TY - JOUR A1 - Tannenberg, Robert A1 - Paul, Martin A1 - Röder, Bettina A1 - Gande, S. L. A1 - Sreeramulu, S. A1 - Saxena, K. A1 - Richter, C. A1 - Schwalbe, H. A1 - Swart, C. A1 - Weller, Michael G. T1 - Chemiluminescence biosensor for the determination of cardiac troponin I (cTnI) N2 - Cardiac troponin I (cTnI) is a crucial biomarker for diagnosing cardiac vascular diseases, including acute myocardial infarction (AMI). This study presents a proof-of-concept chemiluminescence-based immunosensor for rapid and accurate measurement of cTnI, with the potential for online monitoring. The immunosensor incorporates a flow cell design and a sensitive complementary metal-oxide-semiconductor (CMOS) camera for optical readout. A microfluidic setup was established to enable selective and quasi-online determination of cTnI within ten minutes. The sensor was tested with recombinant cTnI in phosphate buffer, demonstrating measurements in the concentration range of 2–25 µg/L, with a limit of detection (LoD) of 0.6 µg/L (23 pmol/L) achieved using the optimized system. The immunosensor exhibited high selectivity, as no cross-reactivity was observed with other recombinant proteins such as cTnT and cTnC at a concentration of 16 µg/L. Measurements with diluted blood plasma and serum yielded an LoD of 60 µg/L (2.4 nmol/L) and 70 µg/L (2.9 nmol/L), respectively. This biosensor offers a promising approach for the rapid and sensitive detection of cTnI, contributing to the diagnosis and management of acute myocardial infarction and other cardiac vascular diseases. N2 - Das kardiale Troponin I (cTnI) ist ein wichtiger Biomarker für die Diagnose von Herz-Kreislauf-Erkrankungen, einschließlich des akuten Myokardinfarkts (AMI). In dieser Studie wird ein auf Chemilumineszenz basierender Immunsensor für die schnelle und genaue Messung von cTnI vorgestellt, der das Potenzial für eine Online-Überwachung hat. Der Immunsensor besteht aus einer Durchflusszelle und einer empfindlichen CMOS-Kamera (Complementary Metal-Oxide-Semiconductor) zur optischen Detektion. Es wurde ein mikrofluidischer Aufbau entwickelt, der eine selektive und quasi Online-Bestimmung von cTnI innerhalb von zehn Minuten ermöglicht. Der Sensor wurde mit rekombinantem cTnI in Phosphatpuffer getestet und zeigte einen Messbereich von 2-25 µg/L, wobei mit dem optimierten System eine Nachweisgrenze (LoD) von 0,6 µg/L (23 pmol/L) erreicht wurde. Der Immunsensor zeigte eine hohe Selektivität, da keine Kreuzreaktivität mit anderen rekombinanten Proteinen wie cTnT und cTnC bei einer Konzentration von 16 µg/L beobachtet wurde. Messungen mit verdünntem Blutplasma und Serum ergaben einen LoD von 60 µg/L (2,4 nmol/L) bzw. 70 µg/L (2,9 nmol/L). Dieser Biosensor bietet einen vielversprechenden Ansatz für den schnellen und empfindlichen Nachweis von cTnI, der zur Diagnose und Behandlung des akuten Myokardinfarkts und anderer kardialer Gefäßerkrankungen beitragen kann. KW - Acute myocardial infarction KW - Heart attack KW - Emergency KW - Diagnosis KW - Cardiac troponin KW - Biomarker KW - Immunosensor KW - Biosensor KW - Chemiluminescence KW - Luminol KW - Peroxidase KW - Monoclonal antibodies KW - Flow injection immunoassay KW - Immunometric assay KW - Immunometric biosensor KW - Microfluidic system KW - Monolithic column KW - Online biosensor PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575471 DO - https://doi.org/10.3390/bios13040455 SN - 2079-6374 VL - 13 IS - 4 SP - 1 EP - 20 PB - MDPI CY - Basel AN - OPUS4-57547 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ziegler, K. A1 - Kunert, A. T. A1 - Reinmuth-Selzle, K. A1 - Leifke, A. L. A1 - Widera, D. A1 - Weller, Michael G. A1 - Schuppan, D. A1 - Fröhlich-Nowoisky, J. A1 - Lucas, K. A1 - Pöschl, U. T1 - Chemical modification of pro-inflammatory proteins by peroxynitrite increases activation of TLR4 and NF-κB: Implications for the health effects of air pollution and oxidative stress N2 - Environmental pollutants like fine particulate matter can cause adverse health effects through oxidative stress and inflammation. Reactive oxygen and nitrogen species (ROS/RNS) such as peroxynitrite can chemically modify proteins, but the effects of such modifications on the immune system and human health are not well understood. In the course of inflammatory processes, the Toll-like receptor 4 (TLR4) can sense damage-associated molecular patterns (DAMPs). Here, we investigate how the TLR4 response and pro-inflammatory potential of the proteinous DAMPs α-Synuclein (α-Syn), heat shock protein 60 (HSP60), and high-mobility-group box 1 protein (HMGB1), which are relevant in neurodegenerative and cardiovascular diseases, changes upon chemical modification with peroxynitrite. For the peroxynitrite-modified proteins, we found a strongly enhanced activation of TLR4 and the pro-inflammatory transcription factor NF-κB in stable reporter cell lines as well as increased mRNA expression and secretion of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-8 in human monocytes (THP-1). This enhanced activation of innate immunity via TLR4 is mediated by covalent chemical modifications of the studied DAMPs. Our results show that proteinous DAMPs modified by peroxynitrite more potently amplify inflammation via TLR4 activation than the native DAMPs, and provide first evidence that such modifications can directly enhance innate immune responses via a defined receptor. These findings suggest that environmental pollutants and related ROS/RNS may play a role in promoting acute and chronic inflammatory disorders by structurally modifying the body's own DAMPs. This may have important consequences for chronic neurodegenerative, cardiovascular or gastrointestinal diseases that are prevalent in modern societies, and calls for action, to improve air quality and climate in the Anthropocene. KW - Protein nitration KW - Protein oligomerization KW - Damage-associated molecular patterns (DAMPs) KW - Pattern recognition receptor KW - Anthropocene KW - Environmental pollutants PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517128 DO - https://doi.org/10.1016/j.redox.2020.101581 VL - 37 SP - 101581 PB - Elsevier B.V. AN - OPUS4-51712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gawlitza, Kornelia A1 - Fischer, Tobias A1 - Rurack, Knut T1 - Chemical functionalization for quantitative spectroscopic labeling on macroscopically flat surfaces N2 - This chapter highlights the application of chemical derivatization (CD) to facilitate the quantification of surface functional groups being an important issue for a wide field of applications. The selective attachment of a chemical label to a surface functional group being afterwards exclusively detectable by a highly sensitive technique overcomes the problem of characterizing low amounts of functional groups on macroscopically flat surfaces. The most frequently employed methods include CD X-ray photoelectron spectroscopy, ultraviolet/visible absorption, and fluorescence spectroscopy, as well as time-of-flight secondary ion mass spectrometry. Herein, the basic conditions for the different techniques regarding the specific surface functional group which need to be quantified are discussed. Additionally, the substrate highly influences the compatibility of the corresponding method. Because not just the quantification but also the preparation of the desired application is important, a summary of different preparation methods for glass, polymer and gold substrates is presented. KW - Chemical derivatization KW - Fluorescence KW - Surface group quantification KW - Time-of-flight secondary ion mass spectrometry KW - UV/vis spectroscopy KW - X-ray photoelectron spectroscopy PY - 2018 SN - 978-0-12-409547-2 DO - https://doi.org/10.1016/B978-0-12-409547-2.13191-9 SP - 1 PB - Elsevier AN - OPUS4-43767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander T1 - Chemical characterization of aging processes in high energy-density lithium-ion batteries N2 - Introduction Lithium-ion batteries (LIBs) are one key technology to overcome the climate crisis and energy transition challenges. Demands of electric vehicles on higher capacity and power drives research on innovative cathode and anode materials. These high energy-density LIBs are operated at higher voltages, leading to increased electrolyte decay and the current collectors' degradation. Even though this fundamental corrosion process significantly affects battery performance, insufficient research is being done on the aluminum current collector. Fast and convenient analytical methods are needed for monitoring the aging processes in LIBs. Methods In this work glow-discharge optical emission spectrometry (GD-OES) was used for depth profile analysis of aged cathode material. The measurements were performed in pulsed radio frequency mode. Under soft and controlled plasma conditions, high-resolution local determination (in depth) of the elemental composition is possible. Scanning electron microscopy (SEM) combined with a focused ion beam (FIB) cutting and energy dispersive X-ray spectroscopy (EDX) was used to confirm GD-OES results and obtain additional information on elemental distribution. Results The aging of coin cells manufactured with different cathode materials (LCO, LMO, NMC111, NMC424, NMC532, NMC622, and NMC811) was studied. GD-OES depth profiling of new and aged cathode materials was performed. Quantitative analysis was possible through calibration with synthetic standards and correction by sputter rate. Different amounts of aluminum deposit on the cathode surface were found for different materials. The deposit has its origin in the corrosion of the aluminum current collector. The results are compatible with results from FIB-EDX. However, GD-OES is a faster and less laborious analytical method. Therefore, it will accelerate research on corrosion processes in high energy-density batteries. Innovative aspects - Quantitative depth profiling of cathode material -Monitoring of corrosion processes in high energy-density lithium-ion batteries - Systematic investigation of the influence of different cathode materials T2 - ANAKON 2023 CY - Vienna, Austria DA - 11.04.2023 KW - Lithium Ion Batteries KW - GD-OES KW - Depth-profiling PY - 2023 AN - OPUS4-58586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ickert, Stefanie A1 - Hofmann, J. A1 - Riedel, Jens A1 - Beck, S. A1 - Pagel, K. A1 - Linscheid, M. W. T1 - Charge-induced geometrical reorganization of DNA oligonucleotides studied by tandem mass spectrometry and ion mobility N2 - Mass spectrometry is applied as a tool for the elucidation of molecular structures. This premises that gas-phase structures reflect the original geometry of the analytes, while it requires a thorough understanding and investigation of the forces controlling and affecting the gas-phase structures. However, only little is known about conformational changes of oligonucleotides in the gas phase. In this study, a series of multiply charged DNA oligonucleotides (n¼15–40) has been subjected to a comprehensive tandem mass spectrometric study to unravel transitions between different ionic gas-phase structures. The nucleobase sequence and the chain length were varied to gain insights into their influence on the geometrical oligonucleotide organization. Altogether, 23 oligonucleotides were analyzed using collision-induced fragmentation. All sequences showed comparable correlation regarding the characteristic collision energy. This value that is also a measure for stability, strongly correlates with the net charge density of the precursor ions. With decreasing charge of the oligonucleotides, an increase in the fragmentation energy was observed. At a distinct charge density, a deviation from linearity was observed for all studied species, indicating a structural reorganization. To corroborate the proposed geometrical change, collisional cross-sections of the oligonucleotides at different charge states were determined using ion mobility-mass spectrometry. The results clearly indicate that an increase in charge density and thus Coulomb repulsion results in the transition from a folded, compact form to elongated structures of the precursor ions. Our data show this structural transition to depend mainly on the charge density, whereas sequence and size do not have an influence. KW - Ion mobility KW - Collision-induced dissociation KW - Mass spectrometry KW - Oligonucleotide KW - Fragmentation KW - Tandem-MS PY - 2018 DO - https://doi.org/10.1177/1469066717746896 SN - 1469-0667 SN - 1751-6838 VL - 24 IS - 2 SP - 225 EP - 230 PB - Sage AN - OPUS4-44429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Characterization and quantification of functional groups and coatings on nanoobjects an overview N2 - Characterization of Nanoparticles – Questions to Ask, Functional Nanoparticles (NPs) – Organic, Inorganic, and Hybrid Nanoparticles Nanomaterial Characterization Standardization – Addressing Remaining Gaps Surface FGs Particle Surface Chemistry - Why is it Important? Particle Surface Chemistry - A Key Driver for Performance, Applications, and Safety Aspects Method Development for Quantifying FGs and Ligands on Particle Surfaces FG Quantification – Method Choice & Criteria Relevant for Data Interpretation Quantifying the Amount of Total and Accessible FGs on Aminated Silica Nanoparticles (SiO2-NH2) Comparing the Total and Accessible –NH2 Content on Aminated Silica NPs of Different Size Characterization of Nanoparticles Standardization Standardized Measurements of Surface FGs on Nanoparticles EMP Project SMURFnano EMP Project SMURFnano Work Packages & Goals Certified Reference Materials from BAM T2 - e-MRS 2024 (Spring Meeting of the European Materials Research Society, Altech Symposium) CY - Strasbourg, France DA - 27.05.2024 KW - Luminescence KW - Nano KW - Particle KW - Quantum yield KW - Quality assurance KW - Interlaboratory comparison KW - Method KW - Uncertainty KW - Reference material KW - Surface analysis KW - Optical assay KW - NMR KW - Silica KW - Ligand PY - 2024 AN - OPUS4-60495 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kazlagić, Anera A1 - Rosner, M. A1 - Cipriani, A. A1 - Frick, D. A. A1 - Glodny, J. A1 - Hoffmann, E. J. A1 - Hora, J. M. A1 - Irrgeher, J. A1 - Lugli, F. A1 - Magna, T. A1 - Meisel, T. C. A1 - Meixner, A. A1 - Possolo, A. A1 - Pramann, A. A1 - Pribil, M. J. A1 - Prohaska, T. A1 - Retzmann, Anika A1 - Rienitz, O. A1 - Rutherford, D. A1 - Paula-Santos, G. M. A1 - Tatzel, M. A1 - Widhalm, S. A1 - Willbold, M. A1 - Zuliani, T. A1 - Vogl, Jochen T1 - Characterisation of conventional 87Sr/86Sr isotope ratios in cement, limestone and slate reference materials based on an interlaboratory comparison study N2 - An interlaboratory comparison (ILC)was organised to characterise 87Sr/86Sr isotope ratios in geological and industrial reference materials by applying the so-called conventional method for determining 87Sr/86Sr isotope ratios. Four cements (VDZ 100a,VDZ 200a, VDZ 300a, IAG OPC-1), one limestone (IAG CGL ML-3) and one slate (IAG OU-6) reference materials were selected, covering a wide range of naturally occurring Sr isotopic signatures. Thirteen laboratories received aliquots of these six reference materials together with a detailed technical protocol. The consensus values for the six reference materials and their associated measurement uncertainties were obtained by applying a Gaussian, linear mixed effects model fitted to all the measurement results. By combining the consensus values and their uncertainties with an uncertainty contribution for potential heterogeneity, reference values ranging from 0.708134 mol mol-1 to 0.729778 mol mol-1 were obtained with relative expanded uncertainties of ≤ 0.007 %. This study represents an ILC on conventional 87Sr/86Sr isotope ratios, within which metrological principles were considered and the compatibility of measurement results obtained by MC-ICP-MS and by MC-TIMS is demonstrated. The materials characterised in this study can be used as reference materials for validation and quality control purposes and to estimate measurement uncertainties in conventional 87Sr/86Sr isotope ratio measurement. KW - Sr isotope analysis KW - Isotope ratios KW - Cement KW - Geological material KW - MC-TIMS KW - MC-ICP-MS KW - Interlaboratory comparison KW - Measurement uncertainty KW - Cconventional method PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579836 DO - https://doi.org/10.1111/ggr.12517 SN - 1639-4488 VL - 47 IS - 4 SP - 821 EP - 840 PB - Wiley online library AN - OPUS4-57983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Silke T1 - Characterisation of a high purity nickel material to be used as a primary standard for element determination N2 - A candidate material for the use as primary standard for nickel determination was characterized with respect to total purity. For element determination a pure material can serve as primary standard. However, real world materials are never absolutely pure, hence the total purity of such materials need to be determined experimentally. A reasonable target uncertainty for the purity statement is 10-4 relative. Usually, the purer the material, the easier it is to achieve this target uncertainty. There are two basic ways in order to be able to establish a total purity statement. One is to determine the main component of a high purity material by a direct method such as coulometry, gravimetry or titrimetry. However, these methods are not selective enough for one element and therefore require certain efforts to analyse the material with respect to impurities with interfering analytes. Moreover, to reach the defined target uncertainty is not easy or often impossible to achieve. The second approach is to determine the sum of all possible impurities (as mass fraction) and to subtract it from the ideal purity of 100 % (1 kg/kg). In principle all impurities (all elements not being the matrix element), metals and non-metals must be considered. In this work both approaches to determine the total purity of the nickel material were followed and compared. The primary (solid) standards are usually used to prepare primary calibration solutions to which secondary and lower order calibration solutions are linked. T2 - BERM-15 CY - Berlin, Germany DA - 23.09.2018 KW - Primary standard KW - High purity material KW - Nickel PY - 2018 AN - OPUS4-46216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Lisec, Jan A1 - Koch, Matthias T1 - Changes in Black Truffle (Tuber melanosporum) Aroma during Storage under Different Conditions N2 - The enticing aroma of truffles is a key factor for their culinary value. Although all truffle species tend to be pricy, the most intensely aromatic species are the most sought after. Research into the aroma of truffles encompasses various disciplines including chemistry, biology, and sensory science. This study focusses on the chemical composition of the aroma of black truffles (Tuber melanosporum) and the changes occurring under different storage conditions. For this, truffle samples were stored under different treatments, at different temperatures, and measured over a total storage time of 12 days. Measurements of the truffle aroma profiles were taken with SPME/GC–MS at regular intervals. To handle the ample data collected, a systematic approach utilizing multivariate data analysis techniques was taken. This approach led to a vast amount of data which we made publicly available for future exploration. Results reveal the complexity of aroma changes, with 695 compounds identified, highlighting the need for a comprehensive understanding. Principal component analyses offer initial insights into truffle composition, while individual compounds may serve as markers for age (formic acid, 1-methylpropyl ester), freshness (2-Methyl-1-propanal; 1-(methylthio)-propane), freezing (tetrahydrofuran), salt treatment (1-chloropentane), or heat exposure (4-hydroxy-3-methyl-2-butanone). This research suggests that heat treatment or salt contact significantly affects truffle aroma, while freezing and cutting have less pronounced effects in comparison. The enrichment of compounds showing significant changes during storage was investigated with a metabolomic pathway analysis. The involvement of some of the enriched compounds on the pyruvate/glycolysis and sulfur pathways was shown. KW - Mass Spectrometry KW - Metabolomics KW - Tuber melanosporum KW - Truffle Aroma PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601731 DO - https://doi.org/10.3390/jof10050354 VL - 10 IS - 5 SP - 1 EP - 22 PB - MDPI AN - OPUS4-60173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klein, Luise A1 - Wilke, Olaf T1 - Chamber comparison for the determination of initial VOC emissions from consumer products N2 - Volatile organic compound (VOC) emissions from consumer products contribute to human inhalation exposure and may cause adverse health effects. Existing methods to determine long-term VOC emissions from e.g. building products need to be verified for their suitability to reliably detect initial VOC emissions from consumer products within the first hours and days of use, which would facilitate realistic inhalation exposure assessments. To investigate this issue, VOCs emitted from a test sample were determined in a large-scale emission test chamber and in two micro-chambers of different volumes, and the results were compared. T2 - Healthy Buildings 2023 Europe CY - Aachen, Germany DA - 11.06.2023 KW - Micro-chamber KW - Emission test chamber KW - Volatile organic compounds KW - Inhalation exposure KW - Consumer products PY - 2023 SP - 6 EP - 8 AN - OPUS4-58055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Recknagel, Sebastian T1 - Certified reference materials for the determination of cadmium (Cd) in cocoa N2 - BAM has produced three cocoa CRMs certified for cadmium (ERM-BD513 – 515) as tools for checking analytical methods for Cd-determination. KW - Certified reference material KW - Cocoa KW - Cadmium PY - 2021 SP - 4 EP - 4 AN - OPUS4-53694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Philipp, Rosemarie T1 - Certified reference materials for breath alcohol control – the ALCOREF project N2 - ALCOREF is a project within the European Metrology Programme for Innovation and Research (EMPIR. It is part of the 2016 EMPIR Research Potential Call dedicated to build up metrological and research capacity in less developed National Metrology Institutes (NMIs). The project will develop long term expertise for the production and certification of ethanol/water reference materials in the participating NMIs. Materials to be developed will be suitable for the calibration and approval of evidential breath alcohol analysers as defined by recommendation R 126 of the International Organization of Legal Metrology (OIML). Certification includes the characterisation of the materials, assessment of homogeneity, stability and uncertainty. Target certified values and volumes will address end-users’ needs regarding regional legal limits for alcohol in traffic and the instrumentation for breath analyser calibration available in different countries. Thus, the project supports the law enforcement of national drink-driving legislation. The consortium comprises of 11 institutions from 10 European countries. Project participants will establish reliable analytical methods for the purity assessment of ethanol, such as Karl-Fischer titration, to achieve traceability of their certified values. Chromatographic or density methods for the quantification of ethanol in water will also be established, validated and applied for homogeneity and stability assessment. An interlaboratory comparison will be conducted within the European Association of National Metrology Institutes’ (EURAMET) Technical Committee Metrology in Chemistry to test the equivalence of the new certified reference materials and the analytical methods implemented. The poster will present the outline and first results of the ALCOREF project. T2 - BERM-15 International Symposium on Biological and Environmental Reference Materials CY - Berlin, Germany DA - 24.09.2018 KW - Certified Reference Material KW - Breath alcohol control KW - ALCOREF PY - 2018 AN - OPUS4-46061 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Batzorig, L. T1 - Certified reference material of total cyanide in soil/BAM-U 116/CGL 306 N2 - Due to their toxicity and widespread application for mining and industrial purposes, cyanides are ranking among the most important inorganic pollutants which should be tested and monitored not only in the aquatic environment, but also in soils and soil-like materials. Reference materials of soils with relevant contents of cyanide to ensure reliable test results of laboratories are rare today. New certified reference material (CRM) BAM-U116/CGL306 “Cyanide in soil” was produced within a framework of cooperation between Central Geological Laboratory (CGL) of Mongolia and Federal Institute for Materials Research and Testing (BAM) of Germany in 2013-2017. The CRM BAM-U116/CGL306 represents a mixture of a sandy soil collected from a contaminated former gasworks area in the Berlin region (Germany) and an unpolluted sandy soil from Nalaikh region (Mongolia). The bulk candidate material for this reference material was prepared at CGL CRM Laboratory exclusively destined to the preparation of reference materials and equipped with modern technical equipment. Homogeneity, stability and shelf life were studied in full compliance with ISO Guide 35. The CRM was evaluated as sufficiently homogeneous. Statistical evaluation of certification analysis was performed using software packages SoftCRM and ProLab Plus. Certified value of total cyanide of the CRM is 12.0 mg/kg and expanded uncertainty was assigned as 0.8 mg/kg. The intended purpose of this material is the verification of analytical results obtained for the mass fraction of total cyanide in soils and soil-like materials applying the standardized procedure ISO 11262:2011. As any reference material, it can also be used for routine performance checks (quality control charts) or validation studies. T2 - Geoanalysis 2018 CY - Sydney, Australia DA - 08.07.2018 KW - Certified reference material KW - Cyanide in soil KW - Total cyanide PY - 2018 AN - OPUS4-45417 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Recknagel, Sebastian T1 - Certified reference material for the determination of hydrolytic resistance of borosilicate glass N2 - The preparation of certified reference material for the determination of hydrolytic resistance of borosilicate glass is described. Certified properties are the acid consumption according to the relevant standard procedures described in ISO 720, USP<660> and Ph.Eur. 3.2.1. T2 - PharmaGlass Workshop CY - Sheffield, UK DA - 09.10.2019 KW - CRM KW - Hydrolytic resistance KW - Borosilicate glass PY - 2019 AN - OPUS4-49466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Recknagel, Sebastian T1 - Certified reference material for the determination of hydrolytic resistance of borosilicate glass N2 - The preparation, analysis and certification of a new certified glass reference material (CRM) for the determination of hydrolytic resistance of borosilicate glass with the glass grains test is described. The CRM BAM-S053 is available in the form of glass rods (length: 185 mm, diameter: 9 mm, weight: 27·5 g). Certified properties are the acid consumption determined according to the procedures described in ISO 720, USP<660>, Ph.Eur. 3.2.1, data obtained following the procedure of ISO 719 was scattering too widely. The certified values are based on the results of 15 laboratories which participated in the certification interlaboratory comparison. The CRM is intended for the quality control when applying ISO 720, USP<660>, Ph.Eur. 3.2.1 and with limitations ISO 719. KW - CRM KW - Hydrolytic resistance KW - Borosilicate glass PY - 2021 DO - https://doi.org/10.13036/17533562.62.1.001 VL - 62 IS - 1 SP - 25 EP - 27 AN - OPUS4-52195 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Recknagel, Sebastian T1 - Certified reference material for the determination of hydrolytic resistance of borosilicate glass N2 - The preparation of certified reference material for the determination of hydrolytic resistance of borosilicate glass is described. Certified properties are the acid consumption according to the relevant standard procedures described in ISO 720, USP<660> and Ph.Eur. 3.2.1. T2 - 26. International Congress on Glass CY - Berlin, Germany DA - 03.07.2022 KW - Borosilicate glass KW - CRM KW - Hydrolytic resistance PY - 2022 AN - OPUS4-55521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Recknagel, Sebastian A1 - Scharf, Holger A1 - Lkhagvasuren, B. A1 - Oyuntungalag, U. A1 - Rausch, J. T1 - Certified reference material for determination of total cyanide in soil [BAM-U116/CGL306] N2 - CRM (Certified Reference Material) BAM-U116/CGL306 “Cyanide in soil” was produced within a framework of cooperation between CGL (Central Geological Laboratory) of Mongolia and Federal Institute for Materials Research and Testing (BAM) of Germany in 2013-2017. The CRM BAM-U116/CGL306 represents a mixture of a sandy soil collected from a contaminated former gasworks area in the Berlin region (Germany) and an unpolluted sandy soil from Nalaikh region (Mongolia). The bulk candidate material for this reference material was prepared at CGL CRM Laboratory exclusively destined to the preparation of reference materials and equipped with modern technical equipment. Homogeneity, stability and shelf life were studied in full compliance with ISO Guide 35. The CRM was evaluated as sufficiently homogeneous. Statistical evaluation of certification analysis was software packages SoftCRM and ProLab Plus. Certified value of total cyanide of the CRM is 12.0 mg/kg and expanded uncertainty was assigned as 0.8 mg/kg. The intended purpose of this material is the verification of analytical results obtained for the mass fraction of total cyanide in soils and soil-like materials applying the standardized procedure ISO 11262:2011. As any reference material, it can also be used for routine performance checks (quality control charts) or validation studies. KW - CRM KW - Cyanide in soil KW - Total cyanide PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-469694 DO - https://doi.org/10.17265/2162-5263/2018.04.004 SP - 149 EP - 161 PB - David Publishing AN - OPUS4-46969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauli, Jutta T1 - Certified Fluorescence Quantum Yield Standards as New Optical Reference Materials N2 - Luminescence techniques are amongst the most commonly used analytical methods in life and material sciences due to their sensitivity and their nondestructive and multiparametric character. Photoluminescence signals are, however, affected by wavelength, polarization and time dependent instrument specific effects, and provide only relative intensities. This hampers the comparability of fluorescence measure-ments and calls for simple tools for instrument characterization and the quantification of measured fluorescence intensities. Well characterized fluorescence standards for instrument calibration and performance validation (IPV) can be used as references for fluorescence signals. Of special importance is the correct determination of photoluminescence quantum yields (QF) (number of emitted per absorbed photons) that provides a direct comparison of the fluorescence efficiency of emitters. Such well characterized standards have been successfully developed by BAM for the relative determination of f values of transparent solutions of molecular and nanoscale emitters in the wavelength range from 350 and 1100 nm and will be soon certified. These standards can also be used to evaluate integrating sphere setups, which are increasingly being used for absolute measurements of QF values. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2091 KW - Fluoreszenz KW - Referenzmaterial PY - 2019 AN - OPUS4-47795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Isleyen, Alper A1 - Can, Suleyman Z. A1 - Cankur, Oktay A1 - Engin, Betul Ari A1 - Vogl, Jochen A1 - Koenig, Maren A1 - Horvat, Milena A1 - Jacimovic, Radojko A1 - Zuliani, Tea A1 - Fajon, Vesna A1 - Jotanovic, Aida A1 - Gaževic, Luka A1 - Milosevic, Milena A1 - Ochsenkuehn–Petropoulou, Maria A1 - Tsopelas, Fotis A1 - Lymberopoulou, Theopisti A1 - Tsakanika, Lamprini-Areti A1 - Serifi, Olga A1 - Ochsenkuehn, Klaus M. A1 - Bulska, Ewa A1 - Tomiak, Anna A1 - Kurek, Eliza A1 - Cakılbahçe, Zehra A1 - Aktas, Gokhan A1 - Altuntas, Hatice A1 - Basaran, Elif A1 - Kısacık, Barıs A1 - Gumus, Zeynep T1 - Certification of the total element mass fractions in UME EnvCRM 03 soil sample via a joint research project N2 - Soil certified reference material (CRM), UME EnvCRM 03 was produced by a collaborative approach among national metrology institutes, designated institutes and university research laboratories within the scope of the EMPIR project: Matrix Reference Materials for Environmental Analysis. This paper presents the sampling and processing methodology, homogeneity, stability, characterization campaign, the assignment of property values and their associated uncertainties in compliance with ISO 17034:2016. The material processing methodology involves blending a natural soil sample with a contaminated soil sample obtained by spiking elemental solutions for 8 elements (Cd, Co, Cu, Hg, Ni, Pb, Sb and Zn) to reach the level of warning risk monitoring values specified for metals and metalloids of soils in Europe. Comparative homogeneity and stability test data were obtained by two different institutes, ensuring the reliability and back up of the data. The certified values and associated expanded uncertainties for the total mass fractions of thirteen elements (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, V and Zn) are established. The developed CRM can be used for the development and validation of measurement procedures for the determination of the total mass fractions of elements in soil and also for quality control/assurance purposes. The developed CRM is the first example of a soil material originating from Türkiye. KW - Total element content KW - Soil KW - CRM KW - Certification KW - Environmental pollution monitoring PY - 2024 DO - https://doi.org/10.1007/s00769-024-01597-8 SN - 1432-0517 VL - 29 SP - 293 EP - 301 PB - Springer Science and Business Media LLC AN - OPUS4-59954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinrich, Hans-Joachim T1 - Certification of the mass fractions of trace elements in a medium purity graphite reference material N2 - The increasing application of graphite materials in various fields of technology and science enhances the demand for strictly controlled properties which are often directly correlated to the contents of trace element impurities. Therefore, the availability of powerful, rapid and reliable analytical methods for the determination of trace impurities is essential for process and quality control. Certified reference materials, indispensable for the development and validation of appropriate trace analytical methods for the characterization of special purity graphite materials are still lacking. Therefore, BAM in co-operation with the working group “Special Materials” of the committee of chemists of GDMB (Gesellschaft der Metallurgen und Bergleute e.V.) certified an industrially sourced graphite material with genuine elemental impurities. The candidate material was a commercial product (NBG 18) taken from the customary production line of the producer SGL CARBON, Chedde (France). The homogeneity of the powdered material was assessed by means of ETV-ICP OES and DC Arc-OES. Certification of the candidate reference material was based on an inter-laboratory comparison involving 17 expert laboratories from Germany, France, Slovenia, USA, South Africa. A variety of different mineralization, digestion, leaching, fusion and combustion techniques prior to ICP OES and photometry, methods without sample preparation (INAA, k0-INAA) as well as typical solid sampling methods (ETV-ICP OES, ETV-ICP-MS, SS-ET AAS, DC Arc-OES, MF-DC Arc-OES) were used to characterise the material. Certified mass fractions and their expanded uncertainties (k = 2) were assigned for 27 elements (Al, B, Ba, Be, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Si, Sr, Ti, V, W, Y, Zn, Zr), ranging from (0.00050 ± 0.00027) mg/kg for Be to (41 ± 6) mg/kg for Si. Additionally, informative values are given for the: trace element contents of Ag, As, Au, Bi, Cd, Cs, Dy, Eu, Ga, Gd, Hg, In, La, Nb, Rb, Re, Rh, Sb, Sc, Se, Sm, Sn, Ta, Tb, Te, Th, U; method specific values obtained by ETV-ICP OES (BETV and SiETV) and the ash content of the material. The certified material “BAM-S009 Medium Purity Graphite Powder” is available for purchase from BAM. T2 - ESAS & CANAS 2018 CY - Berlin, Germany DA - 20.03.2018 KW - Graphite KW - Certification KW - Trace elements KW - Reference material PY - 2018 AN - OPUS4-44775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinrich, Hans-Joachim T1 - Certification of the mass fractions of trace elements in a medium purity graphite reference material N2 - The increasing application of graphite materials in various fields of technology and science enhances the demand for strictly controlled properties which are often directly correlated to the contents of trace element impurities. Therefore, the availability of powerful, rapid and reliable analytical methods for the determination of trace impurities is essential for process and quality control. Certified reference materials, indispensable for the development and validation of appropriate trace analytical methods for the characterization of special purity graphite materials are still lacking. Therefore, BAM in co-operation with the working group “Special Materials” of the committee of chemists of GDMB (Gesellschaft der Metallurgen und Bergleute e.V.) certified an industrially sourced graphite material with genuine elemental impurities. The candidate material was a commercial product (NBG 18) taken from the customary production line of the producer SGL CARBON, Chedde (France). The homogeneity of the powdered material was assessed by means of ETV-ICP OES and DC Arc-OES. Certification of the candidate reference material was based on an inter-laboratory comparison involving 17 expert laboratories from Germany, France, Slovenia, USA, South Africa. A variety of different mineralization, digestion, leaching, fusion and combustion techniques prior to ICP OES and photometry, methods without sample preparation (INAA, k0-INAA) as well as typical solid sampling methods (ETV-ICP OES, ETV-ICP-MS, SS-ET AAS, DC Arc-OES, MF-DC Arc-OES) were used to characterise the material. Certified mass fractions and their expanded uncertainties (k = 2) were assigned for 27 elements (Al, B, Ba, Be, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Si, Sr, Ti, V, W, Y, Zn, Zr), ranging from (0.00050 ± 0.00027) mg/kg for Be to (41 ± 6) mg/kg for Si. Informative values are given for further parameters: trace element contents of Ag, As, Au, Bi, Cd, Cs, Dy, Eu, Ga, Gd, Hg, In, La, Nb, Rb, Re, Rh, Sb, Sc, Se, Sm, Sn, Ta, Tb, Te, Th, U; method specific values obtained by ETV-ICP OES (BETV and SiETV) and ash content. The new certified material is available as BAM Reference Material BAM-S009 Medium Purity Graphite Powder. T2 - BERM-15 CY - Berlin, Germany DA - 23.09.2018 KW - Certification KW - Graphite KW - Reference material KW - Trace elements PY - 2018 AN - OPUS4-46235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Yim, Y.-H. A1 - Lee, K.-S. A1 - Goenaga-Infante, H A1 - Malinovskiy, D. A1 - Hill, S. A1 - Ren, T. A1 - Wang, J. A1 - Vocke, R. D. A1 - Murphy, K. E. A1 - Nonose, N. A1 - Rienitz, O. A1 - Noordmann, J. T1 - Certification of ERM-EB400, the first matrix reference material for lead isotope amount ratios, and ERM-AE142, a lead solution providing a lead isotopic composition at the edge of natural variation N2 - Lead isotope amount ratios are commonly used in diverse fields such as archaeometry, geochemistry and forensic science. Currently, five reference materials with certified lead isotope amount ratios are available, namely NIST SRM 981, 982 and 983, GBW-04442 and NMIJ 3681-a. Only NIST SRM 981 and NMIJ 3681-a have approximately natural isotopic compositions, and NIST SRM 981 is predominantly used for correcting mass discrimination/mass fractionation in the applied mass spectrometric procedures. Consequently, there is no other certified reference material available to be used for validation and/or quality control of the analytical procedures applied to lead isotope amount ratio measurements. To fill this gap, two new reference materials have been produced and certified for their lead isotope amount ratios. For both certified reference materials, complete uncertainty budgets have been calculated and SI traceability has been established. This provides the users with independent means for validating and verifying their analytical procedures and for conducting quality control measures. ERM-EB400 is a bronze material with a nominal lead mass fraction of 45 mg kg-1 and certified lead isotope amount ratios of n(206Pb)/n(204Pb) = 18.072(17) mol mol-1, n(207Pb)/n(204Pb) = 15.578(18) mol mol-1 and n(208Pb)/n(204Pb) = 38.075(46) mol mol-1 with the associated expanded uncertainties (k = 2) given in brackets. ERM-AE142 is a high-purity solution of lead in 2% nitric acid with a nominal mass fraction of 100 mg kg-1 and certified Pb isotope amount ratios of n(206Pb)/n(204Pb) = 21.114(17) mol mol-1, n(207Pb)/n(204Pb) = 15.944(17) mol mol-1 and n(208Pb)/n(204Pb) = 39.850(44) mol mol-1 with the associated expanded uncertainties (k = 2) given in brackets. Both materials are specifically designed to fall within the natural lead isotopic variation and to assist users with the validation and verification of their analytical procedures. Note that while one of these reference materials requires the chemical separation of Pb from its matrix (ERM-EB400), the other does not (ERM-AE142). As additional information, δ208/206PbNIST SRM981 values are provided for both materials. For ERM-AE142, a delta value of δ208/206PbNIST SRM981 = -28.21(30) ‰ was obtained, and for ERM-EB400, a delta value of δ208/206PbNIST SRM981 = -129.47(38) ‰ was obtained, with the associated expanded uncertainties (k = 2) given in brackets. KW - Lead isotope variations KW - Radiogenic isotopes KW - Isotope reference material KW - Metrology in chemistry KW - Measurement uncertainty PY - 2019 DO - https://doi.org/10.1111/ggr.12253 SN - 1751-908X SN - 1639-4488 VL - 43 IS - 1 SP - 23 EP - 37 PB - John Wiley & Sons AN - OPUS4-47383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blanchard, V. A1 - Traub, Heike T1 - Central project for biochemical analysis of proteoglycans and glycosaminoglycans and for element-specific microscopy N2 - Nearly all disease processes are associated with variations of components of the extracellular matrix (ECM) that are typically observed during the development of inflammation. This concerns for example proteoglycans and their associated glycosaminoglycans (GAG), which have been shown to bind to cationic metal imaging probes due to their strong complexing activity. The complexing activity largely depends on the degree of GAG sulfation and/or carboxylation as well as on the GAG isomericity. In this central project, we investigate GAG structures from inflammatory disorders (namely cardiovascular diseases, inflammatory intestinal diseases and neuroinflammation) provided by researchers of the Collaborative Research Center at the molecular disaccharidic level using chromatographic and mass spectrometric methods. In parallel, the spatial localization and quantification of metal-based imaging probes are evaluated by LA-ICP-MS imaging. T2 - 1st International Symposium In vivo Visualization of Extracellular Matrix Pathology CY - Online Meeting DA - 27.05.2021 KW - Laser ablation KW - ICP-MS KW - MALDI PY - 2021 AN - OPUS4-52716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kepsutlu, B. A1 - Wycisk, V. A1 - Achazi, K. A1 - Kapishnikov, S. A1 - Perez-Berna, A.J. A1 - Guttmann, P. A1 - Cossmer, Antje A1 - Pereiro, E. A1 - Ewers, H. A1 - Ballauff, M. A1 - Schneider, G. A1 - McNally, J.G. T1 - Cells Undergo Major Changes in the Quantity of Cytoplasmic Organelles after Uptake of Gold Nanoparticles with Biologically Relevant Surface Coatings N2 - Here, we use cryo soft X-ray tomography (cryo-SXT), which delivers 3D ultrastructural volumes of intact cells without chemical fixation or staining, to gain insight about nanoparticle uptake for nanomedicine. We initially used dendritic polyglycerol sulfate (dPGS) with potential diagnostic and therapeutic applications in inflammation. Although dPGS-coated gold nanoparticle (dPGS-AuNP) uptake followed a conventional endocytic/degradative pathway in human lung epithelial cell lines (A549), with cryo-SXT, we detected ∼5% of dPGS-AuNPs in the cytoplasm, a level undetectable by confocal light microscopy. We also observed ∼5% of dPGS-AuNPs in a rarely identified subcellular site, namely, lipid droplets, which are important for cellular energy metabolism. Finally, we also found substantial changes in the quantity of cytoplasmic organelles upon dPGS-AuNP uptake over the 1–6 h incubation period; the number of small vesicles and mitochondria significantly increased, and the number of multivesicular bodies and the number and volume of lipid droplets significantly decreased. Although nearly all organelle numbers at 6 h were still significantly different from controls, most appeared to be returning to normal levels. To test for generality, we also examined cells after uptake of gold nanoparticles coated with a different agent, polyethylenimine (PEI), used for nucleic acid delivery. PEI nanoparticles did not enter lipid droplets, but they induced similar, albeit less pronounced, changes in the quantity of cytoplasmic organelles. We confirmed these changes in organelle quantities for both nanoparticle coatings by confocal fluorescence microscopy. We suggest this cytoplasmic remodeling could reflect a more common cellular response to coated gold nanoparticle uptake. KW - Cellular trafficking KW - Confocal laser scanning microscopy KW - Cytoplasmic remodeling KW - Dendritic polyglycerol sulfate KW - Polyethylenimine KW - 3D ultrastructural analysis KW - Cryo-soft X-ray tomography PY - 2020 DO - https://doi.org/10.1021/acsnano.9b09264 VL - 14 IS - 2 SP - 2248 EP - 2264 AN - OPUS4-50464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - CCQM-P213: BAM procedure for obtaining Cu delta values N2 - BAM participated in the CCQM pilot study P213 for obtaining copper isotope delta values. This presentations provides details on the MC-ICP-MS based measruement procedure, which has been applied to obtain such copper delta values. T2 - IRWG Meeting 2022 CY - Online meeting DA - 20.09.2022 KW - Isotope ratio KW - Copper KW - Metrology KW - Traceability KW - Uncertainty PY - 2022 AN - OPUS4-55864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - CCQM-P213: BAM procedure for obtaining Cu delta values N2 - BAM participated in the CCQM pilot study P213 for obtaining copper isotope delta values. This presentations provides details on the MC-ICP-MS based measruement procedure, which has been applied to obtain such copper delta values. T2 - IRWG Meeting CY - Online meeting DA - 12.05.2022 KW - Isotope delta value KW - Copper KW - Metrology KW - Traceability PY - 2022 AN - OPUS4-55162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Duewer, D. L. A1 - Murray, J. A. A1 - Wood, L. J. A1 - Wise, S. A. A1 - Hein, Sebastian A1 - Koch, Matthias A1 - Philipp, Rosemarie A1 - Werneburg, Martina A1 - Hackenberg, R. A1 - Polzer, J. A1 - Avila, M. A. A1 - Serrano, V. A1 - Kakoulides, E. A1 - Alexopoulos, C. A1 - Giannikopoulou, P. A1 - Gui, E. M. A1 - Lu, T. A1 - Teo, T. L. A1 - Hua, T. A1 - Dazhou, C. A1 - Chunxin, L. A1 - Changjun, Y. A1 - Hongmei, L. A1 - Nammoonnoy, J. A1 - Sander, L. C. A1 - Lippa, K. A1 - Quinn, L. A1 - Swiegelaar, C. A1 - Fernandes-Whaley, M. A1 - Gören, A. C. A1 - Gökcen, T. T1 - CCQM-K95.1 Low-polarity analytes in a botanical matrix: Polycyclic aromatic hydrocarbons (PAHs) in tea N2 - Extraction, chromatographic separation, and quantification of low-concentration organic compounds in complex matrices are core challenges for reference material producers and providers of calibration services. Evidence of successful participation in formal, relevant international comparisons is needed to document measurement capability claims made by national metrology institutes (NMIs) and designated institutes (DIs). To enable NMIs and DIs to update or establish their claims, in 2014 the Organic Analysis Working Group (OAWG) initiated CCQM-K95.1 "Low-Polarity Analytes in a Botanical Matrix: Polycyclic Aromatic Hydrocarbons (PAHs) in Tea". This was a follow-on comparison from CCQM-K95 which was completed in 2014. The polycyclic aromatic hydrocarbons (PAHs) benz[a]anthracene (BaA) and benzo[a]pyrene (BaP) are considered priority pollutants by U.S. Environmental Protection Agency and are regulated contaminants in food, pose chromatographic separation challenges, and for which exist well-characterized measurement procedures and standard materials. BaA and BaP in a smoked tea were therefore selected as representative target measurands for CCQM-K95.1. Ten NMIs participated in CCQM-K95.1. The consensus summary mass fractions for the two PAHs are in the range of (50 to 70) ng/g with relative standard deviations of (6 to 10) %. Successful participation in CCQM K95.1 demonstrates the following measurement capabilities in determining mass fraction of organic compounds, with molar mass of 100 g/mol to 500 g/mol and having polarity pKow −2, in a botanical matrix ranging in mass fraction from 10 ng/g to 1000 ng/g: (1) value assignment of primary reference standards (if in-house purity assessment carried out), (2) value assignment of single and/or multi-component organic solutions, (3) extraction of analytes of interest from the matrix, (4) cleanup and separation of analytes of interest from interfering matrix or extract components, and (5) separation and quantification using gas chromatography or liquid chromatography. KW - Benz[a]anthracene (BaA) KW - Benzo[a]pyrene (BaP) KW - Gas chromatography (GC) KW - Isotope dilution (ID) KW - Liquid chromatography (LC) KW - Mass spectrometry (MS) KW - Polycyclic aromatic hydrocarbon (PAH) KW - Yerba mate tea PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471430 DO - https://doi.org/10.1088/0026-1394/56/1A/08002 SN - 0026-1394 SN - 1681-7575 VL - 56 IS - 1 A SP - 08002, 1 EP - 89 PB - IOP Science AN - OPUS4-47143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hill, Sarah A1 - Infante, Heidi Goenaga A1 - Entwisle, John A1 - Strekopytov, Stanislav A1 - Ward-Deitrich, Christian A1 - Cowen, Simon A1 - Rienitz, Olaf A1 - Roethke, Anita A1 - Goerlitz, Volker A1 - Schulz, Ursula A1 - Pape, Carola A1 - Vogl, Jochen A1 - Koenig, Maren A1 - Jacimovic, Radojko A1 - Fisicaro, Paola A1 - Ren, Tongxiang A1 - Wang, Song A1 - Song, Panshu A1 - Li, Haifeng A1 - Linsky, Maré A1 - Sobina, Egor A1 - Lozano, Hernán Ezequiel A1 - Puelles, Mabel A1 - Yamani, Randa A1 - Haraldsson, Conny T1 - CCQM-K160: platinum group elements in automotive catalyst N2 - The platinum group elements (PGEs) play an important role in reducing emissions from automotive vehicles through their use in catalytic convertors but also for catalysis in the pharmaceutical industry. The immense economic value of platinum (Pt), palladium (Pd) and rhodium (Rh) highlights the importance of highly accurate measurements. Therefore, there is a need for National Metrology Institutes (NMIs) and Designated Institutes (DIs) to demonstrate measurement capability in this space. A pilot comparison (CCQM-P63) for precious metals in automotive catalyst took place in 2006, but with a limited number of institutes participating. Furthermore, this study was performed over 17 years ago. Therefore, there was a need to maintain existing capability and demonstrate new capability in a key comparison, in order to claim calibration and measurement capability claims (CMCs). With the core capability matrix, this study falls into the "Difficult to dissolve metals/metal oxides" which will support CMC categories 8 (Metal and metal alloys), 9 (Advanced materials) and 14 (Other materials). Eleven NMIs and DIs participated in the Key Comparison CCQM-K160 Platinum Group Elements in Automotive Catalyst. Participants were requested to evaluate the mass fractions of Pt, Pd and Rh in mg/kg in an unused autocatalyst material (cordierite ceramic base). The Key Comparison Reference Values (KCRVs) and Degrees of Equivalence (DoEs) were calculated utilising the NIST Decision Tree for the measurands. The participants utilised a number of sample preparation and analytical methods including hot plate digestion, microwave digestion and sodium fusion, followed by either atomic absorption spectroscopy (AAS), inductively coupled plasma optical emission spectroscopy (ICP-OES) or inductively coupled plasma mass spectrometry (ICP-MS) detection. Several calibration techniques were used, namely external calibration, standard addition, isotope dilution mass spectrometry (IDMS) and an exact matching procedure. Additionally, one participant employed instrumental neutron activation analysis (INAA) with k0 standardisation which is a direct solid analysis method. The majority of participants claimed traceability to NIST primary calibrants or their own CRMs. Furthermore, several matrix CRMs were included or spiked samples for quality control. All institutes were required to determine the dry mass fraction using the stipulated protocol. The NIST decision tree was implemented for the calculation of the KCRVs and DoEs. The participant results overall showed good agreement with the KCRV, despite the variety of dissolution procedures and measurement techniques for this highly complex matrix and challenging measurands. Successful participation in CCQM-K160 demonstrated measurement capabilities for the determination of mass fraction of Pt, Pd and Rh in the mg/kg range and will support broad scope CMC claims for a wide range of challenging matrices. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database https://www.bipm.org/kcdb/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA). KW - Metrology in Chemistry KW - Traceability KW - Uncertainty PY - 2024 DO - https://doi.org/10.1088/0026-1394/61/1A/08011 VL - 61 IS - 1A SP - 1 EP - 39 PB - IOP Publishing AN - OPUS4-60524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, X.M. A1 - Li, H.M. A1 - Zhang, Q.H. A1 - Lu, X.H. A1 - Li, S.Q. A1 - Koch, Matthias A1 - Polzer, J. A1 - Hackenber, R. A1 - Moniruzzaman, M. A1 - Khan, M. A1 - Kakoulides, E. A1 - Pak-Wing, K. A1 - Richy, A1 - Chi-Shing, N. A1 - Lu, T. A1 - Gui, E.M. A1 - Cheow, P.S. A1 - Teo, T.L. A1 - Rego, E. A1 - Garrido, B. A1 - Carvalho, L. A1 - Leal, R. A1 - Violante, F. A1 - Baek, S.Y. A1 - Lee, S. A1 - Choi, K. A1 - Kim, B. A1 - Bucar-Miklavcic, M. A1 - Hopley, C. A1 - Nammoonnoy, J. A1 - Murray, J. A1 - Wilson, W. A1 - Toman, B. A1 - Itoh, N. A1 - Gokcen, T. A1 - Krylov, A. A1 - Mikheeva, A. T1 - CCQM-K146 low-polarity analyte in high fat food: benzo a pyrene in olive oil N2 - The demonstration of competency and equivalence for the assessment of levels of contaminants and nutrients in primary foodstuffs is a priority within the 10-year strategy for the OAWG Track A core comparisons. The measurements are core challenges for reference material producers and providers of calibration Services. This key comparison related to low polarity analytes in a high fat, low protein, low carbohydrate food matrix and Benzo[a]pyrene in edible oil was the model System selected to align with this class within the OAWG strategy. Evidence of successful participation in formal, relevant international comparisons is needed to document measurement capability claims (CMCs) made by national metrology institutes (NMIs) and designated institutes (Dis). 16 National Metrology Institutions participated in the Track A Key Comparison CCQM-K146 Low-Polarity Analyte in high fat food: Benzo[a]pyrene in Olive Oil. Participants were requested to evaluate the mass fractions, expressed in µg/kg, of Benzo[a]pyrene in the olive oil material. The KCRV was determined from the results of all NMIs/DIs participating in the key comparison that used appropriately validated methods with demonstrated metrological traceability. Different methods such as liquid-liquid extraction, GPC and SPE were applied in the sample pretreatment and HPLC-FLD, HPLC-MS/MS, and GC-MS or GC-MS/MS were applied for detection by the participants. The mass fractions for BaP were in the range of (1.78 to 3.09) µg/kg with Standard uncertainties of (0.026 to 0.54) µg/kg, with corresponding relative Standard uncertainties from 0.9% to 21%. Five labs withdrew their result from the Statistical evaluation of the KCRV for technical reasons. One lab was excluded from the KCRV evaluation, as they did not meet the CIPM metrological traceability requirements. A Hierarchical Bayes option was selected for the KCRV value, which was determined as 2.74 µg/kg with a Standard uncertainty of 0.03 µg/kg. The 10 institutes those were included in the calculation of the consensus KCRV all agreed within their Standard uncertainties. Successful participation in CCQM-K146 demonstrates the measurement capabilities in determining mass fraction of organic compounds, with molecular mass of 100 g/mol to 500 g/mol, having low polarity pKow < -2, in mass fraction range from 0.1 µg/kg to 1000 µg/kg in a high fat, low protein, low carbohydrate food matrix. KW - Metrology KW - CCQM KW - Food KW - PAH PY - 2020 DO - https://doi.org/10.1088/0026-1394/57/1a/08017 VL - 57 IS - 1a SP - 08017 AN - OPUS4-52435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Molloy, J. L. A1 - Winchester, M. R. A1 - Butler, T. A. A1 - Possolo, A. M. A1 - Rienitz, O. A1 - Roethke, A. A1 - Goerlitz, V. A1 - Caciano de Sena, R. A1 - Dominguez Almeida, M. A1 - Yang, L. A1 - Methven, B. A1 - Nadeau, K. A1 - Romero Arancibia, P. A1 - Bing, W. A1 - Tao, Z. A1 - Snell, J. A1 - Vogl, Jochen A1 - Koenig, Maren A1 - Kotnala, R. K. A1 - Swarupa Tripathy, S. A1 - Elishian, C. A1 - Ketrin, R. A1 - Suzuki, T. A1 - Oduor Okumu, T. A1 - Yim, Y.-H. A1 - Heo, S. W. A1 - Min, H. S. A1 - Sub Han, M. A1 - Lim, Y. A1 - Velina Lara Manzano, J. A1 - Segoviano Regalado, F. A1 - Arvizu Torres, M. A1 - Valle Moya, E. A1 - Buzoianu, M. A1 - Sobina, A. A1 - Zyskin, V. A1 - Sobina, E. A1 - Migal, P. A1 - Linsky, M. A1 - Can, S. Z. A1 - Ari, B. A1 - Goenaga Infante, H. T1 - CCQM-K143 Comparison of Copper Calibration Solutions Prepared by NMIs/DIs N2 - CCQM-K143 is a key comparison that assesses participants’ ability to prepare single element calibration solutions. Preparing calibration solutions properly is the cornerstone of establishing a traceability link to the International System of Units (SI), and therefore should be tested in order to confirm the validity of CCQM comparisons of more complex materials. CCQM-K143 consisted of participants each preparing a single copper calibration solution at 10 g/kg copper mass fraction and shipping 10 bottled aliquots of that solution to the coordinating laboratory, the National Institute of Standards and Technology (NIST). The masses and mass fraction for the prepared solutions were documented with the submitted samples. The solutions prepared by all participants were measured at NIST by high performance inductively coupled plasma optical emission spectroscopy (HP-ICP-OES). The intensity measurements for copper were not mapped onto values of mass fraction via calibration. Instead, ratios were computed between the measurements for copper and simultaneous measurements for manganese, the internal standard, and all subsequent data reductions, including the computation of the KCRV and the degrees of equivalence, were based on these ratios. Other than for two participants whose measurement results appeared to suffer from calculation or preparation errors, all unilateral degrees of equivalence showed that the measured values did not differ significantly from the KCRV. These results were confirmed by a second set of ICP-OES measurements performed by the Physikalisch-Technische Bundesanstalt (PTB). CCQM-K143 showed that participants are capable of preparing calibration solutions starting from high purity, assayed copper metal. Similar steps are involved when preparing solutions for other elements, so it seems safe to infer that similar capabilities should prevail when preparing many different, single-element solutions. KW - Metrology KW - Primary calibration solution KW - Traceability PY - 2020 DO - https://doi.org/10.1088/0026-1394/58/1A/08006 SN - 0026-1394 VL - 58 IS - 1A SP - 08006 PB - IOP Science CY - Cambridge AN - OPUS4-51983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Duewer, D. L. A1 - Sander, L. C. A1 - Wise, S. A. A1 - Philipp, Rosemarie A1 - Hein, Sebastian A1 - Hackenberg, R. A1 - Polzer, J. A1 - Avila, M. A. A1 - Serrano, V. A1 - Kakoulides, E. A1 - Alexopoulos, C. A1 - Giannikopoulou, P. A1 - Chan, P. A1 - Lee, H. A1 - Tang, H. A1 - Tang, P. A1 - Yip, Y. A1 - Lu, T. A1 - Cheow, P. S. A1 - Teo, T. L. A1 - Sega, M. A1 - Rolle, F. A1 - Baek, S. A1 - Kim, B. A1 - Lee, S. A1 - Cabillic, J. A1 - Fallot, C. A1 - Hua, T. A1 - Dazhou, C. A1 - Changjun, Y. A1 - Chunxin, L. A1 - Hongmei, L. A1 - Lippa, K. A1 - Itoh, N. A1 - Quinn, L. A1 - Prevoo-Franzsen, D. A1 - Fernandes-Whaley, M. A1 - Gören, A. C. A1 - Gökcen, T. A1 - Gündüz, S. A1 - Krylov, A. A1 - Mikheeva, A. A1 - Baldan, A. A1 - van der Hout, J. W. A1 - van der Veen, A. M. H. T1 - CCQM-K131 Low-polarity analytes in a multicomponent organic solution: Polycyclic aromatic hydrocarbons (PAHs) in acetonitrile N2 - Solutions of organic analytes of known mass fraction are typically used to calibrate the measurement processes used to determine these compounds in matrix samples. Appropriate value assignments and uncertainty calculations for calibration solutions are critical for accurate measurements. Evidence of successful participation in formal, relevant international comparisons is needed to document measurement capability claims (CMCs) made by national metrology institutes (NMIs) and designated institutes (DIs). To enable NMIs and DIs to update or establish their claims, in 2015 the Organic Analysis Working Group (OAWG) sponsored CCQM-K131 "Low-Polarity Analytes in a Multicomponent Organic Solution: Polycyclic Aromatic Hydrocarbons (PAHs) in Acetonitrile". Polycyclic aromatic hydrocarbons (PAHs) result from combustion sources and are ubiquitous in environmental samples. The PAH congeners, benz[a]anthracene (BaA), benzo[a]pyrene (BaP), and naphthalene (Nap) were selected as the target analytes for CCQM-K131. These targets span the volatility range of PAHs found in environmental samples and include potentially problematic chromatographic separations. Nineteen NMIs participated in CCQM-K131. The consensus summary mass fractions for the three PAHs are in the range of (5 to 25) μg/g with relative standard deviations of (2.5 to 3.5) %. Successful participation in CCQM-K131 demonstrates the following measurement capabilities in determining mass fraction of organic compounds of moderate to insignificant volatility, molar mass of 100 g/mol up to 500 g/mol, and polarity pKow < −2 in a multicomponent organic solution ranging in mass fraction from 100 ng/g to 100 μg/g: (1) value assignment of primary reference standards (if in-house purity assessment carried out), (2) value assignment of single and/or multi-component organic solutions, and (3) separation and quantification using gas chromatography or liquid chromatography. KW - Benz[a]anthracene (BaA) KW - Benzo[a]pyrene (BaP) KW - Gas chromatography (GC) KW - Isotope dilution (ID) KW - Liquid chromatography (LC) KW - Mass spectrometry (MS) KW - Naphthalene (Nap) KW - Organic calibration solution KW - Polycyclic aromatic hydrocarbon (PAH) PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471442 DO - https://doi.org/10.1088/0026-1394/56/1A/08003 SN - 0026-1394 SN - 1681-7575 VL - 56 IS - 1A SP - 08003, 1 EP - 102 PB - IOP Science AN - OPUS4-47144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rienitz, O. A1 - Jährling, R. A1 - Noordmann, J. A1 - Pape, C. A1 - Röhker, K. A1 - Vogl, Jochen A1 - Manzano, J. V. L. A1 - Kozlowski, W. A1 - Caciano de Siena, R. A1 - Marques Rodrigues, J. A1 - Galli, A. H. A1 - Yim, Y.-H. A1 - Lee, K.-S. A1 - Lee, J. H. A1 - Min, H.-S. A1 - Chingbo, C. A1 - Naijie, S. A1 - Qian, W. A1 - Ren, T. A1 - Jun, W. A1 - Tangpaisarnkul, N. A1 - Suzuki, T. A1 - Nonose, N. A1 - Mester, Z. A1 - Yang, L. A1 - Pagliano, E. A1 - Greenberg, P. A1 - Mariassy, M. A1 - Näykki, T. A1 - Cankur, O. A1 - Coskun, F. G. A1 - Ari, B. A1 - Can, S. Z. T1 - CCQM-K122 "Anionic impurities and lead in salt solutions" N2 - The determination of the mass fractions of bromide, sulfate, and lead as well as the isotopic composition of the lead (expressed as the molar mass and the amount fractions of all four stable lead isotopes) in an aqueous solution of sodium chloride with a mass fraction of 0.15 g/g was the subject of this comparison. Even though the mass fractions ranged from 3 μg/g (bromide) to 50 ng/g (lead), almost all results reported agreed with the according KCRVs. KW - Absolute isotope ratio KW - Lead isotope ratios KW - Metrology KW - Traceability PY - 2020 DO - https://doi.org/10.1088/0026-1394/57/1A/08012 VL - 57 IS - 1A SP - 8012 PB - IOP Science AN - OPUS4-51156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, X.Q. A1 - Li, H.M. A1 - Jiao, H. A1 - Guo, Z.H. A1 - Zhang, Q.H. A1 - Kneeteman, L.E. A1 - Lewin, M. A1 - Pires do Rego, E.C. A1 - Leal, R.V. A1 - Violante, F.G.M. A1 - Riedel, Juliane A1 - Koch, Matthias T1 - CCQM Key Comparison track A CCQM-K168: Non-polar analytes in high carbohydrate food matrix: trans-zearalenone in maize powder N2 - Demonstrating competency and equivalence for the measurement capacity of contaminants and nutrients in primary foodstuffs is a priority of the OAWG 10-year strategy for Track A core comparisons. Such measurements have posed significant challenges for reference material producers and calibration service providers. This key comparison (KC), under the topic of “non- polar analyte in high carbohydrate food matrix: trans-Zearalenone (trans-ZEN) in maize powder” , was a sector of the model system selected to align with this class within the OAWG strategy. Evidence of successful participation in formal, relevant international comparisons is needed to demonstrate the Calibration and Measurement Capabilities (CMCs) of national metrology institutes (NMIs) and designated institutes (DIs). 17 NMIs and DIs participated in the Track A KC CCQM- 168 “non-polar analyte in high carbohydrate food matrix: trans-ZEN in maize powder” . Participants were requested to evaluate the mass fraction (μg/kg) of trans-ZEN in maize powder material. Methods like liquid-liquid extraction and SPE were applied in the pre-treatment, and HPLC-MS/MS and HPLC-FLD were used for detection by the participants. The mass fractions for trans-ZEN were in the range of (91.8 to 169) μg/kg with standard uncertainties of (1.5 to 24.7) μg/kg, and corresponding relative standard uncertainties from 1.5% to 14.6%. Two labs, INTI and BAM were excluded from the KCRV evaluation. INTI result was identified as an outlier and confirmed their method had insufficient specificity. For BAM the calibration approach they used does not meet the CIPM traceability requirements. The other 15 labs included in the calculation of the consensus KCRV all agreed within their standard uncertainties. Hierarchical Bayes was used as estimators in calculating KCRV and standard uncertainty. Successful participation in CCQM-K168 demonstrates the measurement capabilities in determining mass fraction of organic compounds, with molecular mass of 100 g/mol to 500 g/mol, having low polarity pKow < -2, in mass fraction range from 1 μg/kg to 1000 μg/kg in a high carbohydrate food matrix. KW - Metrology KW - Quality Assurance KW - Mycotoxin Analysis KW - Sustainable Food Safety PY - 2023 DO - https://doi.org/10.1088/0026-1394/60/1A/08021 VL - 60 IS - 1a SP - 08021 AN - OPUS4-59059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - CCQM IRWG draft strategy for all elements except for noble gases and H, C, N, O N2 - The presentation describes the draft strategy for metalloids and semi-metals within the IRWG at CCQM. This includes the definition of the measurements space, a suitable set of key comparisons and pilot studies and a proposal for a harmonized CMC application. T2 - EURAMET TC-MC Workshop on Isotope Ratio Analysis CY - Bern, Switzerland DA - 05.02.2020 KW - CMC KW - Measurement space KW - Metrology KW - Isotope ratio PY - 2020 AN - OPUS4-50345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fiedler, Saskia T1 - Cathodoluminescence Spectroscopy of Silicon Nanoparticles N2 - The fabrication of nanostructures with ever-decreasing sizes has increased the demand of suitable characterization methods which allow to determine their shape and size at the true nanoscale, and similarly important, enable the investigation of their optical properties beyond the diffraction limit. Due to its high spectral and spatial resolution down to the (sub-) nanometer range, electron beam-based techniques, namely cathodoluminescence (CL) has become a powerful characterization tool, particularly to study plasmonic and dielectric nanostructures. However, the interpretation of the resulting spectral CL maps is not always unambiguously straightforward. In this work, Mie resonances in single Si nanospheres of different sizes have been systematically studied, using experimental CL spectroscopy and an analytical CL model. For smaller spheres (r ~ 75 nm), the eigenmodes can be unequivocally identified, with relative changes in intensity of the electric and magnetic dipole depending on the electron beam position within the sphere. However, in larger spheres (r ~ 105 nm), the modal assignment becomes increasingly difficult due to a larger number of Mie modes in the visible spectral range. Additionally, penetrating electron beams generate two radiating dipoles at the two Si interfaces – due to the electron and its image charge collapsing at those interfaces – which can, depending on the electron beam’s velocity and its path length inside the particle, produce distinct resonances or dips (constructive or destructive interference of those two radiative dipoles). It is demonstrated that superimposed on the eigenmodes of the studied nanospheres, these resonances can distort the recorded spectrum and lead to potentially erroneous assignment of modal characters to the spectral features. An intuitive analogy is developed to unambiguously distinguish those resonance induced by transition radiation from the nanoparticle-specific Mie resonances. T2 - Optoelectronic Processes at Nanostructured Interfaces 2022 CY - Bad Honnef, Germany DA - 21.03.2022 KW - Cathodoluminescence KW - Silicon nanoparticles KW - Mie resonances PY - 2022 AN - OPUS4-54526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Zhiyang A1 - Gernert, U. A1 - Gerhardt, R. F. A1 - Höhn, E.-M. A1 - Belder, D. A1 - Kneipp, Janina T1 - Catalysis by Metal Nanoparticles in a Plug-In Optofluidic Platform: Redox Reactions of p-Nitrobenzenethiol and p-Aminothiophenol N2 - The spectroscopic characterization by surface-enhanced Raman scattering (SERS) has shown great potential in studies of heterogeneous catalysis. We describe a plug-in multifunctional optofluidic platform that can be tailored to serve both as a variable catalyst material and for sensitive optical characterization of the respective reactions using SERS in microfluidic systems. The platform enables the characterization of reactions under a controlled gas atmosphere and does not present with limitations due to nanoparticle adsorption or memory effects. Spectra of the gold-catalyzed reduction of p-nitrothiophenol by sodium borohydride using the plug-in probe provide evidence that the borohydride is the direct source of hydrogen on the gold surface, and that a radical anion is formed as an intermediate. The in situ monitoring of the photoinduced dimerization of p-aminothiophenol indicates that the activation of oxygen is essential for the plasmon-catalyzed oxidation on gold nanoparticles and strongly supports the central role of metal oxide species. KW - Gaseous reactants KW - Heterogeneous catalysis KW - Microfluidics KW - Optofluidics KW - Radicals KW - Reusable KW - Surface-enhanced Raman scattering (SERS) PY - 2018 UR - https://pubs.acs.org/doi/10.1021/acscatal.8b00101 DO - https://doi.org/10.1021/acscatal.8b00101 VL - 8 IS - 3 SP - 2443 EP - 2449 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-44628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nagli, L. A1 - Gaft, M. A1 - Raichlin, Y. A1 - Gornushkin, Igor B. T1 - Cascade generation in Al laser induced plasma N2 - We found cascade IR generation in Al laser induced plasma. This generation includes doublet transitions 3s25s 2S1∕2→ 3s24p 2P1∕2,3∕2 → 3s24s 2S1∕2; corresponding to strong lines at 2110 and 2117 nm, and much weaker lines at 1312–1315 nm. The 3s25s2S 1∕2 starting IR generation level is directly pumped from the 3s23p 2P3∕2 ground level. The starting level for UV generation at 396.2 nm (transitions 3s24s 2S1∕2 → 4p 2P3∕2) is populated due to the fast collisional processes in the plasma plume. These differences led to different time and special dependences on the lasing in the IR and UV spectral range within the aluminum laser induced plasma. KW - Plasma diagnostics KW - Laser induced plasma KW - LIBS KW - Plasma modeling PY - 2018 DO - https://doi.org/10.1016/j.optcom.2018.01.041 VL - 415 SP - 127 EP - 129 PB - Elsevier B.V. AN - OPUS4-44274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lisec, Jan A1 - Jaeger, C. A1 - Zaidi, Nousheen T1 - Cancer cell lipid class homeostasis is altered under nutrient-deprivation but stable under hypoxia N2 - Under oxygen/nutrient deprivation cancer cells modify the Balance between fatty acid (FA) synthesis and uptake, which alters the levels of individual triglyceride or phospholipid sub-species. These modifications may affect survival and drug-uptake in cancer cells. Here, we aimed to attain a more holistic overview of the lipidomic profiles of cancer cells under stress and assess the changes in Major lipid-classes. First, expressions of markers of FA synthesis/uptake in cancer cells were assessed and found to be differentially regulated under metabolic stress. Next, we performed a broad lipidomics assay, comprising 244 lipids from six major classes, which allowed us to investigate robust stress induced changes in median levels of different lipid classes -additionally stratified by fatty acid side chain saturation status. The lipidomic profiles of cancer cells were predominantly affected by nutrient-deprivation. Neutral lipid compositions were markedly modified under serum-deprivation and, strikingly, the cellular level of triglyceride subspecies decreased with increasing number of double bonds in their fatty acyl chains. In contrast, cancer cells maintained lipid class homeostasis under hypoxic stress. We conclude that although the levels of individual lipid moieties alter under hypoxia, the robust averages of broader lipid class remain unchanged. KW - Mass-Spectrometry KW - Tumor metabolism KW - Fatty acid metabolism KW - Lipidomic profile KW - Metabolic stress PY - 2018 DO - https://doi.org/10.1101/382457 SP - 1 EP - 25 PB - Cold Spring Harbor Laboratory CY - Cold Spring Harbor, NY AN - OPUS4-46814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lisec, Jan A1 - Jaeger, Carsten A1 - Rashid, R. A1 - Munir, R. A1 - Zaidi, N. T1 - Cancer cell lipid class homeostasis is altered under nutrient-deprivation but stable under hypoxia N2 - Background: Cancer cells modify the balance between fatty acid (FA) synthesis and uptake under metabolic stress, induced by oxygen/nutrient deprivation. These modifications were shown to alter the levels of individual triglyceride (TG) or phospholipid sub-species. To attain a holistic overview of the lipidomic profiles of cancer cells under stress we performed a broad lipidomic assay, comprising 244 lipids from six major classes. This assay allowed us to perform robust analyses and assess the changes in averages of broader lipid-classes, stratified on the basis of saturation index of their fatty-acyl side chains. Methods: Global lipidomic profiling using Liquid Chromatography-Mass Spectrometry was performed to assess lipidomic profiles of biologically diverse cancer cell lines cultivated under metabolically stressed conditions. Results: Neutral lipid compositions were markedly modified under serum-deprived conditions and, strikingly, the cellular level of triglyceride subspecies decreased with increasing number of double bonds in their fatty acyl chains. In contrast and unexpectedly, no robust changes were observed in lipidomic profiles of hypoxic (2% O2) Cancer cells despite concurrent changes in proliferation rates and metabolic gene expression. Conclusions: Serum-deprivation significantly affects lipidomic profiles of cancer cells. Although, the levels of individual lipid moieties alter under hypoxia (2% O2), the robust averages of broader lipid classes remain unchanged. KW - Tumor metabolism KW - Fatty acid metabolism KW - Lipidomic profile KW - Metabolic stress PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-481061 DO - https://doi.org/10.1186/s12885-019-5733-y SN - 1471-2407 VL - 19 SP - 501, 1 EP - 11 PB - Springer Nature AN - OPUS4-48106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lisec, Jan A1 - Jaeger, Carsten A1 - Rashid, R. A1 - Munir, R. A1 - Zaidi, N. T1 - Cancer cell lipid class homeostasis is altered under nutrient-deprivation but stable under hypoxia N2 - Background: Cancer cells modify the balance between fatty acid (FA) synthesis and uptake under metabolic stress, induced by oxygen/nutrient deprivation. These modifications were shown to alter the levels of individual triglyceride (TG) or phospholipid sub-species. To attain a holistic overview of the lipidomic profiles of cancer cells under stress we performed a broad lipidomic assay, comprising 244 lipids from six major classes. This assay allowed us to perform robust analyses and assess the changes in averages of broader lipid-classes, stratified on the basis of saturation index of their fatty-acyl side chains. Methods: Global lipidomic profiling using Liquid Chromatography-Mass Spectrometry was performed to assess lipidomic profiles of biologically diverse cancer cell lines cultivated under metabolically stressed conditions. Results: Neutral lipid compositions were markedly modified under serum-deprived conditions and, strikingly, the cellular level of triglyceride subspecies decreased with increasing number of double bonds in their fatty acyl chains. In contrast and unexpectedly, no robust changes were observed in lipidomic profiles of hypoxic (2% O2) cancer cells despite concurrent changes in proliferation rates and metabolic gene expression. Conclusions: Serum-deprivation significantly affects lipidomic profiles of cancer cells. Although, the levels of individual lipid moieties alter under hypoxia (2% O2), the robust averages of broader lipid classes remain unchanged. KW - Tumor metabolism KW - Fatty acid metabolism KW - Lipidomic profile KW - Metabolic stress PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483186 DO - https://doi.org/10.1186/s12885-019-5733-y SN - 1471-2407 VL - 19 SP - 501 PB - Springer Nature CY - Berlin AN - OPUS4-48318 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Munir, R. A1 - Noureen, N. A1 - Bashir, M. A1 - Shoaib, N. A1 - Ashraf, A. A1 - Lisec, Jan A1 - Zaidi, N. T1 - Cancer Awareness Measure (CAM) and Cancer Awareness Measure MYthical Causes Scale (CAM‑MY) scores in Pakistani population N2 - Lifestyle modifications could prevent almost one‑third to one‑half of all cancer cases. The awareness of cancer risk factors could motivate people to make such changes in their behaviors and lifestyles. This work aims to investigate the cancer awareness level in the Pakistani population. Telephone interviews of 657 individuals in Pakistan were carried out using the Cancer Awareness Measure (CAM) and Cancer Awareness Measure–MYthical Causes Scale (CAM‑MY). We observed that participants scored significantly better on the CAM scale than the CAM‑MY scale, and CAM scores were negatively associated with CAM‑MY scores. Years of formal education or a biology major at undergraduate or graduate level did not affect our population’s cancer awareness levels. Age displayed a weak but statistically significant negative association with CAM scores. Most participants failed to identify modifiable cancer risk factors, e.g., low physical activity. Efforts should be made to improve awareness of modifiable risk factors. We observed that brief training sessions could markedly improve people’s understanding of cancer risk factors and myths. KW - Cancer KW - Cancer awareness measure KW - Cancer risk PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548960 DO - https://doi.org/10.1038/s41598-022-13012-8 SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 10 PB - Nature Publishing Group CY - London AN - OPUS4-54896 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Gornushkin, Igor B. ED - Galbács, G. T1 - Calibration-Free Quantitative Analysis N2 - Calibration-free methods in laser-induced breakdown spectroscopy, CF LIBS, serve as an alternative to calibration-based LIBS techniques. Their major advantage is the ability for fast chemical analysis in situations where matrix-matched standards are not readily available (as, e.g., in the analysis of biological materials and remote analysis) or amount of samples are limited. Their main applications are in the industry, geology, biology, archeology, and even space exploration. This chapter overviews the principle of operation and performance of CF LIBS techniques. KW - Laser induced plasma KW - Calibration-free LIBS PY - 2022 SN - 978-3-031-14501-8 DO - https://doi.org/10.1007/978-3-031-14502-5 SP - 67 EP - 100 PB - Springer Nature Switzerland AG AN - OPUS4-56651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Calibration-free LIBS of steel samples N2 - An improved algorithm for calibration-free laser induced breakdown spectroscopy (CF LIBS) is presented which includes several novel features in comparison with previously proposed similar algorithms. In particular, it allows using spectral lines with arbitrary optical thickness for the construction of Saha-Boltzmann plots, retrieves the absorption path length (plasma diameter) directly from a spectrum, replaces the Lorentzian line profile function by the Voigt function, and allows for self-absorption correction using pre-calculated and tabulated data rather than approximating functions. The tabulated data embody the solutions of the radiative transfer equation for numerous combinations of optical thicknesses and line widths. The algorithm is used to analyze 100 low alloy steel spectra. T2 - 20.06.2019 LTB workshop on LIBS analysis of steel CY - Berlin, LTB, Germany DA - 20.06.2019 KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics KW - Chemical reactors PY - 2019 AN - OPUS4-48600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bornemann-Pfeiffer, Martin A1 - Kern, Simon A1 - Maiwald, Michael A1 - Meyer, Klas T1 - Calibration-Free Chemical Process and Quality Control Units as Enablers for Modular Production N2 - Modular chemical production is a tangible translation of the digital transformation of the process industry for specialty chemicals. In particular, it enables the speeding-up of process development and thus a quicker time to market by flexibly connecting and orchestrating standardised physical modules and bringing them to life (i.e., parameterising them) with digitally accumulated process knowledge. We focus on the specific challenges of chemical process and quality control, which in its current form is not well suited for modular production and provide possible approaches and examples of the change towards direct analytical methods, analytical model transfer or machine-supported processes. KW - Modular Production KW - Chemical Process Control KW - Process Analytical Technology KW - Digital Transformation KW - Industry 4.0 PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517264 DO - https://doi.org/10.1002/cite.202000150 SN - 1522-2640 VL - 93 IS - 1-2 SP - 62 EP - 70 PB - Wiley-VCH CY - Weinheim AN - OPUS4-51726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Calibration of Mg isotope amount ratios and delta values N2 - In the past, δ26/24Mg measurements were referenced to NIST SRM 980, the initial zero of the δ26/24Mg scale. With the development of MC-ICPMS, the detection of small but measurable isotopic differences in different chips of SRM 980 became apparent. To solve this problem a suite of magnesium isotope reference materials, ERM-AE143, -AE144 and -AE145, has been certified in a first study by applying an ab initio calibration for absolute Mg isotope ratios without any a priori assumptions, a procedure which fulfils all requirements of a primary method of measurement. We could achieve for the first time measurement uncertainties for isotope amount ratios close to the typical precision of magnesium delta values, δ26/24Mg, which are at the 0.1 ‰ level (2SD). In addition, it was demonstrated that commonly used fractionation laws are invalid for correcting Mg isotope ratios in multi-collector ICPMS as they result in a bias which is not covered by its associated uncertainty. Depending on their type, fractionation laws create a bias up to several per mil, with the exponential law showing the smallest bias between 0.1 ‰ to 0.7 ‰. With these isotope reference materials, it is possible to establish SI-traceability for magnesium delta measurements. To realize this, we organized a second study within which five expert laboratories participated to cross-calibrate all available magnesium isotope standards, which are NIST SRM 980, IRMM-009, ERM-AE143, ERM-AE144, ERM-AE145 and the standards DSM3 and Cambridge-1. The mean δ26/24Mg values for the individual iRMs, calculated from the laboratory means show 2 SD reproducibilities varying between 0.025 and 0.093 ‰. Propagated measurement uncertainties suggest a standard uncertainty of about 0.1‰ for δ26/24Mg determinations (2SD). Thus, SI traceability for magnesium isotope amount ratios and delta values is demonstrated to be established. T2 - European Winter Conference on Plasma Spectrochemistry CY - Pau, France DA - 03.02.2019 KW - Delta value KW - SI-traceability KW - Absolute isotope ratio PY - 2019 N1 - Geburtsname von Mieller, Björn: Brandt, B. - Birth name of Mieller, Björn: Brandt, B. AN - OPUS4-47710 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Calibration of Mg isotope amount ratios and delta values N2 - In the past, δ26/24Mg measurements were referenced to NIST SRM 980, the initial zero of the δ26/24Mg scale. With the development of MC-ICPMS, the detection of small but measurable isotopic differences in different chips of SRM 980 became apparent. To solve this problem a suite of magnesium isotope reference materials, ERM-AE143, -AE144 and -AE145, has been certified in a first study by applying an ab initio calibration for absolute Mg isotope ratios without any a priori assumptions, a procedure which fulfils all requirements of a primary method of measurement. We could achieve for the first time measurement uncertainties for isotope amount ratios close to the typical precision of magnesium delta values, δ26/24Mg, which are at the 0.1 ‰ level (2SD). In addition, it was demonstrated that commonly used fractionation laws are invalid for correcting Mg isotope ratios in multi-collector ICPMS as they result in a bias which is not covered by its associated uncertainty. Depending on their type, fractionation laws create a bias up to several per mil, with the exponential law showing the smallest bias between 0.1 ‰ to 0.7 ‰. With these isotope reference materials, it is possible to establish SI-traceability for magnesium delta measurements. To realize this, we organized a second study within which five expert laboratories participated to cross-calibrate all available magnesium isotope standards, which are NIST SRM 980, IRMM-009, ERM-AE143, ERM-AE144, ERM-AE145 and the standards DSM3 and Cambridge-1. The mean δ26/24Mg values for the individual iRMs, calculated from the laboratory means show 2 SD reproducibilities varying between 0.025 and 0.093 ‰. Propagated measurement uncertainties suggest a standard uncertainty of about 0.1‰ for δ26/24Mg determinations (2SD). Thus, SI traceability for magnesium isotope amount ratios and delta values is demonstrated to be established. T2 - 53rd annual conference of the DGMS including 27th ICP-MS User's Meeting CY - Münster, Germany DA - 01.03.2020 KW - Isotope ratio KW - Delta value KW - Metrology KW - Magnesium KW - Magnesium isotope ratios PY - 2020 N1 - Geburtsname von Mieller, Björn: Brandt, B. - Birth name of Mieller, Björn: Brandt, B. AN - OPUS4-50549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, V. A1 - Uhlemann, M. A1 - Richter, Silke A1 - Pfeifer, jens T1 - Calibration capacity of hot-pressed hydrogen standards for glow discharge optical emission and mass spectrometry N2 - Mixed copper and titanium hydride powder was hot-pressed and characterized by Carrier Gas Hot Extraction, XRay Diffraction, Thermal Gravimetric Analysis coupled with Mass Spectrometry, and Scanning Electron Microscopy. The hot-pressed and five conventional samples were applied for calibration of hydrogen in Glow Discharge Optical Emission and Mass Spectrometry. Up to the introduction of 15 ng/s hydrogen the Emission yield model is useful in Glow Discharge Optical Emission Spectrometry. A correlation between saturation and even reversal of the emission yield of the spectral lines H121, H486 and H656 and low sputtering rates was found. Hydrogen effects exist for the spectral lines of Cu(II) 219 and Ti(I) 399. In Glow Discharge Mass Spectrometry, a linear dependency of the 1H ion current on the sputtered mass per time exists over the total range of hydrogen content investigated. Hydrogen effects also exist for the sensitivity of 48Ti and 63Cu. The sputtering rate of two-phase materials depends linearly on the sputtered mass per time of one phase, which allows the sputtering rate of two-phase materials with known composition to be predicted. KW - Hot-pressing KW - GD-OES KW - GD-MS KW - Calibration KW - Hydrogen KW - Titanium hydride KW - Sputtering KW - Two-phase system PY - 2021 DO - https://doi.org/10.1016/j.sab.2020.106039 VL - 176 SP - 106039 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-52074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin T1 - Calibration Beads for the Characterization of the Performance of Fluorescence-based High- Throughput and Imaging devices N2 - In all fluorescence-based techniques, the measured signals contain not only sample-related but also instrument-specific contributions, which limit the direct comparison of fluorescence data obtained e.g. on different devices or at different times and often hamper quantification. To rule out instrumentation as major source of variability of emission data, accepted fluorescence standards and procedures for the control of instrument specifications and long-term performance are required. For flow cytometry (FCM), a broad variety of fluorophore-stained polymer beads differing in emission wavelength and intensity is available for the testing of the alignment, sensitivity, and other parameters of FCM. These calibration tools are intended to facilitate the assessment of instrument performance to ensure reliable measurements and to improve the comparability of FCM experiments. As a step towards an improved comparability of fluorescence data, with special emphasis on spectroscopic methods measuring nano- and micrometer-sized fluorescent objects, we are currently developing a set of fluorescent polystyrene (PS) beads loaded with luminophores from the certified BAM-Kit “Spectral fluorescent standards”, initially developed for the calibration of fluorescence spectrometers. Here, we present first results from studies of these fluorophore-loaded polymer beads. Moreover, new beads are made to supplement this kit by encapsulating near-infrared (NIR)-emissive luminophores in PS beads to cover the UV/VIS, and NIR wavelength range. These beads are designed for calibration of flow cytometers and other fluorescence imaging systems to meet the increasing demand for reliable and comparable fluorescence data especially in strongly regulated areas like e.g. medical diagnostics. T2 - 29th Annual Conference of the German Society for Cytometry CY - Berlin, Germany DA - 25.09.2019 KW - Calibration beads KW - Fluorescence KW - Performance validation KW - imaging KW - FCM PY - 2019 AN - OPUS4-49422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stein, L. A1 - Wang, Cui A1 - Förster, C. A1 - Resch-Genger, Ute A1 - Heinze, K. T1 - Bulky ligands protect molecular ruby from oxygen quenching N2 - Chromium(III) complexes can show phosphorescence from the spin-flip excited doublet states 2E/2T1 in the near-infrared with high photoluminescence quantum yields and extremely long lifetimes in the absence of dioxygen. The prototype molecular ruby, [Cr(ddpd)2]3+ (ddpd = N,N’-dimethyl-N,N’-dipyridine-2-ylpyridine-2,6-diamine), has a photoluminescence quantum yield and a luminescence lifetime of 13.7% and 1.1 ms in deaerated acetonitrile, respectively. However, its luminescence is strongly quenched by 3O2 via an efficient Dexter-type energy transfer process. To enable luminescence applications of molecular rubies in solution under aerobic conditions, we explored the potential of sterically demanding ddpd ligands to shield the chromium(III) center from O2 using steady state and time-resolved photoluminescence spectroscopy. The structures of the novel complexes with sterically demanding ligands were investigated by single crystal X-ray diffraction and quantum chemically by density functional theory calculations. The O2 sensitivity of the photoluminescence was derived from absolutely measured photoluminescence quantum yields and excited state lifetimes under inert and aerobic conditions and by Stern–Volmer analyses of these data. Optimal sterically shielded chromium(III) complexes revealed photoluminescence quantum yields of up to 5.1% and excited state lifetimes of 518 μs in air-saturated acetonitrile, underlining the large potential of this ligand design approach to broaden the applicability of highly emissive chromium(III) complexes. KW - Fluorescence KW - Synthesis KW - Production KW - Optical spectroscopy KW - Ligand KW - Photophysics KW - Cr(III) KW - Mechanism KW - NIR KW - Sensor KW - Oxygen PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570807 DO - https://doi.org/10.1039/d2dt02950b VL - 51 IS - 46 SP - 17664 EP - 17670 PB - The Royal Society of Chemistry CY - Berlin AN - OPUS4-57080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Breaking the wall of uncertain origin N2 - Is it a parmesan cheese from Italy? Who painted the Mona Lisa? The determination of the place of origin is essential for consumer protection, detection of falsifications, and also to bring justice. All the tangible possess an isotopic fingerprint. However, current technologies are too expensive. We work on the development of fast and low-cost optical instruments and methods for isotope analysis. T2 - Falling Walls Lab Adlershof CY - Berlin, Germany DA - 27.09.2019 KW - Isotope analysis KW - Optical spectroscopy KW - Provenance PY - 2019 AN - OPUS4-49882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -