TY - JOUR A1 - Kraft, Marco A1 - Würth, Christian A1 - Muhr, Verena A1 - Hirsch, Thomas A1 - Resch-Genger, Ute T1 - Particle-size-dependent upconversion luminescence of NaYF4: Yb, Er nanoparticles in organic solvents and water at different excitation power densities N2 - A systematic study of the luminescence properties of monodisperse β-NaYF4: 20% Yb3+, 2% Er3+ upconversion nanoparticles (UCNPs) with sizes ranging from 12–43 nm is presented utilizing steady-state and time-resolved fluorometry. Special emphasis was dedicated to the absolute quantification of size- and environment-induced quenching of upconversion luminescence (UCL) by highenergy O–H and C–H vibrations from solvent and ligand molecules at different excitation power densities (P). In this context, the still-debated Population pathways of the 4F9/2 energy level of Er3+ were examined. Our results Highlight the potential of particle size and P value for color tuning based on the pronounced near-infrared emission of 12 nm UCNPs, which outweighs the red Er3+ emission under “strongly quenched” conditions and accounts for over 50% of total UCL in water. Because current rate equation models do not include such emissions, the suitability of these models for accurately simulating all (de)population pathways of small UCNPs must be critically assessed. Furthermore, we postulate population pathways for the 4F9/2 energy level of Er3+, which correlate with the size-, environment-, and P-dependent quenching states of the higher Er3+ energy levels. KW - Quantum Yield KW - Nanoparticle KW - Quenching KW - Upconversion PY - 2018 DO - https://doi.org/10.1007/s12274-018-2159-9 VL - 11 IS - 12 SP - 6360 EP - 6374 PB - Tsinghua Univ. Press CY - Beijing AN - OPUS4-47172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Pauli, Jutta A1 - Resch-Genger, Ute T1 - Fluorescence intensity and quantum yield reference materials for standardization of fluorescence-based measurements N2 - Luminescence techniques are amongst the most commonly used analytical methods in life and material sciences due to their high sensitivity, nondestructive character, and easy instrumentation suitable for miniaturization. Photoluminescence signals are, however, affected by wavelength-, polarization-, and time-dependent instrument-related effects. Thus, at the core of standardization approaches for all fluorescence-based techniques are evaluated fluorescence standards for the consideration of instrument-specific spectral and intensity distortions of measured signals and for instrument performance validation (IPV). Here, we summarize the research of BAM division 1.2 on development of liquid and solid fluorescence standards for various application-relevant fluorescence parameters and techniques. The portfolio of BAM fluorescence reference materials presently consists of: i) a Spectral Fluorescence Standard Kit, i.e., a set of liquid fluorescence standards with certified normalized corrected emission spectra, for the determination of a broad variety of fluorescence parameters ii) a ready-to-use, glass-based multi-emitter fluorescence standard for IPV and the determination of instrument-to-instrument variations iii) specially adapted calibration tools and validation concepts for microarray-based platforms used in molecular diagnostics and food safety control iv) quantum yield (Φf) standards for relative determination of the key performance parameter Φf of fluorescent materials, which can be also used for the evaluation of the performance of absolute, standard-free methods utilizing integrating sphere setups or spectrometer accessories. These materials, that will eventually cover the ultraviolet, visible, and near infrared spectral region, are currently under certification. This toolbox of method-adapted reference materials can perfectly complement existing fluorescence standards. These easy-to-use, reference materials can pave the way to traceable fluorescence measurements to a radiometric scale like the spectral radiance or spectral photon radiance for all users of fluorescence techniques in material sciences and analysis, as well as environmental monitoring and biotechnology. They are particularly useful for customers working in strongly regulated areas like medical diagnostics or pharmaceutical research, where certified standards in conjunction with validated standard operating procedures are mandatory. T2 - International Symposium on Biological and Environmental Reference Materials BERM-15 CY - Berlin, Germany DA - 23.09.2018 KW - Reference materials KW - Fluorescence standards PY - 2018 AN - OPUS4-47140 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Duewer, D. L. A1 - Murray, J. A. A1 - Wood, L. J. A1 - Wise, S. A. A1 - Hein, Sebastian A1 - Koch, Matthias A1 - Philipp, Rosemarie A1 - Werneburg, Martina A1 - Hackenberg, R. A1 - Polzer, J. A1 - Avila, M. A. A1 - Serrano, V. A1 - Kakoulides, E. A1 - Alexopoulos, C. A1 - Giannikopoulou, P. A1 - Gui, E. M. A1 - Lu, T. A1 - Teo, T. L. A1 - Hua, T. A1 - Dazhou, C. A1 - Chunxin, L. A1 - Changjun, Y. A1 - Hongmei, L. A1 - Nammoonnoy, J. A1 - Sander, L. C. A1 - Lippa, K. A1 - Quinn, L. A1 - Swiegelaar, C. A1 - Fernandes-Whaley, M. A1 - Gören, A. C. A1 - Gökcen, T. T1 - CCQM-K95.1 Low-polarity analytes in a botanical matrix: Polycyclic aromatic hydrocarbons (PAHs) in tea N2 - Extraction, chromatographic separation, and quantification of low-concentration organic compounds in complex matrices are core challenges for reference material producers and providers of calibration services. Evidence of successful participation in formal, relevant international comparisons is needed to document measurement capability claims made by national metrology institutes (NMIs) and designated institutes (DIs). To enable NMIs and DIs to update or establish their claims, in 2014 the Organic Analysis Working Group (OAWG) initiated CCQM-K95.1 "Low-Polarity Analytes in a Botanical Matrix: Polycyclic Aromatic Hydrocarbons (PAHs) in Tea". This was a follow-on comparison from CCQM-K95 which was completed in 2014. The polycyclic aromatic hydrocarbons (PAHs) benz[a]anthracene (BaA) and benzo[a]pyrene (BaP) are considered priority pollutants by U.S. Environmental Protection Agency and are regulated contaminants in food, pose chromatographic separation challenges, and for which exist well-characterized measurement procedures and standard materials. BaA and BaP in a smoked tea were therefore selected as representative target measurands for CCQM-K95.1. Ten NMIs participated in CCQM-K95.1. The consensus summary mass fractions for the two PAHs are in the range of (50 to 70) ng/g with relative standard deviations of (6 to 10) %. Successful participation in CCQM K95.1 demonstrates the following measurement capabilities in determining mass fraction of organic compounds, with molar mass of 100 g/mol to 500 g/mol and having polarity pKow −2, in a botanical matrix ranging in mass fraction from 10 ng/g to 1000 ng/g: (1) value assignment of primary reference standards (if in-house purity assessment carried out), (2) value assignment of single and/or multi-component organic solutions, (3) extraction of analytes of interest from the matrix, (4) cleanup and separation of analytes of interest from interfering matrix or extract components, and (5) separation and quantification using gas chromatography or liquid chromatography. KW - Benz[a]anthracene (BaA) KW - Benzo[a]pyrene (BaP) KW - Gas chromatography (GC) KW - Isotope dilution (ID) KW - Liquid chromatography (LC) KW - Mass spectrometry (MS) KW - Polycyclic aromatic hydrocarbon (PAH) KW - Yerba mate tea PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471430 DO - https://doi.org/10.1088/0026-1394/56/1A/08002 SN - 0026-1394 SN - 1681-7575 VL - 56 IS - 1 A SP - 08002, 1 EP - 89 PB - IOP Science AN - OPUS4-47143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Duewer, D. L. A1 - Sander, L. C. A1 - Wise, S. A. A1 - Philipp, Rosemarie A1 - Hein, Sebastian A1 - Hackenberg, R. A1 - Polzer, J. A1 - Avila, M. A. A1 - Serrano, V. A1 - Kakoulides, E. A1 - Alexopoulos, C. A1 - Giannikopoulou, P. A1 - Chan, P. A1 - Lee, H. A1 - Tang, H. A1 - Tang, P. A1 - Yip, Y. A1 - Lu, T. A1 - Cheow, P. S. A1 - Teo, T. L. A1 - Sega, M. A1 - Rolle, F. A1 - Baek, S. A1 - Kim, B. A1 - Lee, S. A1 - Cabillic, J. A1 - Fallot, C. A1 - Hua, T. A1 - Dazhou, C. A1 - Changjun, Y. A1 - Chunxin, L. A1 - Hongmei, L. A1 - Lippa, K. A1 - Itoh, N. A1 - Quinn, L. A1 - Prevoo-Franzsen, D. A1 - Fernandes-Whaley, M. A1 - Gören, A. C. A1 - Gökcen, T. A1 - Gündüz, S. A1 - Krylov, A. A1 - Mikheeva, A. A1 - Baldan, A. A1 - van der Hout, J. W. A1 - van der Veen, A. M. H. T1 - CCQM-K131 Low-polarity analytes in a multicomponent organic solution: Polycyclic aromatic hydrocarbons (PAHs) in acetonitrile N2 - Solutions of organic analytes of known mass fraction are typically used to calibrate the measurement processes used to determine these compounds in matrix samples. Appropriate value assignments and uncertainty calculations for calibration solutions are critical for accurate measurements. Evidence of successful participation in formal, relevant international comparisons is needed to document measurement capability claims (CMCs) made by national metrology institutes (NMIs) and designated institutes (DIs). To enable NMIs and DIs to update or establish their claims, in 2015 the Organic Analysis Working Group (OAWG) sponsored CCQM-K131 "Low-Polarity Analytes in a Multicomponent Organic Solution: Polycyclic Aromatic Hydrocarbons (PAHs) in Acetonitrile". Polycyclic aromatic hydrocarbons (PAHs) result from combustion sources and are ubiquitous in environmental samples. The PAH congeners, benz[a]anthracene (BaA), benzo[a]pyrene (BaP), and naphthalene (Nap) were selected as the target analytes for CCQM-K131. These targets span the volatility range of PAHs found in environmental samples and include potentially problematic chromatographic separations. Nineteen NMIs participated in CCQM-K131. The consensus summary mass fractions for the three PAHs are in the range of (5 to 25) μg/g with relative standard deviations of (2.5 to 3.5) %. Successful participation in CCQM-K131 demonstrates the following measurement capabilities in determining mass fraction of organic compounds of moderate to insignificant volatility, molar mass of 100 g/mol up to 500 g/mol, and polarity pKow < −2 in a multicomponent organic solution ranging in mass fraction from 100 ng/g to 100 μg/g: (1) value assignment of primary reference standards (if in-house purity assessment carried out), (2) value assignment of single and/or multi-component organic solutions, and (3) separation and quantification using gas chromatography or liquid chromatography. KW - Benz[a]anthracene (BaA) KW - Benzo[a]pyrene (BaP) KW - Gas chromatography (GC) KW - Isotope dilution (ID) KW - Liquid chromatography (LC) KW - Mass spectrometry (MS) KW - Naphthalene (Nap) KW - Organic calibration solution KW - Polycyclic aromatic hydrocarbon (PAH) PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471442 DO - https://doi.org/10.1088/0026-1394/56/1A/08003 SN - 0026-1394 SN - 1681-7575 VL - 56 IS - 1A SP - 08003, 1 EP - 102 PB - IOP Science AN - OPUS4-47144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas T1 - Low-field NMR spectroscopy: Applications in chemical and pharmaceutical process development N2 - Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short down-times between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. The advances of a fully automated NMR sensor were exploited, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as , e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. The talk also generally covers current aspects of high-field and low-field online NMR spectroscopy for reaction monitoring and process control and gives also an overview on direct dissolution studies of API cocrystals. T2 - Discussion Meeting Pharmaceutical Development Bayer AG Wuppertal CY - Wuppertal, Germany DA - 15.01.2019 KW - Process analytical technology KW - Low-field NMR spectroscopy KW - Online NMR spectroscopy KW - Cocrystals KW - Dissolution KW - CONSENS PY - 2019 AN - OPUS4-47201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Preiss, J. A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Martínez, T. J. A1 - Resch-Genger, Ute A1 - Presselt, M. T1 - Ab initio prediction of fluorescence lifetimes involving solvent environments by means of COSMO and vibrational broadening N2 - The fluorescence lifetime is a key property of fluorophores that can be utilized for microenvironment probing, analyte sensing, and multiplexing as well as barcoding applications. For the rational design of lifetime probes and barcodes, theoretical methods have been developed to enable the ab initio prediction of this parameter, which depends strongly on interactions with solvent molecules and other chemical species in the emitters' immediate environment. In this work, we investigate how a conductor-like screening model (COSMO) can account for variations in fluorescence lifetimes that are caused by such fluorophore−solvent interactions. Therefore, we calculate vibrationally broadened fluorescence spectra using the nuclear ensemble method to obtain distorted molecular geometries to sample the electronic transitions with time-dependent density functional theory (TDDFT). The influence of the solvent on fluorescence lifetimes is accounted for with COSMO. For example, for 4-hydroxythiazole fluorophore containing different heteroatoms and acidic and basic moieties in aprotic and protic solvents of varying polarity, this approach was compared to experimentally determined lifetimes in the same solvents. Our results demonstrate a good correlation between theoretically predicted and experimentally measured fluorescence lifetimes except for the polar solvents Ethanol and acetonitrile that can specifically interact with the heteroatoms and the carboxylic acid of the thiazole derivative. KW - Fluorescence lifetime KW - Ab initio calculation KW - COSMO KW - Conductor-like screening model PY - 2018 DO - https://doi.org/10.1021/acs.jpca.8b08886 SN - 1089-5639 SN - 1520-5215 VL - 122 IS - 51 SP - 9813 EP - 9820 PB - American Chemical Society CY - Washington, DC AN - OPUS4-47177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas T1 - Compact NMR spectroscopy: A versatile tool for automated continuous-flow production of chemicals and pharmaceuticals N2 - Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short down-times between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. The advances of a fully automated NMR sensor were exploited, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as , e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. T2 - Process Development Seminar Bayer AG Dormagen CY - Dormagen, Germany DA - 14.01.2019 KW - Process analytical technology KW - Low-field NMR spectroscopy KW - Online NMR spectroscopy KW - CONSENS PY - 2019 AN - OPUS4-47197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Trog, S. A1 - El-Khatib, Ahmed A1 - Beck, S. A1 - Makowski, M. A1 - Jakubowski, Norbert A1 - Linscheid, M. T1 - Complementarity of molecular and elemental mass spectrometric imaging of Gadovist™ in mouse tissues N2 - Drug biodistribution analyses can be considered a key issue in pharmaceutical discovery and development. Here, mass spectrometric imaging can be employed as a powerful tool to investigate distributions of drug compounds in biologically and medically relevant tissue sections. Both matrix-assisted laser desorption ionization–mass spectrometric imaging as molecular method and laser ablation inductively coupled plasma–mass spectrometric imaging as elemental detection method were applied to determine drug distributions in tissue thin sections. Several mouse organs including the heart, kidney, liver, and brain were analyzed with regard to distribution of Gadovist™, a gadolinium-based contrast agent already approved for clinical investigation. This work demonstrated the successful detection and localization of Gadovist™ in several organs. Furthermore, the results gave evidence that gadolinium-based contrast agents in general can be well analyzed by mass spectrometric imaging methods. In conclusion, the combined application of molecular and elemental mass spectrometry could complement each other and thus confirm analytical results or provide additional information. KW - Laser ablation inductively coupled plasma–mass spectrometry imaging (LA-ICP-MSI) KW - Gadolinium-based contrast agents (GBCAs) KW - Matrix-assisted laser desorption ionization–mass spectrometry imaging (MALDI-MSI) PY - 2019 DO - https://doi.org/10.1007/s00216-018-1477-9 SN - 1618-2642 SN - 1618-2650 VL - 411 IS - 3 SP - 629 EP - 637 PB - Springer AN - OPUS4-47371 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Arakawa, Akihiro A1 - Jakubowski, Norbert A1 - Flemig, Sabine A1 - Köllensperger, G. A1 - Rusz, M. A1 - Iwahata, D. A1 - Traub, Heike A1 - Hirata, T. T1 - LA-ICP-MS study of Ag nanoparticle transport in a three-dimensional in vitro model N2 - We have applied laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with subcellular resolution as an elemental mass microscope to investigate the distributions of Ag nanoparticles (NP) in a 3-dimentional multicellular spheroid (MCS) model. The production of MCS has been optimized by changing the seeding cell number (500 to 40,000 cells) and the growth period (1 to 10 days). Incubations of MCS with Ag nanoparticle suspensions were performed with a concentration of 5 µg mL-1 for 24 hours. Thin-sections of the Eosin stained MCS were analysed by elemental mass microscopy using LA-ICP-MS to image distributions of 109Ag, 31P, 63Cu, 66Zn and 79Br. A calibration using NP suspensions was applied to convert the measured Ag intensity into the number of particles being present in each measurement pixel. The numbers of NP determined ranged from 30 up to 4,000 particles in an enrichment zone. The particle distribution was clearly correlated to 31P, 66Zn and 79Br and was localized in an outer rim of proliferating cells (confirmed by DAPI) with a width of about two-single cell diameters. For the highest seeding cell number NPs were only detected in this outer rim, whereas small molecules as for instance 79Br and 109Ag ions were detected in the core of the MCS as well. Aniline blue staining demonstrated that this outer rim was rich in collagen structures in which fibroblast cells were embedded and a thin-membrane was visible which separated the core from the biological active cell layer functioning as biological barriers for NP transport. In this presentation, we will show the possibility using this 3-dimensional model for toxicological and medical applications. T2 - European Winter Conference on Plasma Spectrochemistry EWCPS-2019 CY - Pau, France DA - 03.02.2019 KW - Laser ablation KW - ICP-MS KW - Nanoparticles KW - Cell KW - Multicellular spheroid PY - 2019 AN - OPUS4-47374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Roland A1 - Sauer, Andreas A1 - Bremser, Wolfram T1 - Fifteen years of proficiency testing of total petrol hydrocarbon determination in soil: a story of success N2 - The total petrol hydrocarbon (TPH) content in soil is determined by gas chromatographic separation and flame ionisation detection according to ISO 16703 in routine laboratories for about 20 years. The development of the interlaboratory variability observed with this analytical procedure over 15 years in a proficiency testing scheme conducted annually with more than 170 participants is evaluated in detail. A significant improvement of the reproducibility standard deviation among participants is observed over the years and attributed to an increasing familiarity with the procedure. Nevertheless, the determination of TPH in the environmentally relevant mass fraction range between 500 mg/kg and 10 000 mg/kg in soils or sediments is far from reaching the reproducibility standard deviations predicted by the Horwitz curve. It is seen that laboratories with sporadic participation tend to report higher bias, while a core group of laboratories participating on a regular basis arrived at reproducibility standard deviations below 20 %. Results from a given laboratory obtained on two different samples tend to be highly correlated in the same PT round indicating a sound repeatability. Expectedly, the within-laboratory correlation between results from consecutive rounds was considerably lower. However, results from consecutive rounds with a temporal distance of 1, 2 or 3 years revealed largely similar correlations which suggests that the within-laboratory reproducibility adjusts to a constant level at least after a period of 1 year. KW - Mineralölkohlenwasserstoffe KW - Boden KW - Ringversuch KW - Gaschromatographie KW - GC-FID KW - Eingnugsprüfung KW - Proficiency Testing PY - 2019 DO - https://doi.org/10.1007/s00769-019-01383-x SN - 0949-1775 SN - 1432-0517 VL - 24 IS - 4 SP - 289 EP - 296 PB - Springer AN - OPUS4-48419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Arakawa, Akihiro A1 - Jakubowski, Norbert A1 - Flemig, Sabine A1 - Koellensperger, G. A1 - Theiner, S. A1 - Schweikert, A. A1 - Iwahata, D. A1 - Traub, Heike A1 - Hirata, T. T1 - Localization of cells and exposed nanoparticles in three-dimensional in vitro tissue analog measured by means of an elemental microscopy based on LA-ICP-TOF-MS N2 - Metallic nanoparticles (NPs) are currently applied in a variety of consumer products and are also attractive for medical applications. With their widespread use, the potential for human exposure to NPs — either intended or unintended — is increasing. Therefore, many studies have evaluated the toxicity and transport mechanism of NPs. In comparison with two-dimensional cultured cells, multicellular spheroids (MCS) look promising to be used as a three-dimensional cellular model, having unique advantages in nanoparticle studies due to the fact that interactions with excreted extracellular matrix can be investigated. Fibroblast cells are one of the most important cell systems to express a microenvironment by excreting an abundant extracellular matrix. For bioimaging laser ablation inductively coupled-plasma mass spectrometry (LA-ICP-MS) is used in this investigation to study the interaction of metallic NPs with MCS for multi-element detection offering a wide dynamic range. As a mass spectrometer we have applied a time-of-flight (TOF) instrument for (quasi-) simultaneous detection of all isotopes of elements of interest. The aim of this study is to investigate the localization of silver (Ag) NPs exposed to fibroblast MCSs by means of LA-ICP-TOF-MS. In addition, for demonstrating elemental microscopy we chose phosphorous (31P) and iron (56Fe) to visualize regions of enriched extracellular matrix and single cells, respectively. In this presentation, we show that exposed Ag NPs are highly accumulated at the same position of single cells in an outer rim of fibroblast MCSs. T2 - 7th International Symposium on Metallomics CY - Warsaw, Poland DA - 30.06.2019 KW - Nanoparticle KW - Laser ablation KW - ICP-MS KW - Multicellular spheroid PY - 2019 AN - OPUS4-48425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lörchner, Dominique A1 - Dittmann, Daniel A1 - Braun, Ulrike A1 - Kroh, L. W. A1 - Köppen, Robert T1 - Investigation of two triazine-based heterocyclic brominated flame retardants by coupled thermogravimetry-Fourier transform infrared spectroscopy N2 - In this study, the thermal decomposition of 1,3,5-tris-(2,3-dibromopropyl)-1,3,5-triazine-2,4,6-trione (TDBPTAZTO) and 2,4,6-tris-(2,4,6-tribromo-phenoxy)-1,3,5-triazine (TTBP-TAZ) were investigated for the first time by thermogravimetric analysis. Both compounds were thermal degraded between 225 and 350 °C (TDBP-TAZTO) as well as 300 and 400 °C (TTBP-TAZ). As a result, mass loss (%) of 98.5% for TTBP-TAZ and 95.4% for TDBP-TAZTO at 600 °C under N2 were observed. The major pyrolytic degradation products of TTBP-TAZ were formed in a single step and identified by FTIR analysis as 2,4,6-tribromophenol and further bromine-substituted aromatic compounds. In comparison, TDBP-TAZTO was pyrolytic degraded in two steps, whereby on the first step the release of hydrogen Bromide and 1,3,5-triallyl-1,3,5-triazine-2,4,6-trione could be detected. In the second minor step, isocyanic acid could be additionally identified. Subsequently, the obtained products of the TGA-FTIR measurements were used for a targeted search for mass fragments in mass spectrometry measurements. For TTBP-TAZ, only the degradation product 1,3,5-tribromobenzene could be detected by MS/MS analyzes. No comparable thermal degradation products, except hydrogen bromide, were observed in the MS/MS spectra of TDBP-TAZTO. Therefore, the search of further mass fragments was not possible compared to the findings of the TGA-FTIR measurements. KW - Pyrolysis KW - Thermal decomposition KW - TGA-FTIR KW - Mass spectrometry PY - 2019 DO - https://doi.org/10.1016/j.jaap.2019.104635 VL - 141 SP - 104635-1 EP - 104635-5 PB - Elsevier B.V. AN - OPUS4-48506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Dell’Aglio, M. A1 - Motto-Ros, V. A1 - Pelascini, F. A1 - De Giacomo, A. T1 - Investigation on the material in the plasma phase by high temporally and spectrally resolved emission imaging during Pulsed Laser Ablation (PLAL) in Liquid for NPs production and consequent considerations on NPs formation N2 - In this paper experimental temperature and density maps of the laser induced plasma in water during Pulsed Laser ablation in Liquid (PLAL) for the production of metallic nanoparticles (NPs) has been determined. A detection system based on the simultaneous acquisition of two emission images at 515 and 410 nm has been constructed and the obtained images have been processed simultaneously by imaging software. The results of the data analysis show a variation of the temperature between 4000 and 7000 K over the plasma volume. Moreover, by the study of the temperature distribution and of the number densities along the plasma expansion axis it is possible to observe the condensation zone of the plasma where NPs can be formed. Finally, the time associated to the electron processes is estimated and the plasma charging effect on NPs is demonstrated. The set of observations retrieved from these experiments suggests the importance of the plasma phase for the growth of NPs and the necessity of considering the spatial distribution of plasma parameters for the understanding of one of the most important issues of the PLAL process, that is the source of solid material in the plasma phase. KW - LIBS KW - Laser induced plasma KW - Plasma modeling KW - Plasma diagnostics KW - Nanoparticle formation PY - 2019 DO - https://doi.org/10.1088/1361-6595/ab369b VL - 28 IS - 8 SP - Article Number: 085017 PB - IOP Publishing AN - OPUS4-48753 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ickert, Stefanie A1 - Beck, S. A1 - Linscheid, M. A1 - Riedel, Jens T1 - VUV Photodissociation Induced by a Deuterium Lamp in an Ion Trap N2 - Tandem mass spectrometry represents an important analytical tool to unravel molecular structures and to study the gas-phase behavior of organic molecules. Besides commonly used methods like collision-induced dissociation and electron capture or transfer dissociation, new ultraviolet light–based techniques have the potential to synergistically add to the activation methods. Here, we present a new simple, yet robust, experimental design for polychromatic activation of trapped ions using the 115–160 nm output of a commercially available deuterium lamp. The resulting continuous dissociative excitation with photons of a wide energy range from 7.7 to 10.8 eV is studied for a comprehensive set of analyte classes in both positive and negative ion modes. While being simple, affordable, compact, and of low maintenance, the new setup initiates fragmentation of most precursor ions via their known dissociation pathways. Additionally, some new fragmentation patterns were discovered. Especially, electron loss and electron capture reactions with subsequent fragmentations were observed. For oligonucleotides, peptides, carbohydrates, and organic dyes, in comparison to collision-induced dissociation, a significantly wider fragment distribution was obtained, resulting in an information increase. Since the individual photons carry enough energy to post-ionize the nascent fragments, a permanent vacuum ultraviolet light exposure inside the ion trap potentially goes along with a general increase in detection capability. KW - Fragmentation activation KW - Vacuum ultraviolet (VUV) light KW - Mass spectrometry KW - Tandem MS PY - 2019 DO - https://doi.org/10.1007/s13361-019-02282-8 SN - 1044-0305 VL - 30 IS - 10 SP - 2114 EP - 2122 PB - Springer Nature CY - Heidelberg AN - OPUS4-48756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Jungnickel, R. A1 - Dariz, P. T1 - Raman band widths of anhydrite II reveal the burning history of high‐fired medieval gypsum mortars N2 - When used as a mineral binder, gypsum is thermally dehydrated and mixed with water, resulting in a paste hardening in the backreaction to calcium sulphate dihydrate (CaSO4 · 2 H2O). Although nowadays mainly hemihydratebased (CaSO4 · ½ H2O) binders are employed, higher firing temperatures in medieval kilns yielded anhydrite II (CaSO4). Except for the discrimination of the metastable phases anhydrite III and I due to different crystal structures, variations within the production temperature range of anhydrite II (approximately 300 to 1180°C) were not analytically accessible until recently. This study describes the development of an analytical technique, which is based on steady changes of band widths in room‐temperature Raman spectra of anhydrite II as a function of burning temperature. Raman microspectroscopic mapping experiments enable to pinpoint individual unreacted grains of thermal anhydrite in mortars and to discriminate them from natural anhydrites originating from the raw gypsum. The determination of band full widths at half maximum of down to 3 cm−1 and differences between them of a few tenths of wavenumbers is not a trivial task. Thus, a focus of this work is on peak fitting and strategies for correction of instrument‐dependent band broadening, which is often neglected also beyond the field of mortar analysis. Including other potential influences on band widths, burning temperatures of 400 to 900°C can be retraced in high‐fired medieval gypsum mortars with an uncertainty of approximately ± 50 K, as demonstrated with sample material of a stucco sculpture dated around 1400. KW - Analytical methods KW - Gypsum dehydration KW - High-fired gypsum mortar KW - Raman band width determination KW - Thermal anhydrite PY - 2019 DO - https://doi.org/10.1002/jrs.5632 SN - 1097-4555 VL - 50 IS - 8 SP - 1154 EP - 1168 PB - Wiley AN - OPUS4-48757 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - The Dark Side of Science N2 - The Joint Summer School of the two Marie Skłodowska-Curie Innovative Training Networks (ITN) “BioCapture” and “GlycoImaging”, funded by the EU within the Horizon 2020 framework programme, which are both devoted to the development of new methods for cancer biomarker and cancer cell detection, will take place at the Adlershof Campus of BAM. 19 Early stage researchers of both projects will convene, discuss their own science and plan future collaborative research. Training in scientific writing (instructor: Luita Spangler, Free University of Berlin), an employability workshop (Antti Kapanen, University of Applied Sciences Berlin) and first contacts with the “dark side of science” (Brian R. Pauw, BAM) will complement the programme of the summer school. T2 - EU-ITN-Summer School CY - Adlershof, Berlin, Germany DA - 26.08.2019 KW - Scientific communication KW - Scientific rigour KW - Scientific method PY - 2019 AN - OPUS4-48760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arakawa, Akihiro A1 - Jakubowski, Norbert A1 - Koellensperger, G. A1 - Theiner, S. A1 - Schweikert, A. A1 - Flemig, Sabine A1 - Iwahata, D. A1 - Traub, Heike A1 - Hirata, T. T1 - Quantitative Imaging of Silver Nanoparticles and Essential Elements in Thin Sections of Fibroblast Multicellular Spheroids by High Resolution Laser Ablation Inductively Coupled Plasma Time-of-Flight Mass Spectrometry N2 - We applied high resolution laser ablation inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOF-MS) with cellular spatial resolution for bioimaging of nanoparticles uptaken by fibroblast multicellular spheroids (MCS). This was used to quantitatively investigate interactions of silver nanoparticles (Ag NPs) and the distributions of intrinsic minerals and biologically relevant elements within thin sections of a fibroblast MCS as a three-dimensional in vitro tissue model. We designed matrix-matched calibration standards for this purpose and printed them using a noncontact piezo-driven array spotter with a Ag NP suspension and multielement standards. The limits of detection for Ag, Mg, P, K, Mn, Fe, Co, Cu, and Zn were at the femtogram (fg) level, which is sufficient to investigate intrinsic minerals in thin MCS sections (20 μm thick). After incubation for 48 h, Ag NPs were enriched in the outer rim of the MCS but not detected in the core. The localization of Ag NPs was inhomogeneous in the outer rim, and they were colocalized with a single-cell-like structure visualized by Fe distribution (pixel size of elemental images: 5 × 0.5 μm). The quantitative value for the total mass of Ag NPs in a thin section by the present method agreed with that obtained by ICP-sector field (SF)-MS with a liquid mode after acid digestion. KW - Laser ablation KW - ICP-MS KW - Imaging KW - Nanoparticle KW - Cell KW - Spheroid PY - 2019 UR - https://pubs.acs.org/doi/10.1021/acs.analchem.9b02239 DO - https://doi.org/10.1021/acs.analchem.9b02239 SN - 0003-2700 VL - 91 IS - 15 SP - 10197 EP - 10203 PB - American Chemical Society, ACS Publications CY - Washington D.C. AN - OPUS4-48719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huan, Y. A1 - Gojani, Ardian A1 - Gornushkin, Igor B. A1 - Wang, X. A1 - Liu, D. A1 - Rong, M. T1 - Dynamics of laser-induced plasma splitting N2 - The dynamics of laser-induced plasma plume splitting is investigated using spatiotemporal plasma imaging and spectrometry in this paper. Plasma plume splitting into fast and slow components is clearly observed using plasma optical emission as time evolves. The spatial resolved plasma spectra are used to investigate the plasma species distribution, which reveals that the charged copper ions, which radiate at wavelength range 485 nm - 504 nm, are merely present in the fast component. In order to further interpret the mechanism, the pressure-dependent and laser energy-dependent plume splitting are analyzed. Based on the results, the charge separation field is proposed to explain this phenomenon. This work can be of importance for such areas as laser induced breakdown spectroscopy, laser-induced ion source formation, pulse laser deposition, film growth, and nanoscale synthesis. KW - Spectroscopy KW - Laser induced plasma KW - Splitting KW - Imaging PY - 2020 DO - https://doi.org/10.1016/j.optlaseng.2019.105832 SN - 0143-8166 VL - 124 SP - 1 EP - 5 PB - Elsevier CY - Amsterdam AN - OPUS4-48746 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Lopez-Linares, F. A1 - Poirier, L. A1 - Jakubowski, Norbert A1 - Recknagel, Sebastian A1 - Panne, Ulrich T1 - Shake, shut, and go – A fast screening of sulfur in heavy crude oils by highresolution continuum source graphite furnace molecular absorption spectrometry via GeS molecule detection N2 - A fast and simple method for sulfur quantification in crude oils was developed by using high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS). For this, heavy crude oil samples were prepared as microemulsion (shake) and injected into a graphite furnace (shut). Finally, the concentration of sulfur was determined by monitoring in situ the transient molecular spectrum of GeS at wavelength 295.205nm after adding a germanium solution as molecular forming agent (and go). Zirconium dioxide in the form of nanoparticles (45–55nm) was employed as a permanent modifier of the graphite furnace. Calibration was done with an aqueous solution standard of ammonium sulfate, and a characteristic mass (m0) of 7.5ng was achieved. The effectiveness of the proposed method was evaluated analizing, ten heavy crude oil samples with Sulfur amounts ranging between 0.3 and 4.5% as well as two NIST standard reference materials, 1620c and 1622e. Results were compared with those obtained by routine ICP-OES analysis, and no statistical relevant differences were found. KW - Heavy crude oil KW - Sulfur KW - HR-CS-MAS KW - Germanium sulfide KW - Microemulsion PY - 2019 DO - https://doi.org/10.1016/j.sab.2019.105671 SN - 0584-8547 VL - 160 SP - 105671 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-48747 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schürmann, Robin A1 - Ebel, Kenny A1 - Nicolas, C. A1 - Milosavljevic, A. R. A1 - Bald, Ilko T1 - Role of valence band states and plasmonic enhancement in electron-transfer-induced transformation of nitrothiophenol N2 - Hot-electron-induced reactions are more and more recognized as a critical and ubiquitous reaction in heterogeneous catalysis. However, the kinetics of these reactions is still poorly understood, which is also due to the complexity of plasmonic nanostructures. We determined the reaction rates of the hot-electron-mediated reaction of 4-nitrothiophenol (NTP) on gold nanoparticles (AuNPs) using fractal kinetics as a function of the laser wavelength and compared them with the plasmonic enhancement of the system. The reaction rates can be only partially explained by the plasmonic response of the NPs. Hence, synchrotron X-ray photoelectron spectroscopy (XPS) measurements of isolated NTP-capped AuNP clusters have been performed for the first time. In this way, it was possible to determine the work function and the accessible valence band states of the NP systems. The results show that besides the plasmonic enhancement, the reaction rates are strongly influenced by the local density of the available electronic states of the system. KW - Photocatalytic reduction KW - Raman-spectroscopy KW - Hot-electrons KW - Work function KW - Surface KW - Nanaoparticles KW - Scattering KW - Molecule KW - Carriers KW - Layers PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486464 DO - https://doi.org/10.1021/acs.jpclett.9b00848 SN - 1948-7185 VL - 10 IS - 11 SP - 3153 EP - 3158 PB - American Chemical Society CY - Washington, DC AN - OPUS4-48646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -