Target-based approaches (e.g., LC-MS/MS) are limited to the availability of analytical grade standards and are not suitable for the analysis of new/unknown PFASs and transformation products. Therefore, PFAS sum parameter methods become increasingly important to indicate a realistic PFAS pollution level. PFAS sum parameters compromise the proportion of organically bound fluorine that can either be extracted (EOF) or adsorbed to activated carbon (AOF). For the instrumental analysis of such sum parameters, a fluorine selective detector is needed. High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) is a sensitive and highly selective tool for indirect fluorine determination. The method is based on the in situ formation of diatomic gallium-mono fluoride (GaF) in a graphite furnace at a temperature of 1550°C. The molecular absorption of GaF can be detected at its most sensitive wavelength at 211.248 nm providing limits of quantification of c(F) 2.7 µg/L. Here, we describe a fast and simple extraction method for the determination of the EOF using HR-CS-GFMAS in soil samples. Common approaches for the EOF determination use solid phase extraction (SPE). To omit the bias of this time consuming and expensive step we optimized a fast and simple SPE-free extraction method. The developed extraction method consists of a liquid-solid extraction using acidified methanol. Comparison of the method with and without an SPE clean-up step revealed a drastic underestimation of EOF concentrations using SPE. In the next step, the applicability of our method was tested for other solid matrices. In view of steadily increasing numbers of PFASs, our method will make an important contribution in assessing the pollution situation as well as support policy makers in deriving exposure limits for PFASs in the future. T2 - Analytica conference CY - München, Germany DA - 21.06.2022 KW - PFAS KW - HR-CS-GFMAS KW - Soil KW - Fluorine KW - SPE PY - 2022 AN - OPUS4-55124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - You, Zengchao A1 - Akkus, A. A1 - Weisheit, W. A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique T1 - Multi element analysis in soil using nitrogen microwave inductively coupled plasma mass spectrometry (MICAP MS) N2 - Due to the fast growth of industry and the use of metal-containing compounds such as sewage sludge in agricultural fields, soil pollution associated with heavy metals presents a terrifying threat to the environment. Throughout the world, there are already 5 million sites of soil contaminated by heavy metals1. Some heavy metals pollutants can influence food chain safety and food quality, which in turn affects human health. According to the German Federal Soil Protection and Contaminated Site Ordinance (BBodSchV) 13 heavy metals such as arsenic (As), lead (Pb) and cadmium (Cd) are classified as heavily toxic to human health2. Therefore, elemental analysis and precise quantification of the heavy metals in soil are of great importance. Inductively coupled plasma mass spectrometry (ICP-MS) emerged as a powerful technique for trace analysis of soil due to its multi-element capability, high sensitivity and low sample consumption. However, despite its success and widespread use, ICP-MS has several persistent drawbacks, such as high argon gas consumption, argon-based polyatomic interferences and the need for complicated RF-power generators. Unlike argon-based ICP, the nitrogen microwave inductively coupled atmospheric pressure mass spectrometry (MICAP-MS) uses nitrogen as plasma gas, which eliminates high operating costs associated with argon-gas consumption as well as the argon-based interferences3. For the first time, the applicability of MICAP-MS for elemental analysis of environmental soils is investigated in this work. For this purpose, 7 reference- and 3 random soil samples containing vanadium (V), cobalt (Co), zink (Zn), copper (Cu), chrome (Cr), mercury (Hg), As, Pb and Cd are digested with aqua regia and used for analysis. Concentrations of selected elements are determined using MICAP-MS and validated using ICP-MS. Sensitivities, limits of detection and gas consumption for both methods are compared and discussed in detail. Moreover, the performance of MICAP-MS under different nitrogen plasma gas concentrations is investigated and compared T2 - Spectroscopium Colloquium CY - Gijon, Spain DA - 30.05.2022 KW - Microwave inductively coupled atmospheric pressure mass spectrometry (MICAP-MS) KW - Multi-element analysis KW - Soil KW - Nitrogen plasma PY - 2022 AN - OPUS4-55181 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - You, Zengchao A1 - Akkus, A. A1 - Weisheit, W. A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique T1 - Multi element analysis in soil using nitrogen microwave inductively coupled plasma mass spectrometry (MICAP MS) N2 - Due to the fast growth of industry and the use of metal-containing compounds such as sewage sludge in agricultural fields, soil pollution associated with heavy metals presents a terrifying threat to the environment. Throughout the world, there are already 5 million sites of soil contaminated by heavy metals1. Some heavy metals pollutants can influence food chain safety and food quality, which in turn affects human health. According to the German Federal Soil Protection and Contaminated Site Ordinance (BBodSchV) 13 heavy metals such as arsenic (As), lead (Pb) and cadmium (Cd) are classified as heavily toxic to human health2. Therefore, elemental analysis and precise quantification of the heavy metals in soil are of great importance. Inductively coupled plasma mass spectrometry (ICP-MS) emerged as a powerful technique for trace analysis of soil due to its multi-element capability, high sensitivity and low sample consumption. However, despite its success and widespread use, ICP-MS has several persistent drawbacks, such as high argon gas consumption, argon-based polyatomic interferences and the need for complicated RF-power generators. Unlike argon-based ICP, the nitrogen microwave inductively coupled atmospheric pressure mass spectrometry (MICAP-MS) uses nitrogen as plasma gas, which eliminates high operating costs associated with argon-gas consumption as well as the argon-based interferences3. For the first time, the applicability of MICAP-MS for elemental analysis of environmental soils is investigated in this work. For this purpose, 7 reference- and 3 random soil samples containing vanadium (V), cobalt (Co), zink (Zn), copper (Cu), chrome (Cr), mercury (Hg), As, Pb and Cd are digested with aqua regia and used for analysis. Concentrations of selected elements are determined using MICAP-MS and validated using ICP-MS. Sensitivities, limits of detection and gas consumption for both methods are compared and discussed in detail. Moreover, the performance of MICAP-MS under different nitrogen plasma gas concentrations is investigated and compared. T2 - BAM Adlershofer Kolloquium CY - Online meeting DA - 21.06.2022 KW - Microwave inductively coupled atmospheric pressure mass spectrometry (MICAP-MS) KW - Multi-element analysis KW - Soil KW - Nitrogen plasma PY - 2022 AN - OPUS4-55182 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -