TY - THES A1 - Abbas, Ioana M. T1 - Development of LC-MS/MS methods for the quantitative determination of hepcidin-25, a key regulator of iron metabolism N2 - Isotope-dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS) is emerging in the field of clinical chemistry and laboratory medicine as an alternative to immunoassays and is acknowledged as the MS “gold standard” for small biomolecule quantification. Hepcidin-25, a key iron-regulatory peptide hormone discovered in 2000, has revolutionized the understanding of iron disorders and its quantitative determination in biological samples should advance the management of iron-related pathology (diagnosis, prognosis and treatment). This study applied LC-MS/MS, using the triple quadrupole (QqQ) mass spectrometer, in a rapid and robust analytical strategy for the quantification of hepcidin-25 in human serum, to be implemented in routine laboratories. For this purpose, two sample preparation strategies and two complementary chromatographic separation conditions were investigated, where the use of acidic mobile phases (0.1% trifluoroacetic acid) was compared with a novel approach involving solvents at high pH (containing 0.1% ammonia). The application of these LC-MS/MS methods to human samples in an intra-laboratory comparison, using the same hepcidin-25 calibrators, yielded a very good correlation of the results. The LC-MS/MS employing trifluoroacetic acid-based mobile phases was selected as a highly sensitive (limit of quantification LOQ of 0.5 μg/L) and precise (coefficient of variation CV<15%) method and was recommended as a reference method candidate for hepcidin-25 quantification in real samples (in the dynamic range of 0.5-40 μg/L). One of the novel aspects of the methodology was the use of amino- and fluoro-silanized autosampler vials to reduce the interaction of the 25-residue peptide to laboratory glassware surfaces. Moreover, this LC-MS/MS method was used for an international round robin study, applying a secondary reference material as a calibrator. By determining the degree of equivalence between the results of the ten participating methodologies, the performance of the method developed in this study was found to be in the optimal range as defined by the International Consortium for Harmonization of Clinical Laboratory Results (ICHCLR). In this work, the formation of hepcidin-25 complexes with copper(II) was investigated. The first reversed-phase chromatographic separation of hepcidin-25/Cu2+ and hepcidin-25 (copper “free”) was achieved by applying mobile phases containing 0.1% of ammonia (pH 11). LC-MS/MS and high-resolution mass spectrometry (Fourier-transform ion cyclotron resonance (FTICR) MS) were applied for the mass spectrometric characterization of the formed hepcidin-25-Cu(II) species at pH values of 11 and 7.4 respectively. A new species corresponding to hepcidin-25 complexed with two copper ions was identified at high pH. KW - Copper KW - LC-MS/MS KW - Chromatography KW - Mass spectrometry KW - Metal complex KW - Metalloprotein KW - Peptide KW - Metrology KW - Reference material PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:11-110-18452/20119-6 UR - https://edoc.hu-berlin.de/handle/18452/20119?show=full DO - https://doi.org/10.18452/19358 SP - 1 EP - 156 CY - Berlin AN - OPUS4-45780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Martin A1 - Tscheuschner, Georg A1 - Herrmann, Stefan A1 - Weller, Michael G. T1 - Fast Detection of 2,4,6-Trinitrotoluene (TNT) at ppt Level by a Laser-Induced Immunofluorometric Biosensor N2 - The illegal use of explosives by terrorists and other criminals is an increasing issue in public spaces, such as airports, railway stations, highways, sports venues, theaters, and other large buildings. Security in these environments can be achieved by different means, including the installation of scanners and other analytical devices to detect ultra-small traces of explosives in a very short time-frame to be able to take action as early as possible to prevent the detonation of such devices. Unfortunately, an ideal explosive detection system still does not exist, which means that a compromise is needed in practice. Most detection devices lack the extreme analytical sensitivity, which is nevertheless necessary due to the low vapor pressure of nearly all explosives. In addition, the rate of false positives needs to be virtually zero, which is also very difficult to achieve. Here we present an immunosensor system based on kinetic competition, which is known to be very fast and may even overcome affinity limitation, which impairs the performance of many traditional competitive assays. This immunosensor consists of a monolithic glass column with a vast excess of immobilized hapten, which traps the fluorescently labeled antibody as long as no explosive is present. In the case of the explosive 2,4,6-trinitrotoluene (TNT), some binding sites of the antibody will be blocked, which leads to an immediate breakthrough of the labeled protein, detectable by highly sensitive laser-induced fluorescence with the help of a Peltier-cooled complementary metal-oxide-semiconductor (CMOS) camera. Liquid handling is performed with high-precision syringe pumps and chip-based mixing-devices and flow-cells. The system achieved limits of detection of 1 pM (1 ppt) of the fluorescent label and around 100 pM (20 ppt) of TNT. The total assay time is less than 8 min. A cross-reactivity test with 5000 pM solutions showed no signal by pentaerythritol tetranitrate (PETN), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). This immunosensor belongs to the most sensitive and fastest detectors for TNT with no significant cross-reactivity by non-related compounds. The consumption of the labeled antibody is surprisingly low: 1 mg of the reagent would be sufficient for more than one year of continuous biosensor operation. KW - Airport KW - Aviation KW - Bombs KW - Terrorism KW - Biosensing KW - Continuous Sensor KW - High-Speed KW - Ultrasensitive PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511245 DO - https://doi.org/10.3390/bios10080089 VL - 10 IS - 8 SP - 89 PB - MDPI CY - Basel AN - OPUS4-51124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tscheuschner, Georg A1 - Schwaar, Timm A1 - Weller, Michael G. T1 - Fast Confirmation of Antibody Identity by MALDI-TOF MS Fingerprints N2 - Thousands of antibodies for diagnostic and other analytical purposes are on the market. However, it is often difficult to identify duplicates, reagent changes, and to assign the correct original publications to an antibody. This slows down scientific progress and might even be a cause of irreproducible research and a waste of resources. Recently, activities were started to suggest the sole use of recombinant antibodies in combination with the open communication of their sequence. In this case, such uncertainties should be eliminated. Unfortunately, this approach seems to be rather a long-term vision since the development and manufacturing of recombinant antibodies remain quite expensive in the foreseeable future. Nearly all commercial antibody suppliers also may be reluctant to publish the sequence of their antibodies, since they fear counterfeiting. De novo sequencing of antibodies is also not feasible today for a reagent user without access to the hybridoma clone. Nevertheless, it seems to be crucial for any scientist to have the opportunity to identify an antibody undoubtedly to guarantee the traceability of any research activity using antibodies from a third party as a tool. For this purpose, we developed a method for the identification of antibodies based on a MALDI-TOF MS fingerprint. To circumvent lengthy denaturation, reduction, alkylation, and enzymatic digestion steps, the fragmentation was performed with a simple formic acid hydrolysis step. Eighty-nine unknown monoclonal antibodies were used for this study to examine the feasibility of this approach. Although the molecular assignment of peaks was rarely possible, antibodies could be easily recognized in a blinded test, simply from their mass-spectral fingerprint. A general protocol is given, which could be used without any optimization to generate fingerprints for a database. We want to propose that, in most scientific projects relying critically on antibody reagents, such a fingerprint should be established to prove and document the identity of the used antibodies, as well as to assign a specific reagent to a datasheet of a commercial supplier, public database record, or antibody ID. KW - Reproducibility KW - Quality Control KW - Traceability KW - Diagnostics KW - Hybridoma KW - Monoclonal Antibody KW - Recombinant Antibody PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506611 DO - https://doi.org/10.3390/antib9020008 SN - 2310-287X VL - 9 IS - 2 SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-50661 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brangsch, J. A1 - Reimann, C. A1 - Kaufmann, Jan Ole A1 - Adams, L. C. A1 - Onthank, D. A1 - Thöne-Reineke, C. A1 - Robinson, S. A1 - Wilke, Marco A1 - Weller, Michael G. A1 - Buchholz, R. A1 - Karst, U. A1 - Botnar, R. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Molecular MR-Imaging for Noninvasive Quantification of the Anti-Inflammatory Effect of Targeting Interleukin-1β in a Mouse Model of Aortic Aneurysm N2 - Background: Molecular-MRI is a promising imaging modality for the assessment of abdominal aortic aneurysms (AAAs). Interleukin-1β (IL-1β) represents a new therapeutic tool for AAA-treatment, since pro-inflammatory cytokines are key-mediators of inflammation. This study investigates the potential of molecular-MRI to evaluate therapeutic effects of an anti-IL-1β-therapy on AAA-formation in a mouse-model. Methods: Osmotic-minipumps were implanted in apolipoprotein-deficient-mice (N = 27). One group (Ang-II+01BSUR group, n = 9) was infused with angiotensin-II (Ang-II) for 4 weeks and received an anti-murine IL-1β-antibody (01BSUR) 3 times. One group (Ang-II-group, n = 9) was infused with Ang-II for 4 weeks but received no treatment. Control-group (n = 9) was infused with saline and received no treatment. MR-imaging was performed using an elastin-specific gadolinium-based-probe (0.2 mmol/kg). Results: Mice of the Ang-II+01BSUR-group showed a lower aortic-diameter compared to mice of the Ang-II-group and control mice (p < 0.05). Using the elastin-specific-probe, a significant decrease in elastin-destruction was observed in mice of the Ang-II+01BSUR-group. In vivo MR-measurements correlated well with histopathology (y = 0.34x-13.81, R2 = 0.84, p < 0.05), ICP-MS (y = 0.02x+2.39; R2 = 0.81, p < 0.05) and LA-ICP-MS. Immunofluorescence and western-blotting confirmed a reduced IL-1β-expression. Conclusions: Molecular-MRI enables the early visualization and quantification of the anti-inflammatory-effects of an IL-1β-inhibitor in a mouse-model of AAAs. Responders and non-responders could be identified early after the initiation of the therapy using molecular-MRI. KW - Cardiovascular KW - Molecular-MRI KW - Magnetic resonance imaging KW - Gadolinium-based contrast agent KW - Elastin-specific contrast agent ESMA KW - Gadovist KW - Gadofosveset KW - MR Angiography KW - Inductively Coupled Mass Spectroscopy KW - Element Specific Bioimaging Using Laser Ablation KW - Visualization PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517150 DO - https://doi.org/10.1177/1536012120961875 VL - 19 SP - 61875 PB - SAGE AN - OPUS4-51715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Paul, Martin A1 - Weller, Michael G. T1 - Antibody Screening by Microarray Technology – Direct Identification of Selective High-Affinity Clones N2 - The primary screening of hybridoma cells is a time-critical and laborious step during the development of monoclonal antibodies. Often critical errors occur in this phase, which supports the notion that the generation of monoclonal antibodies with hybridoma technology is difficult to control and hence a risky venture. We think that it is crucial to improve the screening process to eliminate most of the immanent deficits of the conventional approach. With this new microarray-based procedure, several advances could be achieved: Selectivity for excellent binders, high throughput, reproducible signals, avoidance of misleading avidity (multivalency) effects, and simultaneous performance of competition experiments. The latter can directly be used to select clones of desired cross-reactivity properties. In this paper, a model system with two excellent clones against carbamazepine, two weak clones and blank supernatant has been designed to examine the effectiveness of the new system. The excellent clones could be detected largely independent of the IgG concentration, which is unknown during the clone screening since the determination and subsequent adjustment of the antibody concentration is not possible in most cases. Furthermore, in this approach, the enrichment, isolation, and purification of IgG for characterization is not necessary. Raw cell culture supernatant can be used directly, even when fetal calf serum (FCS) or other complex media had been used. In addition, an improved method for the oriented antibody-immobilization on epoxy-silanized slides is presented. Based on the results of this model system, we conclude that this approach should be preferable to most other protocols leading to many of false positives, causing expensive and lengthy confirmation steps to weed out the poor clones. KW - Hybridoma KW - Monoclonal Antibodies KW - Clones KW - Competitive Immunoassay KW - Hapten Immunoassay KW - False Positives PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506621 DO - https://doi.org/10.20944/preprints201911.0023.v1 SN - 2310-287X SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-50662 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Tscheuschner, Georg A1 - Schwaar, Timm A1 - Weller, Michael G. T1 - Fast Confirmation of Antibody Identity by MALDI-TOF-MS Fingerprints N2 - Thousands of antibodies for diagnostic and other analytical purposes are on the market. However, it is often difficult to identify duplicates, reagent changes, and to assign the correct original publications to an antibody. This slows down scientific progress and might even be a cause of irreproducible research and a waste of resources. Recently, activities were started to suggest the sole use of recombinant antibodies in combination with the open communication of their sequence. In this case, such uncertainties should be eliminated. Unfortunately, this approach seems to be rather a long-term vision since the development and manufacturing of recombinant antibodies remain quite expensive in the foreseeable future. Also, nearly all commercial antibody suppliers may be reluctant to publish the sequence of their antibodies, since they fear counterfeiting. De-novo sequencing of antibodies is also not feasible today for a reagent user without access to the hybridoma clone. Nevertheless, it seems to be crucial for any scientist to have the opportunity to identify an antibody undoubtedly to guarantee the traceability of any research activity using antibodies from a third party as a tool. For this purpose, we developed a method for the identification of antibodies based on a MALDI-TOF-MS fingerprint. To circumvent lengthy denaturation, reduction, alkylation, and enzymatic digestion steps, the fragmentation was performed with a simple formic acid hydrolysis step. Eighty-nine unknown monoclonal antibodies were used for this study to examine the feasibility of this approach. Although the molecular assignment of peaks was rarely possible, antibodies could be easily recognized in a blinded test, simply from their mass-spectral fingerprint. A general protocol is given, which could be used without any optimization to generate fingerprints for a database. We want to propose that in most scientific projects relying critically on antibody reagents, such a fingerprint should be established to prove and document the identity of the used antibodies and to assign a specific reagent to a datasheet of a commercial supplier, a public database record or an antibody ID. KW - Reproducibility KW - Quality Control KW - Traceability KW - Diagnostics KW - ELISA KW - Immunoassay PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506590 DO - https://doi.org/10.20944/preprints202002.0207.v1 SN - 2310-287X SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-50659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Costa, Elena A1 - Climent Terol, Estela A1 - Weller, Michael G. A1 - Rurack, Knut T1 - Development of a rapid test for on-site measurement of pyrethroid surface residues N2 - Type-I pyrethroids are frequently used for disinfection purposes against insects such as adult mosquitoes, or diseases carried by insects, like Malaria or Zika in cabins of airplanes on long-distance flights especially from tropical destinations. This treatment is mandatory at various airports but compliance with the rules is difficult to test for. Moreover, if improperly used, these compounds can entail negative health effects for crews and passengers. The detection of the pyrethroids will be achieved thanks to an antibody-gated indicator delivery system (gAID) utilizing monoclonal antibodies and hybrid sensory nanoparticles. After the interaction of the pyrethroid with the gAID, the liberated indicator (dye) will be detected. Since only few analyte molecules are necessary for pore opening yet release a large number of dyes, the system shows intrinsic signal amplification. The device system to be developed has to be so simple that chemically untrained personnel, such as ground or cabin crew, can use it and obtain a result in a reasonably short period of time, e.g., ≤5 min. The need for high accuracy and sufficient sensitivity, established at 0.001 g m–2, is a critical requirement and imposes another significant challenge since this value is beyond current LFTs reported in the literature for pesticide detection to date. In order to achieve the selectivity and sensitivity required by the test itself, and to avoid cross reactivity with other type I pyrethroids, the production of a monoclonal antibody for both Permethrin and Phenontrin is necessary. The synthesis of the two hapten molecules and the subsequent immunization with different immunogens represent the first goal of the work. T2 - Rapid Methods Europe 2018 CY - Amsterdam, The Netherlands DA - 05.11.2018 KW - Pyrethroids KW - Raid test KW - Test strip KW - Delivery system KW - Air traffic PY - 2018 AN - OPUS4-47128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diepeveen, L. E. A1 - Laarakkers, C. M. M. A1 - Martos, G. A1 - Pawlak, M. E. A1 - Uguz, F. F. A1 - Verbene, K. E. S. A. A1 - van Swelm, R. P. L. A1 - Klaver, S. A1 - de Haan, A. F. J. A1 - Pitts, K. R. A1 - Bansal, S. S. A1 - Abbas, Ioana M. A1 - Fillet, M. A1 - Lefebvre, T. A1 - Geurts-Moespot, A. J. A1 - Girelli, D. A1 - Castagna, A. A1 - Herkert, M. A1 - Itkonen, O. A1 - Olbina, G. A1 - Tomosugi, N. A1 - Westerman, M. E. A1 - Delatour, V. A1 - Weykamp, C. W. A1 - Swinkels, D. W. T1 - Provisional standardization of hepcidin assays: creating a traceability chain with a primary reference material, candidate reference method and a commutable secondary reference material N2 - Hepcidin-25 concentrations measured by various methods differ considerably, complicating interpretation. Here, a previously identified plasma-based candidate secondary reference material (csRM) was modified into a serum-based two-leveled sRM. We validated its functionality to increase the equivalence between methods for international standardization. We applied technical procedures developed by the International Consortium for Harmonization of Clinical Laboratory Results. The sRM, consisting of lyophilized serum with cryolyoprotectant, appeared commutable among nine different measurement procedures using 16 native human serum samples in a first round robin (RR1). Harmonization potential of the sRM was simulated in RR1 and evaluated in practice in RR2 among 11 measurement procedures using three native human plasma samples. Comprehensive purity analysis of a candidate primary RM (cpRM) was performed by state-of-the-art procedures. The sRM was value assigned with an isotope dilution mass spectrometry-based candidate reference method calibrated using the certified pRM. The inter-assay CV without harmonization was 42.1% and 52.8% in RR1 and RR2, respectively. In RR1, simulation of harmonization with sRM resulted in an inter-assay CV of 11.0%, whereas in RR2 calibration with the material resulted in an inter-assay CV of 19.1%. Both the sRM and pRM passed international homogeneity criteria and showed long-term stability. We assigned values to the low (0.95 ± 0.11 nmol/L) and middle concentration (3.75 ± 0.17 nmol/L) calibrators of the sRM. Standardization of hepcidin is possible with our sRM, which value is assigned by a pRM. We propose the implementation of this material as an international calibrator for hepcidin-25. KW - Reference material KW - Peptide KW - Biomarker KW - Bioanalysis KW - Mass spectrometry KW - LC-MS/MS KW - Iron deficiency KW - MALDI-TOF MS KW - UHPLC-MS/MS KW - ELISA KW - Immunoassay PY - 2018 DO - https://doi.org/10.1515/cclm-2018-0783 SN - 1437-4331 SN - 1434-6621 VL - 57 IS - 6 SP - 864 EP - 872 PB - De Gruyter CY - Berlin AN - OPUS4-47153 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vranic, Marija A1 - Starke, I. A1 - Weller, Michael G. A1 - Möller, H. M. T1 - Expression, purification and characterization of the recombinant cysteine-rich biomarker Hepcidin-25 N2 - Hepcidin regulates iron homeostasis in response to inflammation, erythropoietic demand, and iron stores. The native state of hepcidin-25 is an attractive target for the development of a reliable analytical tool that can quantify the hepcidin concentration in biological samples and reveal iron metabolic disorders. Therefore, a selective immunoassay would have to discriminate between different types of hepcidin and quantify only hepcidin-25’s concentration. The peptide contains a well-defined β-sheets and a β-hairpin loop stabilized by four disulfide bonds. Recently, it was shown that hepcidin-25 contains an ATCUN motif at its N-terminus. This motif is known to have high affinity towards Cu2+ and Ni2+. One of the aims of this study is to determine the three-dimensional (3D) structure of metal-bound hepcidin-25. Here, we present an optimized procedure for preparing natively folded hepcidin 25 (~2.80 kDa) and structural analysis of metal binding to hepcidin-25. Hepcidin was expressed as a His6-SUMO-hepcidin-25 fusion protein (~16.20 kDa) in Escherichia coli, Origami B strains, and purified as a soluble recombinant protein in three steps. After purification based on the nickel affinity chromatography, the purified His6-SUMO-hepcidin 25 fusion protein was cleaved by the SUMO-specific ULP1 protease. The liberated hepcidin 25 was further purified on a Superdex 30 16/600 column and folded in the last step of purification in the presence of glutathione. Freshly expressed hepcidin was kept in its reduced form to prevent misfolding and allow for efficient removal of the SUMO tag. The presence of natively folded hepcidin 25 after RP-HPLC was confirmed by ESI-MS and NMR spectroscopy. Based on published chemical shifts, we achieved a nearly complete assignment of the labeled and unlabeled hepcidin-25 at pH=3. Comparison of 1H chemical shifts and TOCSY spectra at pH=7 in the presence and absence of Ni2+ demonstrates that the metal binds at the N-terminus of hepcidin 25. Chemical shift changes due to metal complexation decrease further away from the metal binding site. T2 - 28th International Conference on Magnetic Resonance in Biological Systems, ICMRBS CY - Dublin, Irland DA - 19.08.2018 KW - Peptides KW - Metalloproteins KW - Copper KW - ATCUN KW - Nickel KW - NMR KW - SUMO KW - Fusion protein KW - Iron disorders KW - ESI-MS KW - RP-HPLC PY - 2018 AN - OPUS4-46944 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abbas, Ioana M. A1 - Hoffmann, Holger A1 - Weller, Michael G. T1 - An LC-MS/MS based reference method candidate for the clinical assessment of the promising iron biomarker hepcidin-25 in serum N2 - Hepcidin-25 has attracted much attention ever since its discovery in 2001. It is widely recognized that this peptide hormone plays a major role in the regulation of iron levels in mammals and can reveal important clinical information about several iron-related disorders. However, the development of a reliable assay to quantify hepcidin proved to be problematic and serum hepcidin-25 concentrations determined by various assays differ substantially. Challenges arise in the MS analysis of hepcidin due to the “sticky” character of the peptide and the lack of suitable standards. With the aim to tackle the current difficulties in hepcidin quantification and improve the status of this promising biomarker in the clinical field, we developed a rapid and robust analytical strategy for the quantification of hepcidin-25 in human samples based on HPLC-MS/MS (QqQ) as a reference method candidate to be implemented in routine laboratories. The novelty of the method is the use of amino- and fluoro-silanized autosampler vials to reduce hepcidin interaction to laboratory glassware surfaces. Furthermore, we have investigated two sample preparation strategies and two chromatographic separation conditions where the use of acidic mobile phases was compared with a novel approach involving solvents at high pH containing 0.1% of ammonia. Both methods were carefully validated and applied to clinical samples in an intra-laboratory comparison of two LC-MS/MS methods using the same hepcidin-25 calibrators with very good correlation of the results. T2 - European Mass Spectrometry Conference 2018 CY - Saarbrücken, Germany DA - 11.03.2018 KW - Validation KW - LC-MS/MS peptide quantification KW - Clinical samples PY - 2018 AN - OPUS4-44616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -