TY - CONF A1 - Schühle, Florian A1 - Richter, Matthias T1 - Bereitstellung qualitätsgesicherter VOC-Aufnahmeraten für axiale Passivsammler N2 - Quality assured uptake rates for passive sampling of indoor air VOCs Passive sampling of VOCs with Tenax® TA and thermal desorption GC-MS analysis is a simple, cost efficient and representative method to determine VOCs concentrations in indoor air. In theory, the uptake into the passive sampler is only dependent on the diffusion coefficient of the analyte in air and the geometry of the sampler (ideal adsorption). For characterization, the uptake rate (UR) is used, defined as the ratio of the uptaken mass and the product of ambient concentration and exposure time. Various reported effective uptake rates (UR,eff) differ considerably from ideal values (UR,id). Literature values in national and international standards, are essentially sorted by the applicable exposure time, while detailed information about the corresponding concentration range is lacking. Moreover the number of itemized substances is limited. The aim of this study was to review and expand this set of uptake rates by determination of own quality assured laboratory values.The determined uptake rates are considered accurate in terms of RSD and comparability to literature values and can be recommended for exposure times of seven days at 50 100 µg/m³ (approximately 100 300 ppm min). Seven day uptake rates in ISO16017 2 and ASTM D6196 are not generally suited for this purpose, as has been exemplarily shown for benzene. N2 - Die passive Probenahme von VOC (Volatile Organic Compounds) mit Tenax® TA und Thermodesorption GC/MS Analytik ist eine einfache, kosteneffiziente und repräsentative Methode zur Bestimmung der VOC-Konzentrationen in der Innenraumluft. In der Theorie ist die Stoffaufnahme in den Passivsammler nur abhängig vom Diffusionskoeffizienten der Substanz in Luft und der Geometrie des Sammlers (ideale Adsorption). Um sie zu charakterisieren, wird die Aufnahmerate (UR), definiert als Quotient der Massenaufnahme und dem Produkt aus Konzentration und Expositionszeit, verwendet. Viele effektive Aufnahmeraten (UR,eff) unterscheiden sich beträchtlich von idealen (theoretischen) Werten (UR,id). Literaturwerte sind in nationalen und internationalen Normen lediglich für bestimmte Expositionszeiten vorgegeben, während detaillierte Informationen über den zugehörigen Konzentrationsbereich fehlen. Außerdem ist die Anzahl der insgesamt in der Literatur beschriebenen Substanzen begrenzt. Das Ziel der vorgestellten Studie ist es diesen Fundus an Aufnahmeraten zu begutachten und zu prüfen und ihn durch die Bestimmung eigener qualitätsgesicherter Laborwerte zu ergänzen. Die bestimmten Aufnahmeraten werden als akkurat bezüglich ihrer relativen Standardabweichung und Vergleichbarkeit zu Literaturwerten betrachtet und können für Expositionszeiten von 7 Tagen bei Konzentrationen von 50 100 µg/m³ (ca. 100 300 ppm min) empfohlen werden. Die Sieben Tage Aufnahmeraten aus ISO16017 2 und ASTM D6196 sind nicht generell für diesen Zweck geeignet, wie exemplarisch für Benzol gezeigt wurde. T2 - Kongress 29. WaBoLu-Innenraumtage CY - Berlin, Germany DA - 24.05.2022 KW - IAQ KW - VOC KW - Passive sampling KW - Uptake rate PY - 2022 SN - 978-3-949241-04-8 AN - OPUS4-55209 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grimmer, Christoph A1 - Strzelczyk, Rebecca A1 - Richter, Matthias A1 - Musyanovych, Anna A1 - Horn, Wolfgang T1 - Development, application and measurement uncertainty of emission reference materials N2 - Volatile organic compounds (VOCs) emitted by furniture and building materials can cause health issues. For an improvement of indoor air quality low emitting materials should be used. Quality assurance and –control (QA/QC) measures require an emission reference material (ERM) with a predictable emission rate of VOCs. The idea is to use porous materials as ERM, which store the VOCs inside their pores and emit them constantly. T2 - Webinar Metrology for Indoor Air Quality Reference materials for QA/QC of the emission test chamber procedure CY - Online meeting DA - 11.04.2024 KW - Emission reference materials KW - Indoor air quality KW - Materials emissions test KW - VOC PY - 2024 AN - OPUS4-59963 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias A1 - Grimmer, Christoph A1 - Musyanovych, A. A1 - Strzelczyk, Rebecca Skadi A1 - Horn, Wolfgang T1 - Emission reference materials for indoor air measurements N2 - In industrialised countries more than 80% of the time is spent indoors. Products, such as building materials and furniture, emit volatile organic compounds (VOCs), which are therefore ubiquitous in indoor air. VOC in combination may, under certain environmental and occupational conditions, result in reported sensory irritation and health complaints. Emission concentrations can become further elevated in new or refurbished buildings where the rate of air exchange with fresh ambient air may be limited due to improved energy saving aspects. A healthy indoor environment can be achieved by controlling the sources and by eliminating or limiting the release of harmful substances into the air. One way is to use (building) materials proved to be low emitting. Meanwhile, a worldwide network of professional commercial and non-commercial laboratories performing emission tests for the evaluation of products for interior use has been established. Therefore, comparability of test results must be ensured. A laboratory’s proficiency can be proven by internal and external validation measures that both include the application of suitable emission reference materials (ERM). For the emission test chamber procedure according to EN 16516, no artificial ERM is commercially available. The EU-funded EMPIR project MetrIAQ aims to fill this gap by developing new and improved ERMs. The goal is to obtain a material with a reproducible and temporally constant compound release (less than 10 % variability over 14 days). Two approaches were tested: the impregnation of porous materials with VOC, and the encapsulation of VOC in polymer microcapsules. Impregnation is performed with help of an autoclave and supercritical CO2. The encapsulation is done by interfacial polymerisation on VOC droplets. For both approaches, synthesis and/or material parameters were varied to obtain an optimal ERM. Findings about the optimisation of ERM generation, as well as performance of the best emission reference materials, will be presented. T2 - GAS Analysis 2024 CY - Paris, France DA - 30.01.2024 KW - Emission reference materials KW - Materials emissions test KW - VOC KW - Indoor air quality PY - 2024 AN - OPUS4-59506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Even, Morgane A1 - Juritsch, Elevtheria A1 - Richter, Matthias T1 - Measurement of very volatile organic compounds (VVOCs) in indoor air by sorbent-based active sampling: Identifying the gaps towards standardisation JF - TrAC Trends in Analytical Chemistry N2 - The ISO 16000-6 standard describes a method for the determination of volatile organic compounds (VOCs) in indoor and test chamber air by sorbent-based active sampling, thermal desorption and gas chromatography coupled with mass spectrometry (GC/MS). It also gives directions to adapt this methodology to very volatile organic compounds (VVOCs). Indeed, toxicologically based guideline values are being implemented for these compounds and it becomes necessary to measure them. But a comprehensive and robust measurement method is lacking. This work highlights the points that still need to be explored towards the standardisation of a suitable procedure: investigations on sorbent combinations, the suitability of chromatography columns and the use of gaseous standards are required. The biggest challenge remains in the fact that strong sorbents adsorb water together with VVOCs. Water may impair the analysis and the optimal approach to eliminate it is still to be found and integrated into the sampling strategy. KW - Solvents KW - Air analysis KW - VOC KW - Thermal desorption KW - Gas chromatography KW - ISO 16000-6 PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523919 DO - https://doi.org/10.1016/j.trac.2021.116265 VL - 140 SP - 116265 PB - Elsevier B.V. AN - OPUS4-52391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grimmer, Christoph A1 - Richter, Matthias A1 - Musyanovych, Anna A1 - Strzelczyk, Rebecca A1 - Horn, Wolfgang T1 - Preparation of novel emission reference materials: μ-capsules & impregnated porous materials N2 - Volatile organic compounds (VOCs) emitted by furniture and building materials can cause health issues. For an improvement of indoor air quality low emitting materials should be used. Quality assurance and –control (QA/QC) measures require an emission reference material (ERM) with a predictable emission rate of VOCs. The idea is to use porous materials as ERM, which store the VOCs inside their pores and emit them constantly. T2 - WORKSHOP: METROLOGY FOR INDOOR AIR QUALITY CY - Mol, Belgium DA - 18.10.2023 KW - Emission reference materials KW - Indoor air quality KW - Materials emissions test KW - VOC PY - 2023 AN - OPUS4-59961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilke, Olaf A1 - Seeger, Stefan T1 - VOC-Emissions from thermoplastic filaments for 3-D-printing N2 - Summary: A screening test for potential emissions of volatile organic compounds (VOC) was run on different thermoplastic filaments used for 3D printing. The method of direct thermal desorption was used to simulate the high temperatures during the 3D printing process and to identify the main compounds emitted from the filaments. A large number of unexpected compounds were detected that might affect the user’s health and have an impact on indoor air chemistry. Introduction: The use of desktop 3D printers is increasing. Compared to other devices with known emissions, e.g. laser printers, there is still a lack of information on possible emissions of VOC and ultrafine particles during operation and the effect on indoor air quality. Most of the commercially available desktop 3D printers operate with a molten polymer deposition. For this process a solid thermoplastic filament is heated in an extrusion nozzle. Most filaments for desktop 3D printers use either acrylonitrile butadiene styrene (ABS) or polylactic acid (PLA) as filament. Alternatives are polyvinyl alcohol (PVA) or polycarbonate (PC). Method: Eight different thermoplastic filaments for 3D printers were analysed by direct thermal desorption followed by GC-MS identification of the emitted substances. Direct thermal desorption was done by desorbing 5 mg of the feedstock for 1 minute at a temperature of 210°C. This is an average temperature for 3D printing with thermoplastic filaments. Results and conclusions: The comparison of the 4 different filament groups showed the highest overall emissions from ABS, followed by PLA, PC and PVA. Filament ABS 2 emitted mainly SVOCs and triphenyl phosphate, the latter has the highest emission for a single compound from all evaluated filaments. Thermoplastic filaments are a new source of VOC emissions due to the high temperatures associated with 3D printing, which can reach up to 270°C. Some of the detected compounds like lactic acid, lactide and bisphenol A have never been described before in the indoor environment. Additionally some of the main substances could not be identified and some others might have the potential to affect the indoor air chemistry. The appearance of some newly detected compounds raises concerns about potential health effects for the users of 3D printers at home. T2 - 20th Conference | Odour and Emissions of Plastic Materials CY - Kassel, Germany DA - 20.03.2018 KW - VOC KW - Emissions KW - 3D printing KW - Thermoplastic filaments PY - 2018 AN - OPUS4-44551 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -