TY - JOUR A1 - Vogl, Jochen T1 - The triple-isotope calibration approach: a universal and standard-free calibration approach for obtaining absolute isotope ratios of multi-isotopic elements N2 - The theory of a new calibration approach for obtaining absolute isotope ratios of multi-isotopic elements without the use of any standard has been developed. The calibration approach basically uses the difference in the instrumental isotope fractionation of two different types of mass spectrometers, leading to two different fractionation lines in a three-isotope diagram. When measuring the same sample with both mass spectrometers, the different fractionation lines have one point in common: this is the ‘true’ logarithmized isotope ratio pair of the sample. Thus, the intersection of both fractionation lines provides us with the absolute isotope ratios of the sample. This theory has been tested in practice by measuring Cd and of Pb isotope ratios in the certified reference materials BAM-I012 and NIST SRM981 by thermal ionization mass spectrometry and by inductively coupled plasma mass spectrometry while varying the ionization conditions for both mass spectrometers. With this experiment, the theory could be verified, and absolute isotope ratios were obtained, which were metrologically compatible with the certified isotope ratios. The so-obtained absolute isotope ratios are biased by − 0.5% in average, which should be improved with further developments of the method. This calibration approach is universal, as it can be applied to all elements with three or more isotopes and it is not limited to the type of mass spectrometers applied; it can be applied as well to secondary ion mass spectrometry or others. Additionally, this approach provides information on the fractionation process itself via the triple-isotope fractionation exponent θ. KW - Triple isotope fractionation KW - Absolute isotope ratio KW - Mass spectrometry KW - Calibration KW - Uncertainty PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516364 DO - https://doi.org/10.1007/s00216-020-03050-4 VL - 413 IS - 3 SP - 821 EP - 826 PB - Springer Verlag AN - OPUS4-51636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Isotope Ratio Analysis N2 - Basic information on isotope ratio analysis is provided. Isotope fractionation is discussed and the measurement process is described. Additionally, practical examples are provided. T2 - Workshop & Training "Isotope Ratio Analysis" CY - Pathum Thani, Thailand DA - 06.12.2023 KW - Isotope fractionation KW - Mass spectrometry KW - Terminology PY - 2023 AN - OPUS4-59164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Yi A1 - Danischewski, Julia A1 - Molnar, Brian A1 - Riedel, Jens A1 - Shelley, Jacob T1 - Manipulation of Gaseous Ions with Acoustic Fields at Atmospheric Pressure N2 - The ability to controllably move gaseous ions is an essential aspect of ion-based spectrometry (e.g., mass spectrometry and ion mobility spectrometry) as well as materials processing. At higher pressures, ion motion is largely governed by diffusion and multiple collisions with neutral gas molecules. Thus, high-pressure ion optics based on electrostatics require large fields, radio frequency drives, complicated geometries, and/or partially transmissive grids that become contaminated. Here, we demonstrate that low-power standing acoustic waves can be used to guide, block, focus, and separate beams of ions akin to electrostatic ion optics. Ions preferentially travel through the static-pressure regions (“nodes”) while neutral gas does not appear to be impacted by the acoustic field structure and continues along a straight trajectory. This acoustic ion manipulation (AIM) approach has broad implications for ion manipulation techniques at high pressure, while expanding our fundamental understanding of the behavior of ions in gases. KW - Ion mobility spectrometry KW - Acoustic KW - Mass spectrometry PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600704 DO - https://doi.org/10.1021/jacs.4c01224 SP - 1 EP - 6 PB - ACS Publications AN - OPUS4-60070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Temgoua Tonleu, Ranil C. A1 - Koch, Matthias T1 - Simulation of the Environmental Degradation of TBBPA by EC-LC-MS N2 - Oxidative degradation processes of tetrabromobisphenol A (TBBPA), a brominated flame retardant (BFR) in wood, plastics and electronics, were investigated by electrochemistry (EC) coupled online to electrospray ionization mass spectrometry (ESI/MS). Oxidative phase I and II metabolites production was achieved using an electrochemical flow-through cell equipped with a boron doped diamond electrode. Structural elucidation and prediction of oxidative metabolism pathways of TBBPA according to type II ipso-substitution were based on retention time, m/z ratio in negative mode and fragmentation pattern. Using the data obtained through high resolution MS analysis and the identification of single electron transfer (SET) as the initial step of a two-electron oxidation provided the necessary information to propose a mechanism for the electrochemical oxidation of TBBPA. Oxidation reactions involving aromatic hydroxylation and β-scission were the main degradation observed when studying the electrochemical behavior of TBBPA. Computational chemistry experiments using density functional theory (DFT) allowed to identify mono-hydroxylated reaction intermediate and dismissed the mechanism involving two concurrent hydroxylation. TBBPA oxidation products were compared to known metabolites of its biological and environmental degradation confirming the ability of electrochemistry to simulate β-scission reactions. T2 - Mass Spectrometry Forum 2024 CY - Vienna, Austria DA - 21.02.2024 KW - Emerging pollutants KW - Chemical characterization KW - Electrochemistry KW - Chemical and material safety KW - Mass spectrometry KW - Environment-material interactions PY - 2024 AN - OPUS4-59571 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cruz-Alonso, M. A1 - Fernandez, B. A1 - Álvarez, L. A1 - González-Iglesias, H. A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Pereiro, R. T1 - Bioimaging of metallothioneins in ocular tissue sections by laser ablation-ICP-MS using bioconjugated gold nanoclusters as specific tags N2 - An immunohistochemical method is described to visualize the distribution of metallothioneins 1/2 (MT 1/2) and metallothionein 3 (MT 3) in human ocular tissue. It is making use of (a) antibodies conjugated to gold nanoclusters (AuNCs) acting as labels, and (b) laser ablation (LA) coupled to inductively coupled plasma – mass spectrometry (ICP-MS).Water-soluble fluorescent AuNCs (with an average size of 2.7 nm) were synthesized and then conjugated to antibody by carbodiimide coupling. The surface of the modified AuNCs was then blocked with hydroxylamine to avoid nonspecific interactions with biological tissue. Immunoassays for MT 1/2 and MT 3 in ocular tissue sections (5 μm thick) from two post mortem human donors were performed. Imaging studies were then performed by fluorescence using confocal microscopy, and LA-ICP-MS was performed in the retina to measure the signal for gold. Signal amplification by the >500 gold atoms in each nanocluster allowed the antigens (MT 1/2 and MT 3) to be imaged by LA-ICP-MS using a laser spot size as small as 4 μm. The image patterns found in retina are in good agreement with those obtained by conventional fluorescence immunohistochemistry which was used as an established reference method. KW - Metal nanoclusters KW - Fluorescence KW - Protein imaging KW - Thin tissue sections KW - Immunohistochemistry KW - Bioconjugation KW - Carbodiimide crosslinking KW - Laser ablation KW - Mass spectrometry PY - 2018 DO - https://doi.org/10.1007/s00604-017-2597-1 VL - 185 IS - 1 SP - 1 EP - 9 PB - Springer AN - OPUS4-44022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ribar, A. A1 - Huber, S. E. A1 - Smiałek, M. A. A1 - Tanzer, K. A1 - Neustetter, M. A1 - Schürmann, Robin A1 - Bald, Ilko A1 - Denifl, S. T1 - Hydroperoxyl radical and formic acid formation from common DNA stabilizers upon low energy electron attachment N2 - 2-Amino-2-(hydroxymethyl)-1,3-propanediol (TRIS) and ethylene-diaminetetraacetic acid (EDTA) are key components of biological buffers and are frequently used as DNA stabilizers in irradiation studies. Such surface or liquid phase studies are done with the aim to understand the fundamental mechanisms of DNA radiation damage and to improve cancer radiotherapy. When ionizing radiation is used, abundant secondary electrons are formed during the irradiation process, which are able to attach to the molecular compounds present on the surface. In the present study we experimentally investigate low energy electron attachment to TRIS and methyliminodiacetic acid (MIDA), an analogue of EDTA, supported by quantum chemical calculations. The most prominent dissociation channel for TRIS is through hydroperoxyl radical formation, whereas the dissociation of MIDA results in the formation of formic and acetic acid. These compounds are well-known to cause DNA modifications, like strand breaks. The present results indicate that buffer compounds may not have an exclusive protecting effect on DNA as suggested previously. KW - DEA KW - DNA KW - Low energy electrons KW - Mass spectrometry PY - 2018 UR - http://pubs.rsc.org/en/content/articlepdf/2018/cp/c7cp07697e DO - https://doi.org/10.1039/c7cp07697e VL - 20 IS - 8 SP - 5578 EP - 5585 PB - Royal Society of Chemistry AN - OPUS4-44703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tscheuschner, Georg A1 - Kaiser, Melanie N. A1 - Lisec, Jan A1 - Beslic, D. A1 - Muth, Thilo A1 - Krüger, M. A1 - Mages, H. W. A1 - Dorner, B. G. A1 - Knospe, J. A1 - Schenk, J. A. A1 - Sellrie, F. A1 - Weller, Michael G. T1 - MALDI-TOF-MS-Based Identification of Monoclonal Murine Anti-SARS-CoV-2 Antibodies within One Hour N2 - During the SARS-CoV-2 pandemic, many virus-binding monoclonal antibodies have been developed for clinical and diagnostic purposes. This underlines the importance of antibodies as universal bioanalytical reagents. However, little attention is given to the reproducibility crisis that scientific studies are still facing to date. In a recent study, not even half of all research antibodies mentioned in publications could be identified at all. This should spark more efforts in the search for practical solutions for the traceability of antibodies. For this purpose, we used 35 monoclonal antibodies against SARS-CoV-2 to demonstrate how sequence-independent antibody identification can be achieved by simple means applied to the protein. First, we examined the intact and light chain masses of the antibodies relative to the reference material NIST-mAb 8671. Already half of the antibodies could be identified based solely on these two parameters. In addition, we developed two complementary peptide mass fingerprinting methods with MALDI-TOF-MS that can be performed in 60 min and had a combined sequence coverage of over 80%. One method is based on the partial acidic hydrolysis of the protein by 5 mM of sulfuric acid at 99 degrees C. Furthermore, we established a fast way for a tryptic digest without an alkylation step. We were able to show that the distinction of clones is possible simply by a brief visual comparison of the mass spectra. In this work, two clones originating from the same immunization gave the same fingerprints. Later, a hybridoma sequencing confirmed the sequence identity of these sister clones. In order to automate the spectral comparison for larger libraries of antibodies, we developed the online software ABID 2.0. This open-source software determines the number of matching peptides in the fingerprint spectra. We propose that publications and other documents critically relying on monoclonal antibodies with unknown amino acid sequences should include at least one antibody fingerprint. By fingerprinting an antibody in question, its identity can be confirmed by comparison with a library spectrum at any time and context. KW - Reproducibility KW - Quality control KW - Traceability KW - Peptides KW - Peptide mass fingerprinting KW - Monoclonal antibody KW - Recombinant antibody KW - Identity KW - Antibody identification KW - Sequencing KW - Light chain KW - Mass spectrometry KW - Software KW - Open science KW - Library KW - COVID-19 KW - Corona virus KW - Sequence coverage KW - NIST-mAb 8671 KW - Reference material KW - RBD KW - Spike protein KW - Nucleocapsid KW - Cleavage KW - Tryptic digest KW - MALDI KW - DHAP KW - 2,5-dihydroxyacetophenone KW - Github KW - Zenodo KW - ABID PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547347 DO - https://doi.org/10.3390/antib11020027 VL - 11 IS - 2 SP - 1 EP - 22 PB - MDPI CY - Basel AN - OPUS4-54734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abbas, Ioana M. A1 - Hoffmann, Holger A1 - Montes-Bayón, M. A1 - Weller, Michael G. T1 - Improved LC-MS/MS method for the quantification of hepcidin-25 in clinical samples N2 - Mass spectrometry-based methods play a crucial role in the quantification of the main iron metabolism regulator hepcidin by singling out the bioactive 25-residue peptide from the other naturally occurring N-truncated isoforms (hepcidin-20, -22, -24), which seem to be inactive in iron homeostasis. However, several difficulties arise in the MS analysis of hepcidin due to the sticky character of the peptide and the lack of suitable standards. Here, we propose the use of amino- and fluoro-silanized autosampler vials to reduce hepcidin interaction to laboratory glassware surfaces after testing several types of vials for the preparation of stock solutions and serum samples for isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS). Furthermore, we have investigated two sample preparation strategies and two chromatographic separation conditions with the aim of developing an LC-MS/MS method for the sensitive and reliable quantification of hepcidin-25 in serum samples. A chromatographic separation based on usual acidic mobile phases was compared with a novel approach involving the separation of hepcidin-25 with solvents at high pH containing 0.1% of ammonia. Both methods were applied to clinical samples in an intra-laboratory comparison of two LC-MS/MS methods using the same hepcidin-25 calibrators with good correlation of the results. Finally, we recommend an LC-MS/MS-based quantification method with a dynamic range of 0.5–40 μg/L for the assessment of hepcidin-25 in human serum that uses TFA-based mobile phases and silanized glass vials. KW - HPLC KW - Liquid chromatography KW - Mass spectrometry KW - Silanization KW - Mobile phase KW - Adsorption KW - Peptide losses KW - Recovery KW - Validation KW - Quality control KW - QC KW - Iron disorders KW - Chronic kidney disease KW - Metrology KW - Round robin exercise KW - Basic solvent KW - Peptide analysis PY - 2018 DO - https://doi.org/10.1007/s00216-018-1056-0 SN - 1618-2642 SN - 1618-2650 VL - 410 IS - 16 SP - 3835 EP - 3846 PB - Springer Nature CY - Heidelberg AN - OPUS4-45053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bosc-Bierne, Gaby A1 - Ewald, Shireen A1 - Kreuzer, Oliver J. A1 - Weller, Michael G. T1 - Efficient Quality Control of Peptide Pools by UHPLC and Simultaneous UV and HRMS Detection N2 - Peptide pools consist of short amino acid sequences and have proven to be versatile tools in various research areas in immunology and clinical applications. They are commercially available in many different compositions and variants. However, unlike other reagents that consist of only one or a few compounds, peptide pools are highly complex products which makes their quality control a major challenge. Quantitative peptide analysis usually requires sophisticated methods, in most cases isotope-labeled standards and reference materials. Usually, this would be prohibitively laborious and expensive. Therefore, an approach is needed to provide a practical and feasible method for quality control of peptide pools. With insufficient quality control, the use of such products could lead to incorrect experimental results, worsening the well-known reproducibility crisis in the biomedical sciences. Here we propose the use of ultra-high performance liquid chromatography (UHPLC) with two detectors, a standard UV detector at 214 nm for quantitative analysis and a high-resolution mass spectrometer (HRMS) for identity confirmation. To be cost-efficient and fast, quantification and identification are performed in one chromatographic run. An optimized protocol is shown, and different peak integration methods are compared and discussed. This work was performed using a peptide pool known as CEF advanced, which consists of 32 peptides derived from cytomegalovirus (CMV), Epstein–Barr virus (EBV) and influenza virus, ranging from 8 to 12 amino acids in length. N2 - Peptidpools bestehen aus kurzen Aminosäuresequenzen und haben sich als vielseitige Werkzeuge in verschiedenen Forschungsbereichen der Immunologie und bei klinischen Anwendungen erwiesen. Sie sind in vielen verschiedenen Zusammensetzungen und Varianten im Handel erhältlich. Im Gegensatz zu anderen Reagenzien, die nur aus einer oder wenigen Verbindungen bestehen, sind Peptidpools jedoch hochkomplexe Produkte, was ihre Qualitätskontrolle zu einer großen Herausforderung macht. Die quantitative Peptidanalyse erfordert in der Regel ausgefeilte Methoden, in den meisten Fällen isotopenmarkierte Standards und Referenzmaterialien. Dies ist in der Regel sehr aufwändig und teuer. Daher wird ein Ansatz benötigt, der eine praktische und praktikable Methode zur Qualitätskontrolle von Peptidpools bietet. Bei unzureichender Qualitätskontrolle könnte die Verwendung solcher Produkte zu falschen Versuchsergebnissen führen, was das bekannte Problem der Reproduzierbarkeit in den biomedizinischen Wissenschaften noch verschärfen würde. Hier schlagen wir die Verwendung der Ultrahochleistungs-Flüssigkeitschromatographie (UHPLC) mit zwei Detektoren vor, einem Standard-UV-Detektor bei 214 nm für die quantitative Analyse und einem hochauflösenden Massenspektrometer (HRMS) für die Identitätsbestätigung. Um kosteneffizient und schnell zu sein, werden Quantifizierung und Identifizierung in einem einzigen chromatographischen Lauf durchgeführt. Es wird ein optimiertes Protokoll gezeigt, und es werden verschiedene Peak-Integrationsmethoden verglichen und diskutiert. Für diese Arbeit wurde ein Peptidpool verwendet, der als CEF advanced bekannt ist und aus 32 Peptiden besteht, die vom Cytomegalovirus (CMV), Epstein-Barr-Virus (EBV) und Influenzavirus stammen und zwischen 8 und 12 Aminosäuren lang sind. KW - Synthetic peptides KW - Quality control KW - Impurites KW - Byproducts KW - Degradation KW - Mass spectrometry KW - Orbitrap PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602299 DO - https://doi.org/10.3390/separations11050156 SN - 2297-8739 VL - 11 IS - 5 SP - 1 EP - 18 PB - MDPI CY - Basel AN - OPUS4-60229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwaar, Timm A1 - Lettow, Maike A1 - Remmler, Dario A1 - Börner, H. G. A1 - Weller, Michael G. T1 - Efficient Screening of Combinatorial Peptide Libraries by Spatially Ordered Beads Immobilized on Conventional Glass Slides N2 - Screening of one-bead-one-compound (OBOC) libraries is a proven procedure for the identification of protein-binding ligands. The demand for binders with high affinity and specificity towards various targets has surged in the biomedical and pharmaceutical field in recent years. The traditional peptide screening involves tedious steps such as affinity selection, bead picking, sequencing, and characterization. Herein, we present a high-throughput “all-on-one chip” system to avoid slow and technically complex bead picking steps. On a traditional glass slide provided with an electrically conductive tape, beads of a combinatorial peptide library are aligned and immobilized by application of a precision sieve. Subsequently, the chip is incubated with a fluorophore-labeled target protein. In a fluorescence scan followed by matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF) mass spectrometry, high-affinity binders are directly and unambiguously sequenced with high accuracy without picking of the positive beads. The use of an optimized ladder sequencing approach improved the accuracy of the de-novo sequencing step to nearly 100%. The new technique was validated by employing a FLAG-based model system, identifying new peptide binders for the monoclonal M2 anti-FLAG antibody, and was finally utilized to search for IgG-binding peptides. In the present format, more than 30,000 beads can be screened on one slide. KW - Peptide library KW - HTS KW - Target KW - MALDI KW - Mass spectrometry KW - Biochip KW - Lab-on-a-Chip KW - Array KW - Screening KW - Ladder sequencing KW - Binder KW - Pharmaceutical PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-478973 UR - https://www.mdpi.com/2571-5135/8/2/11 DO - https://doi.org/10.3390/ht8020011 VL - 8 IS - 2 SP - 1 EP - 15 PB - MDPI CY - Basel AN - OPUS4-47897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -