TY - JOUR A1 - Zweigle, J. A1 - Capitain, C. A1 - Simon, Fabian Michael A1 - Roesch, Philipp A1 - Bugsel, B. A1 - Zwiener, C. T1 - Non-extractable PFAS in functional textiles − Characterization by complementary methods: oxidation, hydrolysis, and fluorine sum parameters JF - Environmental Science: Processes & Impacts N2 - Per- and polyfluoroalkyl substances (PFAS) are widely used for durable water-repellent finishing of different fabrics and textiles like outdoor clothing, carpets, medical textiles and more. Existing PFAS extraction techniques followed by target analysis are often insufficient in detecting widely used side-chain fluorinated polymers (SFPs) that are barely or non-extractable. SFPs are typically copolymers consisting of a non-fluorinated backbone with perfluoroalkyl side-chains to obtain desired properties. We compared the accessible analytical information and performance of complementary techniques based on oxidation (dTOP assay, PhotoTOP), hydrolysis (THP assay), standard extraction, extractable organic fluorine (EOF), and total fluorine (TF) with five functional textiles and characterized 7 further textiles only by PhotoTOP oxidation. The results show that when applied directly to textile samples, oxidation by dTOP and PhotoTOP and also hydrolysis by the THP are able to capture large fractions of the TF in form of perfluoroalkyl side-chains present in the textiles while methods relying on extracts (EOF, target and non-target analysis) were much lower (e.g., factor ~25-50 lower). The conversion of large fractions of the measured TF into PFCAs or FTOHs from fluorinated side chains is in contrast to previous studies. Concentrations ranged from 150 mg kg−1, because of different diffusion properties for various PFAS, but also kinetic exchange limitations. KW - Combustion Ion Chromatography KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Sewage sludge KW - Fertilizer PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-583429 DO - https://doi.org/10.1039/d3va00178d VL - 2 IS - 10 SP - 1436 EP - 1445 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Smol, M. A1 - Adam, Christian A1 - Kugler, Stefan T1 - Analiza możliwości wykorzystania w Polsce popiołów ze spalania komunalnych osadów ściekowych na cele nawozowe T1 - Use of municipal sewage sludge ash for fertilizing purposes. An analysis of possibilities in Poland JF - Przemysł Chemiczny N2 - Popioły pochodzące z instalacji do spalania komunalnych osadów ściekowych, znajdującej się na terytorium Polski, poddano procesom termochemicznego przekształcania, dzięki czemu otrzymano produkty nawozowe spełniające kryteria dopuszczające je do obrotu jako nawozy mineralne. Ponadto dokonano analizy możliwości wykorzystania popiołów na cele nawozowe zgodnie z obecnie przyjętymi dokumentami strategicznymi i planistycznymi dotyczącymi gospodarki odpadami na poziomie krajowym i europejskim. N2 - Ashes from thermal transformation of municipal sewage sludge were thermochem. modified at 1000°C in the presence of NaHCO3 and sewage sludge to obtain CaNaPO4 and reduce the content of heavy metals in the produced fertilizer. Its bioavailability was more than 99% higher than that of raw ashes (50%). The nutrient content was 13.56 % Ca, 6.33% P, 4.36% K and 5.0% Fe. The content of heavy metals in fertilizer products met the std. requirements and was exceeded only in the case of Pb (278.3 mg/kg d.m.). KW - Ashes KW - Waste KW - Phosphorus KW - Recovery KW - Fertilizer PY - 2020 DO - https://doi.org/10.15199/62.2020.8.14 VL - 99 IS - 8 SP - 1186 EP - 1191 AN - OPUS4-51267 LA - pol AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Fabian A1 - Gehrenkemper, Lennart A1 - von der Au, Marcus A1 - Wittwer, Phillip A1 - Roesch, Philipp A1 - Pfeifer, Jens A1 - Cossmer, Antje A1 - Meermann, Björn T1 - A fast and simple PFAS extraction method utilizing HR–CS–GFMAS for soil samples JF - Chemosphere N2 - Here, we describe an optimized fast and simple extraction method for the determination of per- and polyfluorinated alkyl substances (PFASs) in soils utilizing high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR–CS–GFMAS). To omit the bias of the solid phase extraction (SPE) step commonly used during the analysis of extractable organically bound fluorine (EOF) we optimized a fast and simple SPE-free extraction method. The developed extraction method consists of a liquid-solid extraction using acidified methanol without any additional SPE. Four extraction steps were representative to determine a high proportion of the EOF (>80% of eight extractions). Comparison of the optimized method with and without an additional SPE clean-up step revealed a drastic underestimation of EOF concentrations using SPE. Differences of up to 94% were observed which were not explainable by coextracted inorganic fluoride. Therefore, not only a more accurate but also a more economic as well as ecologic method (bypassing of unnecessary SPE) was developed. The procedural limit of quantification (LOQ) of the developed method was 10.30 μg/kg which was sufficient for quantifying EOF concentrations in all tested samples. For future PFAS monitoring and potential regulative decisions the herein presented optimized extraction method can offer a valuable contribution. KW - Per- and polyfluorinated alkly substances (PFASs) KW - High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) KW - Soils KW - Solid phase extraction (SPE) KW - Extractable organically bound fluorine (EOF) KW - Solid-liquid extraction PY - 2022 DO - https://doi.org/10.1016/j.chemosphere.2022.133922 VL - 295 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-54359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schulze-Makuch, D. A1 - Haque, S. A1 - Beckles, D. A1 - Schmitt-Kopplin, P. A1 - Harir, M. A1 - Schneider, Beate A1 - Stumpp, C. A1 - Wagner, D. T1 - A chemical and microbial characterization of selected mud volcanoes in Trinidad reveals pathogens introduced by surface water and rain water JF - Science of The Total Environment N2 - Terrestrial mud volcanoes are unique structures driven by tectonic pressure and fluids from the deep subsurface. These structures are mainly found in active tectonic zones, such as the area near the Los Bajos Fault in Trinidad. Here we report a chemical and microbiological characterization of three mud volcanoes, which included analyses of multiple liquid and solid samples from the mud volcanoes. Our study confirms previous suggestions that at least some of the mud volcano fluids are a mixture of deeper salt-rich water and surficial/precipitation water. No apparent water quality differences were found between sampling sites north and south of a major geological fault line. Microbiological analyses revealed diverse communities, both aerobic and anaerobic, including sulfate reducers, methanogens, carbon dioxide fixing and denitrifying bacteria. Several identified species were halophilic and likely derived from the deeper salt-rich subsurface water, while we also cultivated pathogenic species from the Vibrionaceae, Enterobacteriaceae, Shewanellaceae, and Clostridiaceae. These microorganisms were likely introduced into the mud volcano fluids both from surface water or shallow ground-water, and perhaps to a more minor degree by rain water. The identified pathogens are a major health concern that needs to be addressed. KW - Water stable isotope analysis KW - Mud volcanoe fluids KW - Metabolomics PY - 2020 DO - https://doi.org/10.1016/j.scitotenv.2019.136087 VL - 707 SP - 136087 PB - Elsevier B.V. AN - OPUS4-50499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ruyle, B. A1 - Pickard, H. A1 - Schultes, L. A1 - Fredriksson, F. A1 - Heffernan, A. A1 - Knappe, D. A1 - Lord, H. A1 - Meng, P. A1 - Mills, M. A1 - Ndungu, K. A1 - Roesch, Philipp A1 - Rundberget, J.T. A1 - Tettenhorst, D. A1 - Van Buren, J. A1 - Vogel, Christian A1 - Westerman, D. A1 - Yeung, L. A1 - Sunderland, E. T1 - Interlaboratory Comparison of Extractable Organofluorine Measurements in Groundwater and Eel (Anguilla rostrata): Recommendations for Methods Standardization JF - Environmental Science and Technology N2 - Research on per- and polyfluoroalkyl substances (PFAS) frequently incorporates organofluorine measurements, particularly because they could support a class-based approach to regulation. However, standardized methods for organofluorine analysis in a broad suite of matrices are currently unavailable, including a method for extractable organofluorine (EOF) measured using combustion ion chromatography (CIC). Here, we report the results of an international interlaboratory comparison. Seven laboratories representing academia, government, and the private sector measured paired EOF and PFAS concentrations in groundwater and eel (Anguilla rostrata) from a site contaminated by aqueous film-forming foam. Among all laboratories, targeted PFAS could not explain all EOF in groundwater but accounted for most EOF in eel. EOF results from all laboratories for at least one replicate extract fell within one standard deviation of the interlaboratory mean for groundwater and five out of seven laboratories for eel. PFAS spike mixture recoveries for EOF measurements in groundwater and eel were close to the criterion (±30%) for standardized targeted PFAS methods. Instrumental operation of the CIC such as replicate sample injections was a major source of measurement uncertainty. Blank contamination and incomplete inorganic fluorine removal may introduce additional uncertainties. To elucidate the presence of unknown organofluorine using paired EOF and PFAS measurements, we recommend that analysts carefully consider confounding methodological uncertainties such as differences in precision between measurements, data processing steps such as blank subtraction and replicate analyses, and the relative recoveries of PFAS and other fluorine compounds. KW - Extractable organic fluorine KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Combustion ion chromatography (CIC) PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587726 DO - https://doi.org/10.1021/acs.est.3c04560 SN - 0013-936X VL - 57 IS - 48 SP - 20159 EP - 20168 PB - American Chemical Society (ACS) AN - OPUS4-58772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Recknagel, Sebastian A1 - Bresch, Harald A1 - Kipphardt, Heinrich A1 - Resch-Genger, Ute A1 - Koch, Matthias A1 - Rosner, M. T1 - Trends in selected fields of reference material production JF - Analytical and bioanalytical chemistry N2 - For more than 110 years, BAM has been producing reference materials for a wide range of application fields. With the development of new analytical methods and new applications as well as continuously emerging more stringent requirements of laboratory accreditation with regard to quality control and metrological traceability, the demand and requirements for reference materials are increasing. This trend article gives an overview of general developments in the field of reference materials as well as developments in selected fields of application in which BAM is active. This includes inorganic and metal analysis, gas analysis, food and consumer products, and geological samples. In addition to these more traditional fields of application, developments in the areas of optical spectroscopy, particulary fluorescence methods, and nanomaterials are considered. T2 - 150 years BAM: Science with impact CY - Berlin, Germany DA - 01.01.2021 KW - Reference material KW - ISO REMCO KW - Gas analysis KW - Food KW - Nanomaterials KW - Fluorescence PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548407 DO - https://doi.org/10.1007/s00216-022-03996-7 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - Topical collection: Analytical methods and applications in the materials and life sciences SP - 4281 EP - 4289 PB - Springer CY - Berlin AN - OPUS4-54840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liaskos, C. A1 - Rhoderick, G. A1 - Hodges, J. A1 - Possolo, A. A1 - Wilke, Olaf T1 - Pilot comparison CCQM-P177 - monoterpenes in nitrogen at 2.5 nmol/mol - final report JF - Metrologia N2 - Growing awareness of the impact of monoterpenes on climate, atmospheric chemistry, and indoor air quality has necessitated the development of measurement standards to globally monitor and control their emissions. For National Metrology Institutes to develop such standards, it is essential that they demonstrate measurement equivalence for assigned values at the highest levels of accuracy. This report describes the results of a pilot comparison for 4 key monoterpene species: α-pinene, 3-carene, R-limonene and 1,8-cineole, at a nominal amount-of-substance fraction of 2.5 nmol mol-1. The objective of this comparison is to evaluate participant capabilities to measure trace-level monoterpenes using their own calibration techniques. KW - Pilot comparison KW - CCQM KW - Monoterpene KW - Accuracy PY - 2020 DO - https://doi.org/10.1088/0026-1394/57/1A/08018 SN - 0026-1394 SN - 1681-7575 VL - 57 IS - 1A SP - 08018-1 EP - 08018-21 PB - IOP Science AN - OPUS4-51111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kalbe, Ute A1 - Lehnik-Habrink, Petra A1 - Bandow, Nicole A1 - Sauer, Andreas T1 - Validation of European horizontal methods for the analysis of PAH, PCB and dioxins in sludge, treated biowaste and soil JF - Environmental Science Europe N2 - Draft standards for the determination of organic pollutants in the solid matter of environmental matrices such as sludge, treated biowaste and soil have been basically developed in the framework of the European standardization project HORIZONTAL. A research project financed by the German Federal Environment Agency was initiated to finalize some of these CEN standard drafts, since fully validated standard procedures are crucial for the evaluation of their reliability in the context of implementation in legislation on environmental health. Approach: Appropriate test materials (< 2mm particle size) were prepared and homogenized from contaminated soils, sludge and treated biowaste containing polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), dioxins, furans and dioxin-like-PCB and served, along with reference solutions, as the basis for international interlaboratory comparisons. Performance data of three analytical standard procedures were obtained by the statistical evaluation of results received from 11 to 29 participants per test material. Results: The overall variation coefficients of reproducibility (between-lab standard deviations) for the sum parameters were roughly between 10 and 35 %. The variation coefficients of repeatability (within-lab standard deviations) range between 3 % and 8 % and show no trend considering the substance groups or matrices. The highest coefficients of reproducibility were found for the analysis of PAHs, which were between 26 and 35 %, depending on the matrix, whereas 7-17 % reproducibility was observed for toxicity equivalents (TEQ) comprising dioxins, furans and dl-PCB. Conclusions: Overall, the results confirm that the procedures described in the Technical Specifications are fit for purpose for all three matrices and that the feasibility of the HORIZONTAL approach, to cover several matrices with one standard per analyte, was thereby proven. KW - Standardization KW - Analytical methods KW - Organic contaminants KW - Validation trial KW - Interlaboratory comparison PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479914 DO - https://doi.org/10.1186/s12302-019-0211-3 SN - 2190-4715 VL - 31 SP - 29, 1 EP - 10 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-47991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -