TY - CONF A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Quantification of Sulfur in copper metals and its alloys by ICP-IDMS N2 - Sulfur is one of the major impurity elements in copper. Previously applied methods for the quantification of sulfur in copper and other pure metals revealed a lack of traceability and showed inconsistent result. Therefore, in this study a procedure was developed for the quantification of total sulfur in copper at low concentration levels using inductively coupled plasma-isotope dilution mass spectrometry (ICP-IDMS). A major challenge for the quantification of sulfur in copper (alloyed/unalloyed) by ICPMS is the copper matrix itself, causing matrix effects and making an extensive cleaning (cones, extraction lens) necessary after measurements. Matschat et al investigated the analysis of high-purity metals (including copper) by high resolution ICP-MS and found that the copper matrix shows strong matrix effects on the sensitivity resulting from Cu deposition on the cones. Therefore, the major part of the copper matrix has to be separated, which was accomplished by adding ammonia which forms a complex with the copper while releasing the sulfur. This was followed by a chromatographic separation using a weak cation resin. After that the sulfur fraction was further purified by chromatographic means using an anion exchange method followed by a chelating resin. The anion exchange resin (AG1X8), however, is selective to sulfate and sulfite but less-selective to sulfide. Therefore, when quantifying total sulfur in copper, the different species of sulfur need to be oxidized to sulfate prior to the sulfur-matrix separation on the AG1X8 resin in order to avoid any measurement bias. When applying the HPA oxidation with concentrated HNO3 and H2O2 a complete conversion from sulfide and sulfite to sulfate could be achieved. The recovery of all investigated sulfur species is quantitative within measurement uncertainties. The copper samples investigated in this study contain copper in the range of 0.85-0.99 kg·kg-1 and zinc from <10 to 300 g·kg-1. Approximately 0.10-0.25 g of these samples were used to perform the sulfur-copper separation. After applying the complete three stage separation procedure the mass fractions of both elements were significantly reduced to below 400 ng·g-1 for copper and below 50 ng·g-1 for zinc, respectively. The developed procedure shows high performance, especially concerning high efficiency in matrix removal (> 99.999%) while keeping the recovery of sulfur above 80%. The procedure blank was determined by IDMS as well and yielded values for the individual IDMS measurement sequences ranging from 3 ng to 53 ng. The average of these individual procedure blanks (n=22) was calculated and yielded a total procedure blank of 14 ng sulphur with standard deviation of 12 ng. The limit of detection (LOD, blank+3SD) calculated on this basis was 0.20 µg·g-1 while the limit of quantification (LOQ, blank+10SD) was 0.54 µg·g-1, when considering a sample weight of 0.25 g. The quantification of low sulfur contents (< 15 µg/g) by conventional IDMS is hindered by the very high Cu/S ratio, which clearly affects the separation in a negative way: The recovery of sulfur dropped to about 30 % for four replicates, while two further replicates even showed recoveries below 10%. To enable measurement without completely changing the separation procedure, an exact amount of sulfur was added prior to spiking, such that the sulfur mass fraction was shifted to the optimum working range of the separation procedure. Thus exact amounts of sulfur were added to enhance the mass fraction of sulfur from 15 µg·g-1 to 40 µg·g-1, then the IDMS analysis was performed as usual and finally the added sulfur amount was subtracted. The so obtained measurement result agreed well with the certified value within the uncertainties. The relative expanded measurement uncertainties for conventional IDMS are below 1%. When applying the modified IDMS procedure, where back-spike is added to the sample before spiking, the relative expanded measurement uncertainties are larger and up to 5%. With the presented sulfur-matrix procedure a working range from approximately 15 µg·g-1 to 1500 µg·g-1 can be achieved. The developed procedure for the quantification of low sulfur amounts in copper has been validated here via three different routes: first an inter-laboratory comparison at highest metrological level, second a step-by-step validation by checking each single step of the procedure and third the setup of a complete uncertainty budget. The procedure is sufficient to facilitate value assignment of total sulfur mass fraction in reference materials. Additionally, relative measurement uncertainties were calculated below 1 % and the measurement results are traceable to the SI, which is clearly demonstrated in this work. The procedure reported in this study is a new reference procedure for sulfur measurement in copper, well meeting the requirements of the two major purposes: the certification of reference materials and the assignment of reference values for inter-laboratory comparison. T2 - Winter Conference on Plasma Spectrochemistry CY - Amelia Island, Florida, USA DA - 08.01.2018 KW - Sulfur KW - Copper KW - Isotope dilution mass spectrometry KW - Sulfur-matrix separation KW - Reference procedure KW - Purity determination PY - 2018 AN - OPUS4-43982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mekonnen, Tessema Fenta A1 - Panne, Ulrich A1 - Koch, Matthias T1 - Electrochemistry coupled to mass spectrometry for biotransformation and metabolite elucidation of pesticides N2 - Online coupling of electrochemistry with mass spectrometry (EC/MS) is highly promising for prediction and simulation of metabolic processes of xenobiotics in living organisms. Less time and cost of analysis, matrix free detection, and automation make EC/MS-based metabolomics superior over traditional in-vivo and in-vitro methods. Furthermore, EC/MS has a special feature to identify reactive intermediates and reaction mechanisms. The main objective of this work was to simulate biotransformation processes of pesticides by EC/MS and to elucidate the Transformation products (TPs). We have studied the oxidative phase I metabolism processes of selected pesticides by EC/MS or with liquid chromatography (EC/LC/MS) and compared the derived TPs with cytochrome based metabolites. The electrochemical TPs were produced by boron-doped diamond electrode, separated by LC, and detected by single quadrupole ESI-MS online. Structural identification of both electrochemical oxidation and liver microsome metabolites were based on accurate mass measurements by FT-ICR high-resolution mass spectrometry, isotopic pattern, MS/MS fragmentation, and Retention time alignments. Main phase I oxidative metabolites by P-oxidation, N- & O- dealkylation, dechlorination, hydroxylation, and -OH- oxidation have been identified. Many targeted and untargeted metabolites have been identified by EC/(LC)/MS. Additionally, reactive species have been trapped online by biomolecules to study phase II conjugative reactions. Furthermore, we synthesized TP standards by EC/MS and applied them for pesticide's TPs occurrence investigation in foodstuf matrices. T2 - European Mass Spectrometry Conference (EMSC) 2018 CY - Saarbrücken, Germany DA - 11.03.2018 KW - Transformation product KW - EC/LC/MS KW - Pesticide KW - Biotransformation KW - Electrochemical oxidation PY - 2018 AN - OPUS4-44495 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Stable Isotope Analysis Using Molecular Absorption Spectrometry N2 - We propose an alternative faster and low-cost optical method for isotope analysis: high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Stable isotope amount composition of X = Li, B, Mg, Ca and Sr were determined by monitoring the absorption spectra of their in situ generated mono-hydrides (XH) in graphite furnace HR-CS-MAS. Isotopes of boron (10B and 11B) were studied via their hydrides for the electronic transition X1Σ+ → A1Π (Fig. 1a). The spectrum of a given sample is a linear combination of the 10BH molecule and its isotopologue 11BH. Therefore, the isotopic composition of samples can be calculated by a partial least square regression (PLS). For this, a spectral library is built by using samples with known isotope composition. Results with an accuracy of 0.15 ‰ are metrologically compatible with those reported by mass spectrometric methods. Similar results are obtained for n isotope systems like Mg (24Mg, 25Mg, and 26Mg), where isotope shifts of their isotopologues can be resolved as shown in Fig.1b. The extension of this methodology to other elements like Li, Ca and Sr is discussed. T2 - Goldschmidt Conference 2018 CY - Boston, MA, USA DA - 12.08.2018 KW - Isotope KW - HR-CS-MAS KW - Mono-hydride KW - Spectrometry PY - 2018 AN - OPUS4-45825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ascher, Lena A1 - Häckel, A. A1 - Schellenberger, E. A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Imaging of Eu doped very small iron oxide nanoparticle in atherosclerotic plaques via LA-ICP-MS N2 - Atherosclerotic lesions can be visualized by magnetic resonance imaging (MRI) using very small iron oxide nanoparticles (VSOP). VSOP accumulate in atherosclerotic plaques and thus serve as an atherosclerosis probe. The aim of this project was to image the distribution of europium doped VSOP (Eu-VSOP) by laser ablation ICP-MS in histological thin cuts of the aortic root region of ApoE knockout mouse model that is rich in atherosclerotic plaques. In addition, it was investigated whether VSOP accumulation in the plaques correlates with other biomarkers of inflammation for example macrophages and altered endothelium to assess whether it correlates with instability or vulnerability of the plaque regions. For this purpose, antibodies were labeled with various lanthanide elements and correlated with the Eu-VSOP distribution using LA-ICP-MS in a multiplex measurement mode. A possible correlation of reactive nitrogen species (RNS) with endogenous iron or Eu-VSOP can also be detected by LA-ICP-MS. For this purpose, RNS-specific antibodies were also labeled with lanthanides. T2 - 26. ICPMS-Anwendertreffen CY - Berlin, Germany DA - 03.09.2018 KW - Bioimaging KW - LA-ICP-MS KW - Immunoassay KW - Nanoparticle KW - Labeling PY - 2018 AN - OPUS4-45920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herter, Sven-Oliver A1 - Haase, Hajo A1 - Koch, Matthias T1 - Semi-synthesis of isotopic labeled ergot alkaloids: New reference standards N2 - We developed a two-step semi-synthesis for the preparation of isotopically labeled EAs, starting from native EAs. This universal strategy enabled the successful synthesis of all isotopically labeled priority EAs. The structure of the isotopically labeled EAs was confirmed by HPLC-HR-MS/MS using native, unlabeled EAs as a reference standard. The next step will be the implementation of the isotopically labeled standards in the European standard procedure EN 17425 to improve the quantification of EAs in foodstuffs. T2 - 45th Mycotoxin Workshop CY - Vienna, Austria DA - 02.06.2024 KW - Reference Material KW - HPLC-MS/MS KW - Mycotoxins KW - Isotop standards KW - Organic Synthesis KW - Ergot alkaloids PY - 2024 AN - OPUS4-60239 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Stephan A1 - Hoffmann, Holger A1 - Garbe, L.-A. A1 - Harrer, A. A1 - Steiner, M. A1 - Himly, M. A1 - Schneider, Rudolf T1 - New immunoassay for quantification of diclofenac in water samples N2 - Diclofenac (DCF) is a widely used drug against fever, inflammation, pain, and rheumatic diseases. An average of 70 % of the ingested diclofenac is excreted in the urine. Thus, 63 tons per year are introduced into the water cycle in Germany. Due to insufficient removal of diclofenac in wastewater treatment plants, residues of diclofenac can be found in surface water and sometimes in drinking water. In order to establish an immunoassay, an anti-DCF antibody was required. Some antibody developments have been reported, based on an immunogen resulting from direct coupling of diclofenac to proteins via the carboxylic function. Finally, we used a monoclonal antibody, clone F01G21. T2 - Tag der Biotechnologie der TU Berlin CY - Berlin, Germany DA - 13.07.2018 KW - Wasserproben KW - Arzneimittel KW - Antikörper KW - ELISA PY - 2018 AN - OPUS4-45475 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Okruss, M. A1 - Jakubowski, Norbert A1 - Tatzel, Michael A1 - Vogl, Jochen A1 - Recknagel, Sebastian A1 - Panne, Ulrich T1 - Shedding light on global warming: high-resolution optical spectroscopy for magnesium isotope analysis N2 - Magnesium is a major element in the hydrosphere and biosphere, and it is direct correlated with the carbon cycle. Therefore, the study of its isotopic fractionation in sediments and sea water helps to understand the earth’s climate and global warming. Mg has three stable isotopes, 24Mg, 25Mg and 26Mg, and traditionally isotope amount ratios are measured by mass spectrometric methods. Their drawbacks include the high costs for instruments and their operation, experienced operators and elaborate time-consuming chromatographic sample preparation. Recently, an optical spectrometric method has been proposed as faster and low-cost alternative for the analysis of isotope ratios: high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS). For the determination of Mg isotope ratios in selected rock reference materials, the high-resolution molecular absorption spectrum of in-situ generated MgF molecule was studied applying multivariate analysis and the results compared with MC-ICP-MS. Samples were dissolved by acid digestion and Mg isotopes analyzed with and without matrix extraction. The absorption spectra were recorded for MgF for the electronic transition X 2Σ → B 2Σ+. The MgF spectrum is described as the linear combination of their isotopic components or isotopologues: 24MgF, 25MgF, and 26MgF. The isotope analysis was done by deconvolution of the MgF spectrum by partial least square regression (PLS). A PLS model was built and calibrated with enriched isotope spikes and certified reference materials. Spectra data was preprocessed by a derivate of second order and venetian blinds cross-validation was employed for finding the optimum latent variables. Finally, the model was refined by a genetic algorithm which identified the best subset of variables for a precise and accurate regression. Results are compatible with those obtained by MC-ICP-MS with an accuracy of ± 0.3‰ with uncertainties ranging between 0.02 to 0.6‰. This accuracy and precision discriminate the isotope fractionation in geological samples, and it is suitable for earth’s climate studies. T2 - Adlershofer Forschungsforum 2019 CY - Berlin, Germany DA - 11.11.2019 KW - Isotope analysis KW - Geological thermometer KW - Magnesium KW - Optical spectroscopy PY - 2019 AN - OPUS4-49890 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - A new approach of using polyethylene frits for the quantification of sulphur in copper metals by isotope dilution LA-ICP-MS N2 - For the first time polyethylene (PE) frits were used to quantify sulphur in copper metal and its alloys by isotope dilution combined with LA-ICP-MS: an alternative approach for sample preparation. The properties of the PE frit meet the requirements for isotope dilution LA-ICPMS which are porous material, thermal and chemical resistance and high absorption efficiency. The breakthrough, however, as a support material, is the low sulphur blank, which is only two times of the gas flow blank (2.3-4.0 x 10⁴ cps). Additionally, the porosity of the frit was considered, as it directly affects the absorption efficiency for the sample solution, which is present in the cavities of the frit. The absorption efficiency was studied by loading sulphur standards with varying sulphur amounts (0 - 80 µg S) onto the frits. The remaining sulphur which was not absorbed by the frit was rinsed off and was measured by ICP-MS. This indirect method shows that more than 99.5 % of the loaded sulphur was absorbed by the frit. The so prepared frits with increasing sulphur amount were measured by LA-ICP-MS showing a good linearity between 0 µg S and 40 µg S with a coefficient of determination, r2 of 0.9987 and a sensitivity of 3.4x10⁴ cps µgˉ¹ for 32S. Three copper reference materials produced by BAM (BAM-M376a, BAM-228 and BAM-227) were selected to develop and validate the LA-ICP-IDMS procedure. The IDMS technique was applied to these samples as follows: the samples were spiked, dissolved, digested and then the digested solution was absorbed on the frits. The dried frit samples were then analyzed by LA-ICP-IDMS and it could be demonstrated that the sample solution dispersed on the frits did not influence the 32S/34S ratio significantly even though the sulphur intensities were fluctuating along the scan lines. Relative standard deviations of the isotope ratios were below 5 % in average between 3 lines (except for the pure spike solution and procedure blank). The measurement results were validated by comparing them with the results obtained by conventional ICP-IDMS. Plotting the mass fraction of sulphur in copper obtained by LA-ICP-IDMS versus those obtained by ICP-IDMS yields a linear curve with a correlation coefficient of 0.9999 showing a strong agreement between both techniques. The metrological traceability to the SI for the mass fraction of sulphur in copper is established by an unbroken chain of comparisons, each accompanied by an uncertainty budget. Thus, the measurement results are considered reliable, acceptable and comparable within the stated measurement uncertainty. The metrological traceability chain from the kg down to the final mass fraction in the samples obtained by LA-ICP-IDMS is illustrated in this presentation. T2 - ESAS & CANAS 2018 CY - Berlin, Germany DA - 20.03.2018 KW - Laser ablation KW - Isotope dilution mass spectrometry KW - SI traceability KW - Measurement uncertainty PY - 2018 AN - OPUS4-44641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - How to quantify the exact amount and establish metrological traceability of sulphur in biodiesel by ICP-IDMS and in copper samples by ICP-IDMS, GDMS, LA-ICP-MS, and LA-ICP-IDMS N2 - The quantification of the exact amount of sulphur is a big challenge due to a lack of SI-traceability and inconsistent results, when different methods are compared. Therefore, a reference procedure is required which allows SI-traceable values. In this work three procedures were developed for the quantification of the total sulphur amount in biodiesel by using inductively coupled plasma-isotope dilution mass spectrometry (ICP-IDMS), pure copper metals and copper alloys by ICP-IDMS and external calibration for GDMS and LA-ICP-MS at low concentration levels. The most critical parts of the sulphur quantification were sulphur purification and pre-concentration. Sulphur-matrix separation procedures were developed to serve both sample types. For biodiesel samples the sulphur was purified and matrix separated by an anion exchange chromatographic procedure. The analytical procedure was fully validated by the use of a certified reference material, a step-by-step validation and an inter-laboratory comparison at CCQM key comparison level. In the case of copper samples, the copper matrix was separated from sulphur by adding ammonia which forms a complex with the copper while releasing the sulphur prior to a chromatographic separation using a weak cation resin. After that the sulphur fraction was further purified by chromatographic means using first an anion ion exchange method and second a chelating resin. The method was validated by appropriate certified reference materials. The developed procedures enable sulphur measurements at the low g·g-1 level with sufficiently low measurement uncertainties (< 2 %, Urel). The external calibration was performed to produce reliable measurement results for the routine analytical techniques GDMS and LA-ICP-MS. Matrix-matched reference materials whith exactly known amount of sulphur obtained by ICP-IDMS beforehand, were used as calibrators to quantify sulphur in copper samples. The metrological traceability to the SI for the mass fraction of sulphur is established for all presented procedures by an unbroken chain of comparisons, each accompanied by an uncertainty budget. T2 - CCQM Workshop on Advances in Metrology in Chemistry and Biology CY - Sèvres, France DA - 09.04.2019 KW - Copper KW - Sulfur KW - IDMS KW - SI traceability PY - 2019 AN - OPUS4-47931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -