TY - GEN A1 - Lisec, Jan T1 - CorMID - Correct Mass Isotopologue Distribution Vectors N2 - The investigation of metabolic fluxes and metabolite distributions within cells by means of tracer molecules is a valuable tool to unravel the complexity of biological systems. Technological advances in mass spectrometry (MS) technology such as atmospheric pressure chemical ionization (APCI) coupled with high resolution (HR), not only allows for highly sensitive analyses but also broadens the usefulness of tracer-based experiments, as interesting signals can be annotated de novo when not yet present in a compound library. However, several effects in the APCI ion source, i.e., fragmentation and rearrangement, lead to superimposed mass isotopologue distributions (MID) within the mass spectra, which need to be corrected during data evaluation as they will impair enrichment calculation otherwise. Here, we present and evaluate a novel software tool to automatically perform such corrections. We discuss the different effects, explain the implemented algorithm, and show its application on several experimental datasets. This adjustable tool is available as an R package from CRAN. KW - Mass Spectrometry KW - Software KW - R package KW - Mass Isotopomer Distribution KW - Flux Analysis PY - 2022 UR - https://github.com/cran/CorMID/ PB - GitHub CY - San Francisco, CA, USA AN - OPUS4-56442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yang, L. A1 - Vogl, Jochen A1 - Mann, J. A1 - Kraft, R. A1 - Vocke, R. A1 - Pramann, A. A1 - Eberhardt, J. A1 - Rienitz, O. A1 - Lee, K.-S. A1 - Lim, J. S. A1 - Sobina, E. A1 - Song, P. A1 - Wang, J. A1 - Mester, Z. A1 - Meija, J. T1 - Copper isotope delta measurements in high purity materials: CCQM-P213 pilot study N2 - Accurate and precise isotope ratio measurements of heavy elements are playing an increasinglyimportant role in modern analytical sciences and have numerous applications. Today, isotope ratio measurements are typically performed with two principal techniques: thermal ionization mass spectrometry (TIMS) and multiple collector-inductively coupled plasma mass spectrometry (MC-ICP-MS). To obtain accurate results by mass spectrometry, isotopic certified reference materials (iCRMs) are needed for mass bias correction and for the validation of the method used for analysis.Thus, it is of paramount importance to achieve measurement comparability of all data reported, and to assess measurement capability of each CRM producer/National Metrology Institute (NMI). Therefore, the international comparison (CCQM-P213) was performed to assess the analytical capabilities of NMIs for the accurate determination of copper isotope ratio delta values in high purity materials. The study was proposed by the coordinating laboratories, National Research Council Canada (NRC), National Institute of Standards and Technology (NIST), Bundesanstalt für Materialforschung und -prüfung (BAM) and Physikalisch-Technische Bundesanstalt (PTB), as an activity of the Isotope Ratio Working Group (IRWG) of the Consultative Committee for Amount of Substance - Metrology in Chemistry and Biology (CCQM). Participants included six NMIs and one designated institute (DI) from the six countries. Although no measurement method was prescribed by the coordinating laboratories, MC-ICP-MS with either standard-sample bracketing (SSB) or combined SSB with internal normalization (C-SSBIN) models for mass bias correction were recommended. Results obtained from the six NMIs and one DI were in good agreement. KW - Comparability KW - Traceability KW - Metrology KW - Isotope delta KW - Copper PY - 2023 DO - https://doi.org/10.1088/0026-1394/60/1A/08019 VL - 60 IS - 1A SP - 1 EP - 23 PB - IOP Science AN - OPUS4-58040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Relling, Alexander A1 - Wegner, Karl David A1 - Niermann, L. A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute T1 - Copper doped AgInS2-ZnS QDs from a single-source-precursor N2 - Quaternary semiconductor nanocrystals like AgInS2-ZnS solid solution quantum dots (QDs) are a highly promising material for material science and biomedical applications due to their tunable photoluminescence (PL), their high quantum yields (QY), and their low cytotoxicity1. A red shift of the PL into the NIR and SWIR region could further increase their application potential. Copper doping has been proven to be a suitable approach for bathochromically shifting the PL of QDs2. The synthesis of copper doped AgInS2-ZnS QDs from a single-source-precursor should enable an easily scalable synthesis with high reproducibility. T2 - Summer School "Exciting nanostructures: characterizing advanced confined systems" CY - Bad Honnef, Germany DA - 18.07.2021 KW - Nanocrystals KW - Quantum dots KW - Doping KW - AgInS2 KW - Single-source-precursor PY - 2021 AN - OPUS4-53129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Bornemann-Pfeiffer, Martin A1 - Lademann, J. A1 - Kraume, M. A1 - Maiwald, Michael T1 - Contributions Towards Variable Temperature Shielding for Compact NMR Instruments N2 - The application of compact NMR instruments to continuously flowing samples at higher temperatures or exothermically reacting mixtures is limited by the temperature sensitivity of permanent magnets. Typically, such temperature effects directly influence the achievable magnetic field homogeneity and hence measurement quality. The internal-temperature control loop of the magnet and instruments is typically not designed for compensation of such effects. Passive insulation is restricted by the small dimensions within the magnet borehole. Here, we present a design approach for active heat shielding with the aim of variable temperature control of NMR samples for benchtop NMR instruments using a compressed airstream which is variable in flow and temperature. Based on the system identification and surface temperature measurements using an optical thermo-graphy setup, a model predictive control was set up to minimize any disturbance effect on the permanent magnet from the probe or sample temperature. This methodology will facilitate the application of variable-temperature shielding and, therefore, potentially extend the application of compact NMR instruments to flowing samples at higher temperature than the permanent magnet. T2 - 18. Kolloquium AK Prozessanalytik CY - Krefeld, Germany DA - 27.11.2023 KW - Thermostating KW - Benchtop-NMR KW - NMR spectroscopy KW - Process Analytical Technology PY - 2023 AN - OPUS4-58970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Bornemann-Pfeiffer, Martin A1 - Lademann, J. A1 - Kraume, M. A1 - Maiwald, Michael T1 - Contributions Towards Variable Temperature Shielding for Compact NMR Instruments N2 - The application of compact NMR instruments to hot flowing samples or exothermically reacting mixtures is limited by the temperature sensitivity of permanent magnets. Typically, such temperature effects directly influence the achievable magnetic field homogeneity and hence measurement quality. The internal-temperature control loop of the magnet and instruments is not designed for such temperature compensation. Passive insulation is restricted by the small dimensions within the magnet borehole. Here, we present a design approach for active heat shielding with the aim of variable temperature control of NMR samples for benchtop NMR instruments using a compressed airstream which is variable in flow and temperature. Based on the system identification and surface temperature measurements through thermography, a model predictive control was set up to minimise any disturbance effect on the permanent magnet from the probe or sample temperature. This methodology will facilitate the application of variable-temperature shielding and, therefore, extend the application of compact NMR instruments to flowing sample temperatures that differ from the magnet temperature. T2 - SMASH Small molecule NMR conference 2023 CY - Baveno, Italy DA - 17.09.2023 KW - Benchtop NMR KW - Temperature Control KW - Process Analytical Technology KW - Flow NMR PY - 2023 AN - OPUS4-58400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bierstedt, Andreas A1 - Panne, Ulrich A1 - Riedel, Jens T1 - Confinement and enhancement of an airborne atmospheric laser-induced plasma using an ultrasonic acoustic resonator N2 - Optical elemental analysis in the gas phase typically relies on electrically driven plasmas. As an alternative approach, laser-induced plasmas (LIPs) have been suggested but have so far been only scarcely used. Here, a novel signal enhancement strategy for laser-based airborne plasma optical Emission spectroscopy for gas phase analytics is presented. In contrast to an electrically driven plasma, in the laser-induced analogue dynamic matter transport equilibrium builds up. The latter results in a rarefied density regime in the plasma core itself, surrounded by an area of compressed matter. The central rarefaction leads to a decrease in plasma intensity and analyte number density, both of which are detrimental for analytical purposes. Since the repetitive ignition of LIPs is a transient process, a restoration of the former gaseous medium by other dynamically equilibrated diffusion processes would be favourable. The presented combination of an airborne LIP and an ultrasonic acoustic resonator yields a fourfold signal enhancement while the Background contribution of ubiquitous air is at the same time effectively suppressed. Since the entire enhancement effect occurs without contact, no additional sources for abrasive sample contamination are introduced. KW - DPSS laser KW - Laser-induced plasma KW - High repetition rate KW - Ultrasonic acoustic resonator KW - Optical emission spectroscopy PY - 2018 DO - https://doi.org/10.1039/C7JA00297A SN - 0267-9477 SN - 1364-5544 VL - 33 IS - 1 SP - 135 EP - 140 PB - Royal Society of Chemistry CY - London AN - OPUS4-43619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sebald, M. A1 - Gebauer, J. A1 - Koch, Matthias T1 - Concise Synthesis of Alternariol and Alternariol-9-monomethyl ether as well as their D3-Isotopologues N2 - Abstract Alternariol (AOH) and alternariol-9-monomethyl ether (AME) are two secondary metabolites of Alternaria fungi which can be found in various foodstuff like tomatoes, nuts, and grains. Due to their toxicity and potential mutagenic activity the need for the development of high-throughput methods for the supervision of AOH- and AME-levels is of increasing interest. As the availability of both native and labeled AOH and AME analytical standards is very limited we herein wish to present a novel concise approach towards their synthesis employing a ruthenium-catalyzed ortho-arylation as the key step. Finally, we demonstrate their suitability as internal standards in stable-isotope dilution assay (SIDA)-HPLC-MS/MS analysis commonly used for the quantification of the natural products in food and feed. KW - Mycotoxins KW - Food Analysis KW - Emerging contaminants PY - 2021 DO - https://doi.org/10.1055/a-1698-8328 SN - 0039-7881 VL - 54 IS - 19 SP - 4285 EP - 4293 PB - Thieme AN - OPUS4-53994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beslic, D. A1 - Tscheuschner, Georg A1 - Renard, B. Y. A1 - Weller, Michael G. A1 - Muth, Thilo T1 - Comprehensive evaluation of peptide de novo sequencing tools for monoclonal antibody assembly N2 - Monoclonal antibodies are biotechnologically produced proteins with various applications in research, therapeutics and diagnostics. Their ability to recognize and bind to specific molecule structures makes them essential research tools and therapeutic agents. Sequence information of antibodies is helpful for understanding antibody–antigen interactions and ensuring their affinity and specificity. De novo protein sequencing based on mass spectrometry is a valuable method to obtain the amino acid sequence of peptides and proteins without a priori knowledge. In this study, we evaluated six recently developed de novo peptide sequencing algorithms (Novor, pNovo 3, DeepNovo, SMSNet, PointNovo and Casanovo), which were not specifically designed for antibody data. We validated their ability to identify and assemble antibody sequences on three multi-enzymatic data sets. The deep learning-based tools Casanovo and PointNovo showed an increased peptide recall across different enzymes and data sets compared with spectrum-graph-based approaches. We evaluated different error types of de novo peptide sequencing tools and their performance for different numbers of missing cleavage sites, noisy spectra and peptides of various lengths. We achieved a sequence coverage of 97.69–99.53% on the light chains of three different antibody data sets using the de Bruijn assembler ALPS and the predictions from Casanovo. However, low sequence coverage and accuracy on the heavy chains demonstrate that complete de novo protein sequencing remains a challenging issue in proteomics that requires improved de novo error correction, alternative digestion strategies and hybrid approaches such as homology search to achieve high accuracy on long protein sequences. KW - De novo peptide sequencing KW - Bioinformatics KW - Benchmarking study KW - Monoclonal antibody KW - Mass spectrometry KW - Sequence coverage KW - Light chains KW - Heavy chains KW - IgG KW - Immunoglobulins KW - Error correction KW - Sequencing algorithm KW - Preprocessing KW - Missing fragmentation sites KW - Deep learning-based tools PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570363 DO - https://doi.org/10.1093/bib/bbac542 VL - 24 IS - 1 SP - 1 EP - 12 PB - Oxford University Press AN - OPUS4-57036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radnik, Jörg A1 - Knigge, Xenia A1 - Andresen, Elina A1 - Resch-Genger, Ute A1 - Cant, D.J.H. A1 - Shard, A.G. A1 - Clifford, C.A. T1 - Composition, thickness, and homogeneity of the coating of core–shell nanoparticles—possibilities, limits, and challenges of X-ray photoelectron spectroscopy N2 - Core–shell nanoparticles have attracted much attention in recent years due to their unique properties and their increasing importance in many technological and consumer products. However, the chemistry of nanoparticles is still rarely investigated in comparison to their size and morphology. In this review, the possibilities, limits, and challenges of X-ray photoelectron spectroscopy (XPS) for obtaining more insights into the composition, thickness, and homogeneity of nanoparticle coatings are discussed with four examples: CdSe/CdS quantum dots with a thick coating and a small core; NaYF4-based upconverting nanoparticles with a large Yb-doped core and a thin Er-doped coating; and two types of polymer nanoparticles with a poly(tetrafluoroethylene) core with either a poly(methyl methacrylate) or polystyrene coating. Different approaches for calculating the thickness of the coating are presented, like a simple numerical modelling or a more complex simulation of the photoelectron peaks. Additionally, modelling of the XPS background for the investigation of coating is discussed. Furthermore, the new possibilities to measure with varying excitation energies or with hard-energy X-ray sources (hard-energy X-ray photoelectron spectroscopy) are described. A discussion about the sources of uncertainty for the determination of the thickness of the coating completes this review. KW - X-ray spectroscopy KW - Nanoparticles KW - Spectroscopy / Instrumentation KW - Spectroscopy / Theory PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548305 DO - https://doi.org/10.1007/s00216-022-04057-9 VL - 414 IS - 15 SP - 4331 EP - 4345 PB - SpringerNature AN - OPUS4-54830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Keller, Julia A1 - Moldenhauer, Daniel A1 - Byrne, L. A1 - Haase, H. A1 - Resch-Genger, Ute A1 - Koch, Matthias T1 - Complexes of the mycotoxins citrinin and ochratoxin A with aluminum ions and their spectroscopic properties N2 - The sensitive detection of the mycotoxin citrinin (CIT) utilizing ist fluorescence requires approaches to enhance the emission. In this respect, we studied the complexation of CIT and ochratoxin A (OTA) with Al3+ in methanol using absorption and fluorescence spectroscopy. In this context, an isocratic high performance liquid chromatography (HPLC) method using a polymer column and a fluorescence detector was also developed that enables the separation of the metal ion complexes from the free ligands and non-complexed Al3+. CIT and OTA showed distinct changes in their absorption and fluorescence properties upon Al3+-coordination, and the fluorescence of CIT was considerably enhanced. Analysis of the photometrically assessed titration of CIT and OTA with Al3+ using the Job plot method revealed 1:2 and 1:1 stoichiometries for the Al3+ complexes of CIT (Al:CIT) and OTA (Al:OTA), respectively. In the case of CIT, only one -diketone moiety participates in Al3+ coordination. These findings can be elegantly exploited for signal amplification and provide the base to reduce the limit of detection for CIT quantification by about an order of magnitude, as revealed by HPLC measurements using a fluorescence detector. KW - Complexation KW - Aluminum KW - Fluorescence KW - Job plot KW - HPLC-DAD/FLD PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-470502 DO - https://doi.org/10.3390/toxins10120538 SN - 2072-6651 VL - 10 IS - 12 SP - 538, 1 EP - 8 PB - MDPI CY - Basel AN - OPUS4-47050 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Trog, S. A1 - El-Khatib, Ahmed A1 - Beck, S. A1 - Makowski, M. A1 - Jakubowski, Norbert A1 - Linscheid, M. T1 - Complementarity of molecular and elemental mass spectrometric imaging of Gadovist™ in mouse tissues N2 - Drug biodistribution analyses can be considered a key issue in pharmaceutical discovery and development. Here, mass spectrometric imaging can be employed as a powerful tool to investigate distributions of drug compounds in biologically and medically relevant tissue sections. Both matrix-assisted laser desorption ionization–mass spectrometric imaging as molecular method and laser ablation inductively coupled plasma–mass spectrometric imaging as elemental detection method were applied to determine drug distributions in tissue thin sections. Several mouse organs including the heart, kidney, liver, and brain were analyzed with regard to distribution of Gadovist™, a gadolinium-based contrast agent already approved for clinical investigation. This work demonstrated the successful detection and localization of Gadovist™ in several organs. Furthermore, the results gave evidence that gadolinium-based contrast agents in general can be well analyzed by mass spectrometric imaging methods. In conclusion, the combined application of molecular and elemental mass spectrometry could complement each other and thus confirm analytical results or provide additional information. KW - Laser ablation inductively coupled plasma–mass spectrometry imaging (LA-ICP-MSI) KW - Gadolinium-based contrast agents (GBCAs) KW - Matrix-assisted laser desorption ionization–mass spectrometry imaging (MALDI-MSI) PY - 2019 DO - https://doi.org/10.1007/s00216-018-1477-9 SN - 1618-2642 SN - 1618-2650 VL - 411 IS - 3 SP - 629 EP - 637 PB - Springer AN - OPUS4-47371 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hantschke, Luisa Lamberta A1 - Steuernagel, Maximilian A1 - Westphalen, Tanja A1 - Kluge, Stephanie A1 - Kaminski, Katja A1 - Piechotta, Christian T1 - Comparison of three different TOP-Assay approaches for the determination of PFAS concentration in soil N2 - Per- and polyfluoroalkyl substances (PFAS) are a large, ever-growing and widely used class of chemicals. Due to the strength of the C-F bond, they do not decompose but accumulate in the environment posing a risk for nature and humans alike. While the use of some PFAS, like perfluorooctanoic acid (PFOA) is already regulated in the EU, new ‘precursor’ substances are used to replace them. However, these precursors may be equally harmful to the environment. In recent years, many ‘hot spot’ sites with high PFAS contaminations in soil have been distinguished, but no German-wide background values have been determined yet. Knowing these background values is crucial to understand the degree of PFAS contamination, underpinning future regulatory decisions. Due to the complexity and variety of different PFAS compounds, one needs to apply a broad spectrum of different techniques to capture most of the PFAS content in one sample. In the framework of this project, 600 soil samples are taken at different sites all over Germany. The concentration of 30 PFAS - 13 carboxylic acids (C4-C18), 5 sulfonic acids (C4-C10) and 12 precursor substances) - is determined in these soil samples using three different sample preparation approaches: 1) ultrasonic extraction of the soil samples with Methanol; 2) preparation of eluates to test the leaching behaviour of the PFAS and 3) TOP assays following the method published by Houtz & Sedlak. Targeted LC-MS/MS is used to determine PFAS concentration after all three preparation steps. For the TOP-assay, the concentration of all 30 PFAS is compared prior to and after the oxidation reaction. Besides the ‘classic’ TOP-Assay, two other TOP-Assay approaches, the dTOP Assay and the photoTOP-Assay, are tested and the results of all three approaches are compared. First, all three TOP-Assay approaches will be tested on a reference soil spiked with a solution including all 30 PFAS measured in the project. Later, soil samples taken in the frame of the priorly described project will be tested. This poster will focus on the results of the experiments comparing the three different TOP Assay approaches in spiked reference soil. Additionally, some of the results of the other sample preparation methods, extraction and eluate preparation will be presented. T2 - FLUOROS 2023 CY - Idstein, Germany DA - 31.08.2023 KW - PFAS TOP Assay soil contamination PY - 2023 AN - OPUS4-58267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chazeau, E. A1 - Fabre, C. A1 - Privat, M. A1 - Godard, A. A1 - Racoeur, C. A1 - Bodio, E. A1 - Busser, B. A1 - Wegner, Karl David A1 - Sancey, L. A1 - Paul, C. A1 - Goze, C. T1 - Comparison of the In Vitro and In Vivo Behavior of a Series of NIR-II-Emitting Aza-BODIPYs Containing Different Water-Solubilizing Groups and Their Trastuzumab Antibody Conjugates N2 - The development of new fluorescent organic probes effective in the NIR-II region is currently a fast-growing field and represents a challenge in the domain of medical imaging. In this study, we have designed and synthesized an innovative series of aza-boron dipyrromethenes emitting in the NIR-II region. We have investigated the effect of different water-solubilizing groups not only on the photophysical properties of the compounds but also on their in vitro and in vivo performance after bioconjugation to the antibody trastuzumab. Remarkably, we discovered that the most lipophilic compound unexpectedly displayed the most favorable in vivo properties after bioconjugation. This underlines the profound influence that the fluorophore functionalization approach can have on the efficiency of the resulting imaging agent. KW - NIR-II KW - In vivo imaging KW - Fluorescence KW - Spectroscopy KW - Antibody conjugates PY - 2024 DO - https://doi.org/10.1021/acs.jmedchem.3c02139 SN - 1520-4804 VL - 67 IS - 5 SP - 3679 EP - 3691 PB - ACS Publications CY - Washington, DC AN - OPUS4-59607 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ickert, Stefanie A1 - Schwaar, Timm A1 - Springer, A. A1 - Grabarics, M. A1 - Riedel, Jens A1 - Beck, S. A1 - Pagel, K. A1 - Linscheid, M. W. T1 - Comparison of the fragmentation behavior of DNA and LNA single strands and duplexes N2 - DNA and locked nucleic acid (LNA) were characterized as single strands, as well as double stranded DNA-DNA duplexes and DNA-LNA hybrids using tandem mass spectrometry with collision-induced dissociation. Additionally, ion mobility spectrometry was carried out on selected species. Oligonucleotide duplexes of different sequences – bearing mismatch positions and abasic sites of complementary DNA 15-mers – were investigated to unravel general trends in their stability in the gas phase. Single stranded LNA oligonucleotides were also investigated with respect to their gas phase behavior and fragmentation upon collision-induced dissociation. In contrast to the collision-induced dissociation of DNA, almost no base loss was observed for LNAs. Here, backbone cleavages were the dominant dissociation pathways. This finding was further underlined by the need for higher activation energies. Base losses from the LNA strand were also absent in fragmentation experiments of the investigated DNA-LNA hybrid duplexes. While DNA-DNA duplexes dissociated easily into single stranded fragments, the high stability of DNA-LNA hybrids resulted in predominant fragmentation of the DNA part rather than the LNA, while base losses were only observed from the DNA single strand of the hybrid. KW - Oligonucleotide fragmentation KW - Locked nucleic acids KW - Collision induced dissociation (CID) KW - Double strands KW - Ion mobility spectrometry PY - 2019 DO - https://doi.org/10.1002/jms.4344 VL - 54 IS - 5 SP - 402 EP - 411 PB - Wiley AN - OPUS4-47485 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jakubowski, N. A1 - Borrmann, S. A1 - Recknagel, Sebastian A1 - Roik, Janina A1 - Rickert, F. T1 - Comparison of peristaltic pumps used for sample introduction in Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) N2 - In this investigation, two conventional peristaltic pumps are compared with a new pump based on the “easy click” principle using a simultaneous ICP-AES instrument with standard operating conditions. It is found that the figures of merit achieved are quite comparable for all three pumps. Relative standard deviations (RSDs) range between 0.2% and 1.8%, and limits of detection as low as 0.1 μg/L have been achieved , demonstrating that the easy click principle of the new pump does not compromise the analytical figures of merit. KW - ICP-AES KW - Peristaltic pumps KW - ICP-MS PY - 2020 IS - 35 / S4 SP - 6 AN - OPUS4-52020 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Groschke, Matthias A1 - Becker, Roland T1 - Comparison of carrier gases for the separation and quantification of mineral oil hydrocarbon (MOH) fractions using online coupled high performance liquid chromatography-gas chromatography-flame ionisation detection N2 - On-line coupled high performance liquid chromatography-gas chromatography-flame ionisation detection (HPLC-GC-FID) was used to compare the effect of hydrogen, helium and nitrogen as carrier gases on the chromatographic characteristics for the quantification of mineral oil hydrocarbon (MOH) traces in food related matrices. After optimisation of chromatographic parameters nitrogen carrier gas exhibited characteristics equivalent to hydrogen and helium regarding requirements set by current guidelines and standardisation such as linear range, quantification limit and carry over. Though nitrogen expectedly led to greater peak widths, all required separations of standard compounds were sufficient and humps of saturated mineral oil hydrocarbons (MOSH) and aromatic mineral oil hydrocarbons (MOAH) were appropriate to enable quantitation similar to situations where hydrogen or helium had been used. Slightly increased peak widths of individual hump components did not affect shapes and widths of the MOSH and MOAH humps were not significantly affected by the use of nitrogen as carrier gas. Notably, nitrogen carrier gas led to less solvent peak tailing and smaller baseline offset. Overall, nitrogen may be regarded as viable alternative to hydrogen or helium and may even extend the range of quantifiable compounds to highly volatile hydrocarbon eluting directly after the solvent peak. KW - Mineral oil hydrocarobons KW - Food KW - Liquid chromatography KW - Gas chromatography KW - MOSH/MOAH PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601450 DO - https://doi.org/10.1016/j.chroma.2024.464946 SN - 0021-9673 VL - 1726 SP - 1 EP - 7 PB - Elsevier CY - New York, NY AN - OPUS4-60145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Büchele, Dominique A1 - Rühlmann, Madlen A1 - Schmid, Thomas A1 - Ostermann, Markus T1 - Comparison between uni- and multivariate data analysis for the determination of nutrients in soils using XRF N2 - Aim of the Federal Institute for Materials Research and Testing (BAM) in the frame of I4S - “Intelligence for Soil” is the characterization of an X-ray fluorescence (XRF) based sensor for robust online-application of arable land.Fast soil mapping for agricultural purpose allows the site-specific optimized introduction of plant essential nutrients like S, K, Ca, and Fe. This is important given that the distribution of minor and trace elements varies widely. The non-destructive and contactless XRF is suitable for rapid in-situ analysis on the field due to minimal sample preparation and simultaneous multi-element analysis. Soils are already considered as a complex matrix due to their wide range of elements in different contents, especially light elements with low atomic numbers (Z<19). Problems by measuring soil samples also arise from heterogeneity of the sample and matrix effects. Large grain size distribution causes strong inhomogeneity and matrix effects occur through physical properties related to high concentration of main components. Matrix-specific calibration strategies for determination of total major and minor plant essential nutrients are particularly important regarding these difficulties. For accurate calibration, data treatment and evaluation must also be considered. Empirical univariate and multivariate data analysis were compared regarding their analytical figures of merit. Using principal component analysis (PCA) it was possible to classify German soils in different groups as sand, clay and silt. A calibration curve was obtained by partial least squares regression (PLSR) and the elemental content of German soils was predicted. Elemental distribution maps for different German arable lands were created and the results compared to reference measurements. The correlation between predicted values and reference values were in good agreement for most major and minor nutrients. T2 - BonaRes Conference CY - Berlin, Germany DA - 26.02.2018 KW - PLSR KW - XRF KW - Soil KW - PCA PY - 2018 AN - OPUS4-45007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Büchele, Dominique A1 - Rühlmann, Madlen A1 - Ostermann, Markus A1 - Schmid, Thomas T1 - Comparison between uni- and multivariate data Analysis for the determination of nutrients in soils using XRF N2 - As part of the BonaRes research initiative funded by the German Federal Ministry of Education and Research (BMBF), strategies are being developed to use soil as a sustainable resource in the bioeconomy. The interdisciplinary subproject I4S - “Intelligence for soil” - is responsible for the development of an integrated system for site-specific management of soil fertility. For this purpose, a platform is constructed and various sensors are installed. Real-time data will be summarized in models and decision-making algorithms will be used to control fertilization and accordingly improve soil functions. This would allow investigations in close meshed dynamic grid and fast analysis of large areas to generate higher yields. This is important given that the distribution of minor and trace elements varies widely. Aim of the Federal Institute for Materials Research and Testing (BAM) in the frame of I4S is the characterization of an X-ray fluorescence (XRF) based sensor for robust online-analysis of arable land. The non-destructive and contactless XRF is suitable for rapid in-situ analysis on the field due to minimal sample preparation and simultaneous multi-element analysis. Soils are already considered as a complex matrix due to their wide range of elements in different contents, especially light elements with low atomic numbers (Z<19). Problems by measuring soil samples also arise from heterogeneity of the sample and matrix effects. Large grain size distribution causes strong inhomogeneity and matrix effects occur through physical properties related to high concentration of main components. Matrix-specific calibration strategies for determination of total major and minor plant essential nutrients are particularly important regarding these difficulties. For accurate calibration, data treatment and evaluation must also be considered. Univariate and multivariate data analysis were compared regarding their analytical figures of merit. Using principal component analysis (PCA) it was possible to classify German soils in different groups as sand, clay and silt. Calibration models were obtained by partial least squares regression (PLSR) and the content of macro- and micronutrients in German soils was predicted. Elemental distribution maps for different German arable lands were created and the results compared to reference measurements. The correlation between predicted values and reference values were in good agreement for most major and minor nutrients. T2 - ESAS/CANAS CY - Berlin, Germany DA - 20.03.2018 KW - Soil KW - XRF KW - PCA KW - PLSR PY - 2018 AN - OPUS4-45010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaeger, Carsten T1 - Comparing Nontargeted LC-MS Methods by Co-visualizing Linear Dynamic Range and Chemical Coverage N2 - INTRODUCTION Biological and environmental samples contain thousands of small molecule species that all vary in chemical properties and concentration range. Identifying and quantifying all these chemical entities remains a long-term goal in metabolomics and related systems approaches. Due to its broad selectivity, nontargeted LC-MS is usually the method of choice for broad chemical screening. Optimizing nontargeted LC-MS methods, however, is less straightforward than for targeted methods where sensitivity, specificity, linearity etc. serve as well-established performance criteria. We therefore investigated linear dynamic range (LDR) and chemical classification as alternative performance criteria to guide nontargeted method development. EXPERIMENTAL METHODS LDR was defined as the linear portion of a feature’s response curve over multiple concentration levels. Comparing the LDR of features across methods can be expected to be significantly more robust than comparing signal intensities for a single concentration. To determine LDR for all features, a computational workflow was implemented in the R programming language. For estimating the linear portion of a curve, several mathematical approaches including linear, non-linear and piecewise linear regression were evaluated. Chemical classification was based on ClassyFire, which computes chemical classes for a given structure. To avoid false classifications for incorrectly annotated compounds, we took the following statistical approach. For each compound, multiple likely annotation hypotheses were derived using a recently described workflow[2]. All annotation hypotheses were submitted to ClassyFire and obtained classifications were ranked by frequency. The most frequently suggested class was kept for further analysis. Finally, LDR and chemical classes were visualized together on a molecular network, which was constructed using the well-established MS/MS similarity approach. RESULTS AND DISCUSSION For technical validation of the workflow, several hundred curve fits obtained from the different regression models were reviewed visually. Piecewise linear regression performed the most reliably with respect to the heterogeneous curve shapes of ‘real-life’ features. Validation of chemical classification was performed against a compound library, which showed that 90% of ~450 library compounds were correctly classified using the described approach. Two liquid chromatography methods (HILIC, RPC) as well as two electrospray ionization variants (low/high-temperature ESI) applied to urinary metabolomics were exemplarily studied to test the workflow. Molecular network visualization indicated that of all analytical setups, HILIC/high temperature ESI performed best in terms of high LDR achieved over a wide range of compound classes. Despite one order of magnitude lower sensitivity, HILIC/low temperature ESI showed similar chemical coverage, except for organic nitrogen compounds that were underrepresented compared to high-temperature ESI. Both RPC setups were inferior to the HILIC setups in terms of high-LDR features, supporting previous findings for the given matrix. The higher relative representation of benzenoids and lipids in RPC demonstrated that the workflow successfully captured expected selectivity differences between chromatographies. CONCLUSION When comparing nontargeted LC-MS methods for optimization purposes, ideally all available quantitative and qualitative information should be integrated. The present workflow follows this idea. Visualizing LDR and chemical classes of all features on a molecular network quickly indicated differences in method selectivity that were otherwise difficult to spot. As an automated approach, it is easily applied to repeated optimization steps, enabling effective optimization strategies. T2 - EURACHEM Workshop CY - Tartu, Estonia DA - 20.05.2019 KW - Linear dynamic range KW - Liquid chromatography-mass spectrometry KW - Nontargeted approach KW - Method development KW - Chemical coverage PY - 2019 AN - OPUS4-48333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Taylor, Tristen L. A1 - Tukhmetova, Dariya A1 - Duong, Thi Phuong Thanh A1 - Böwe, Anna-Maria A1 - Meermann, Björn A1 - Gundlach-Graham, Alexander T1 - Comparative study of the vibrating capillary nebulizer (VCN) and commercially available interfaces for on-line coupling of capillary electrophoresis with ICP-MS N2 - Capillary electrophoresis (CE) is a powerful and sensitive tool for speciation analysis when combined with inductively coupled plasma mass spectrometry (ICP-MS); however, the performance of this technique can be limited by the nature of pneumatic nebulizers. This study compares two commercially available pneumatic nebulizers to a newly introduced vibrating capillary nebulizer (VCN) for on-line coupling of CE with ICP-MS. The VCN is a low-cost, non-pneumatic nebulizer that is based on the design of capillary vibrating sharp-edge spray ionization. As a piezoelectrically driven nebulization source, the VCN creates an aerosol independent of gas flows and does not produce a low-pressure region at the nebulizer orifice. To compare the systems, we performed replicate analyses of sulfate in river water with each nebulizer and the same CE and ICP-MS instruments and determined the figures of merit of each setup. With the CE-VCN-ICP-MS setup, we achieved around 2–4 times lower sensitivity compared to the commercial setups. However, the VCN-based setup provided lower noise levels and better linear correlation from the analysis of calibration standards, which resulted in indistinguishable LOD and LOQ values from the in-house-built VCN-based and commercial setups for CE-ICP-MS analysis. The VCN is found to have the highest baseline stability with a standard deviation of 3500 cts s−1, corresponding to an RSD of 2.7%. High reproducibility is found with the VCN with a peak area RSD of 4.1% between 3 replicate measurements. KW - Speciation analysis KW - Analytical chemistry KW - Surface water PY - 2024 DO - https://doi.org/10.1007/s00216-024-05162-7 SN - 1618-2650 SP - 1 EP - 9 PB - Springer CY - Berlin AN - OPUS4-59472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas T1 - Compact NMR spectroscopy: A versatile tool for automated continuous-flow production of chemicals and pharmaceuticals N2 - Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short down-times between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. The advances of a fully automated NMR sensor were exploited, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as , e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. T2 - Process Development Seminar Bayer AG Dormagen CY - Dormagen, Germany DA - 14.01.2019 KW - Process analytical technology KW - Low-field NMR spectroscopy KW - Online NMR spectroscopy KW - CONSENS PY - 2019 AN - OPUS4-47197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy: A Versatile Tool for Automated Continuous-Flow Production of Chemicals and Pharmaceuticals N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short down-times between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. The advances of a fully automated NMR sensor were exploited, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as , e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. Recently, AI procedures have also been successfully used for NMR data evaluation. In order to overcome the typical limitation of too small data sets from process developments, a new method was tested, which allows a physically motivated multiplication of the available reference data together with context information in order to obtain a sufficiently large data set for the training of machine learning algorithms. In future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - Compact NMR: Perspectives for (Bio)process Monitoring CY - Online meeting DA - 14.10.2020 KW - Process Industry KW - Real-time Process Monitoring KW - NMR Spectroscopy KW - Indirect Hard Modelling KW - Modular Production PY - 2020 AN - OPUS4-51430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy: A Versatile Tool for Automated Continuous-Flow Production of Chemicals and Pharmaceuticals N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short down-times between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. The advances of a fully automated NMR sensor were exploited, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as , e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. In future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - Seminar of Research Department „Life, Light & Matter“ of the InterdisciplinaryFaculty of the University of Rostock CY - Rostock, Germany DA - 08.01.2019 KW - Process Analytical Technology KW - Low-field NMR Spectroscopy KW - Online NMR Spectroscopy KW - Modular Production KW - Process Industry KW - Fresenius Lecture PY - 2019 AN - OPUS4-47166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Wander, Lukas A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy: A Versatile Tool for Automated Continuous-Flow Production of Chemicals and Pharmaceuticals N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. The advances of a fully automated NMR sensor were exploited, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as, e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. In future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - USP qNMR Emerging Technologies Workshop & Roundtable CY - Online meeting DA - 17.11.2020 KW - Quantitative NMR spectroscopy KW - Benchtop-NMR KW - Process Analytical Technology PY - 2020 AN - OPUS4-51595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Kern, S. A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Wander, L. A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy: A Versatile Tool for Automated Continuous-Flow Production of Chemicals and Pharmaceuticals N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. The advances of a fully automated NMR sensor were exploited, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as, e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. In future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - ACHEMA Pulse 2021 CY - Online meeting DA - 15.06.2021 KW - Process Analytical Technology KW - NMR spectroscopy KW - Benchtop-NMR PY - 2021 AN - OPUS4-52822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy: A Versatile Tool for Automated Continuous-Flow Production of Chemicals and Pharmaceuticals N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short down-times between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. The advances of a fully automated NMR sensor were exploited, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as , e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. In future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - GDCh-Kolloquium der Universität Ulm CY - Ulm, Germany DA - 28.11.2019 KW - Process Analytical Technology KW - Reaction Monitoring KW - Online NMR Spectroscopy KW - Process Industry KW - Automation PY - 2019 AN - OPUS4-49855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy: A Versatile Tool for Automated Continuous-Flow Production of Chemicals and Pharmaceuticals N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short down-times between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. The advances of a fully automated NMR sensor were exploited, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as , e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. In future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - Global PAT Meeting Bayer AG CY - Berlin, Germany DA - 12.11.2019 KW - Process Analytical Technology KW - Reaction Monitoring KW - Online NMR Spectroscopy KW - CONSENS PY - 2019 AN - OPUS4-49602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy: A Versatile Tool for Automated Continuous-Flow Production of Chemicals and Pharmaceuticals N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short down-times between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. The advances of a fully automated NMR sensor were exploited, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as , e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. In future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - 2nd Reaction Monitoring Symposium, University of Bath CY - Bath, United Kingdom DA - 28.01.2019 KW - Process Analytical Technology KW - Process Industry KW - Online NMR Spectroscopy KW - CONSENS PY - 2019 AN - OPUS4-47271 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Compact NMR spectroscopy: A versatile tool for automated continuous-flow production of chemicals and pharmaceuticals N2 - Um in einem veränderten Umfeld erfolgreich bestehen zu können, müssen Chemieunternehmen neue Pfade beschreiten. Dazu gehört insbesondere das Potential digitaler Technologien. Mit flexiblen, modularen chemischen Vielzweck-Produktionsanlagen lassen sich häufig wechselnde Produkte mit kürzeren Vorlauf- und Stillstandzeiten zwischen den Kampagnen und dennoch hoher Qualität realisieren. Intensivierte, kontinuierliche Produktionsanlagen erlauben auch den Umgang mit schwierig zu handhabenden Substanzen. Grundvoraussetzung für solche Konzepte ist eine hochautomatisierte "chemische" Prozesskontrolle zusammen mit Echtzeit-Qualitätskotrolle, die "chemische" Informationen über den Prozess bereitstellt. In einem Anwendungsbeispiel wurde eine pharmazeutische Lithiierungsreaktion aus einer modularen Pilot-Anlage betrachtet und dabei die Vorzüge eines vollautomatischen NMR-Sensors untersucht. Dazu wurde ein kommerziell erhältliches Benchtop-NMR-Spektrometer mit Permanentmagnet auf die industriellen Anforderungen, wie Explosionsschutz, Feldkommunikation und vollautomatischer, robuster Datenauswertung angepasst. Der NMR-Sensor konnte schließlich erfolgreich im vollautomatischen Betrieb nach fortschrittlichen Regelkonzepten und für die Echtzeitoptimierung der Anlage getestet werden. Die NMR-Spektroskopie erwies sich als hervorragende Online-Methode und konnte zusammen mit einer modularen Datenauswertung sehr flexibel genutzt werden. Die Methode konnte überdies als zuverlässige Referenzmethode zur Kalibrierung konventioneller Online-Analytik eingesetzt werden. Zukünftig werden voll integrierte und intelligent vernetzte "smarte" Sensoren und Prozesse eine kontinuierliche Produktion von Chemikalien und Pharmazeutika mit vertretbaren Qualitätskosten möglich machen. T2 - Niederfeld-NMR-Spektroskopie: Ein universelles Werkzeug für automatisierte, kontinuierliche Produktion von Chemikalien und Pharmazeutika T2 - Fresenius-Lecture Hochschule Reutlingen CY - Reutlingen, Germany DA - 18.12.2019 KW - Prozessindustrie KW - Smarte Sensoren KW - Online-NMR-Spektroskopie KW - Digitalisierung KW - Datenanalyse PY - 2019 AN - OPUS4-50111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Compact NMR spectroscopy: A versatile tool for automated continuous-flow production of chemicals and pharmaceuticals N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short down-times between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. The advances of a fully automated NMR sensor were exploited, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as , e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. In future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - GDCh-Seminar der Universität Bielefeld CY - Bielefeld, Germany DA - 17.01.2019 KW - Process analytical technology KW - Process industry KW - Online NMR spectroscopy KW - Indirect hard modeling KW - CONSENS KW - Fresenius lecture PY - 2019 AN - OPUS4-47221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Kern, S. A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Wander, Lukas A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy in the field: A Versatile Tool for Automated Continuous-Flow Production N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as, e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. Field studies in modular and conventional production plant setups show promising results gaining process knowledge for further optimization. NMR appeared as preeminent online analytical method and allow using a modular data analysis tool, which even served as reliable reference method for further PAT applications (e.g. NIR spectroscopy). In the future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - DECHEMA Workshop "Sensorik für die Digitalisierung chemischer Produktionsanlagen" CY - Frankfurt am Main, Germany DA - 13.06.2022 KW - Compact NMR KW - Process Control KW - Modular Production KW - Process Analytical Technology PY - 2022 AN - OPUS4-55037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Bornemann-Pfeiffer, Martin A1 - Kern, S. A1 - Guhl, Svetlana A1 - Wander, Lukas A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy in the field: A Versatile Tool for Automated Continuous- Flow Production N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as, e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. Field studies in modular and conventional production plant setups show promising results gaining process knowledge for further optimization. NMR appeared as preeminent online analytical method and allow using a modular data analysis tool, which even served as reliable reference method for further PAT applications (e.g. NIR spectroscopy). In the future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - 9th Annual Practical Applications of NMR in Industry Conference (PANIC) CY - Nashville, Tennessee, USA DA - 17.10.2021 KW - Process Analytical Technology KW - Benchtop-NMR KW - NMR spectroscopy PY - 2021 AN - OPUS4-53585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Kern, S. A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Wander, L. A1 - Döring, T. A1 - Friedrich, Y. A1 - Falkenstein, S. A1 - Abele, M. A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy in the field: A Versatile PAT Tool for Production of Specialty Chemicals N2 - Companies of chemical industry find themselves more often in a rapidly changing environment, e.g., due to variability of raw material quality or energy costs and efficiency. Process optimization and new process concepts become more and more important. For example, flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds like exothermic reactions with high heat dissipation. Highly automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as explosion safety, field communication, and robust evaluation of sensor data. Field studies in modular and conventional production plant setups show promising results gaining process knowledge for further optimization. NMR appeared as preeminent online analytical method and allow using a modular data analysis approach, which can even serve as reliable reference method for further calibration-dependent PAT applications (e.g., NIR or Raman spectroscopy). Based on experiences from earlier field studies an improved NMR analyzer enclosure setup was developed and built, including the option of a secondary method (e.g., optical spectroscopy). Integrated control systems allow for a flexible implementation based on the available automation infrastructure at the chemical plant or pilot plant setup. In the future, fully integrated and intelligently interconnecting “smart” PAT systems and processes have the potential speed up the setup of production equipment for chemicals and pharmaceuticals and therefore help to reduce the time-to-market. T2 - SMASH Small molecule NMR conference 2023 CY - Baveno, Italy DA - 17.09.2023 KW - Benchtop-NMR KW - Process Analytical Technology KW - Chemical Production KW - NMR spetroscopy PY - 2023 AN - OPUS4-58398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Bornemann-Pfeiffer, Martin A1 - Kern, S. A1 - Guhl, Svetlana A1 - Wander, Lukas A1 - Döring, T. A1 - Falkenstein, S. A1 - Abele, M. A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy in the field: A Versatile PAT Tool for Production of Specialty Chemicals N2 - Companies of chemical industry find themselves more often in a rapidly changing environment, e.g., due to variability of raw material quality or energy costs and efficiency. Process optimization and new process concepts become more and more important. For example, flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds like exothermic reactions with high heat dissipation. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as explosion safety, field communication, and robust evaluation of sensor data. Field studies in modular and conventional production plant setups show promising results gaining process knowledge for further optimization. NMR appeared as preeminent online analytical method and allow using a modular data analysis approach, which can even serve as reliable reference method for further calibration-dependent PAT applications (e.g., NIR spectroscopy). Based on experiences from these field studies an improved analyzer enclosure setup was developed and built, including the option of a secondary method besides NMR spectroscopy. Integrated control systems allow for a flexible implementation based on the available automation infrastructure at the chemical plant or pilot plant setup. In the future, fully integrated and intelligently interconnecting “smart” PAT systems and processes have the potential speed up the setup of production equipment for chemicals and pharmaceuticals and therefore help to reduce the time-to-market. T2 - Practical Applications of NMR in Industry Conference (PANIC) 2022 CY - La Jolla, CA, USA DA - 16.10.2022 KW - Process Analytical Technology KW - Benchtop NMR KW - Modular production PY - 2022 AN - OPUS4-56090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Bornemann-Pfeiffer, Martin A1 - Kern, S. A1 - Guhl, Svetlana A1 - Wander, Lukas A1 - Döring, T. A1 - Falkenstein, S. A1 - Abele, M. A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy in the field: A Versatile PAT Tool for Production of Specialty Chemicals N2 - Chemical companies must find new paths to successfully survive in a changing environment, especially by utilizing the potential of digital technologies. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Therefore, fully automated process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. A commercially available benchtop NMR spectrometer was integrated to the full requirements of chemical production environment such as explosion safety, field communication, and robust evaluation of sensor data. It was used for direct loop advanced process control and real-time optimization of the process. Field studies in modular and conventional production plants show promising results gaining process knowledge. NMR appeared as preeminent online analytical method and allow using a modular data analysis tool, which even served as reliable reference method for further PAT applications (e.g. NIR spectroscopy). In the future, fully integrated and interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - ProcessNet and DECHEMA-BioTechNet Jahrestagungen 2022 with 13th ESBES Symposium CY - Aachen, Germany DA - 12.09.2022 KW - Process Analytical Technology KW - Benchtop NMR KW - Modular production PY - 2022 AN - OPUS4-55918 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Bornemann-Pfeiffer, Martin A1 - Kern, S. A1 - Guhl, Svetlana A1 - Wander, Lukas A1 - Döring, T. A1 - Falkenstein, S. A1 - Abele, M. A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy in the field: A Versatile PAT Tool for Production of Specialty Chemicals N2 - Chemical companies must find new paths to successfully survive in a changing environment, especially by utilizing the potential of digital technologies. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Therefore, fully automated process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. A commercially available benchtop NMR spectrometer was integrated to the full requirements of chemical production environment such as explosion safety, field communication, and robust evaluation of sensor data. It was used for direct loop advanced process control and real-time optimization of the process. Field studies in modular and conventional production plants show promising results gaining process knowledge. NMR appeared as preeminent online analytical method and allow using a modular data analysis tool, which even served as reliable reference method for further PAT applications (e.g. NIR spectroscopy). In the future, fully integrated and interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - 17. AKPAT Kolloquium 2022 CY - Amersfoort, Netherlands DA - 19.09.2022 KW - Process Analytical Technology KW - Benchtop NMR KW - Modular production PY - 2022 AN - OPUS4-55919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Juds, Carmen A1 - Schmidt, J. A1 - Weller, Michael G. A1 - Lange, Thorid A1 - Beck, Uwe A1 - Conrad, T. A1 - Boerner, H. G. T1 - Combining phage display and next-generation sequencing for materials sciences: A case study on probing polypropylene surfaces N2 - Phage display biopanning with Illumina next-generation sequencing (NGS) is applied to reveal insights into peptide-based adhesion domains for polypropylene (PP). One biopanning round followed by NGS selects robust PP-binding peptides that are not evident by Sanger sequencing. NGS provides a significant statistical base that enables motif analysis, statistics on positional residue depletion/enrichment, and data analysis to suppress false-positive sequences from amplification bias. The selected sequences are employed as water-based primers for PP-metal adhesion to condition PP surfaces and increase adhesive strength by 100% relative to nonprimed PP. KW - Polymers KW - Polypropylene KW - Glue KW - Plastics KW - Surface Activation KW - Primer KW - Peptide Library KW - Epoxy KW - Solid-binding Peptides KW - Functionalization KW - Polymer-binding Peptides KW - Adhesion KW - Material-binding Peptides KW - Adhesives PY - 2020 DO - https://doi.org/10.1021/jacs.0c03482 SN - 0002-7863 SN - 1520-5126 VL - 142 IS - 24 SP - 10624 EP - 10628 PB - ACS CY - Washington, DC, USA AN - OPUS4-51123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brauckmann, C. A1 - Pramann, A. A1 - Rienitz, O. A1 - Schulze, A. A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen T1 - Combining Isotope Dilution and Standard Addition—Elemental Analysis in Complex Samples N2 - A new method combining isotope dilution mass spectrometry (IDMS) and standard addition has been developed to determine the mass fractions w of different elements in complex matrices: (a) silicon in aqueous tetramethylammonium hydroxide (TMAH), (b) sulfur in biodiesel fuel, and (c) iron bound to transferrin in human serum. All measurements were carried out using inductively coupled plasma mass spectrometry (ICP–MS). The method requires the gravimetric preparation of several blends (bi)—each consisting of roughly the same masses (mx,i) of the sample solution (x) and my,i of a spike solution (y) plus different masses (mz,i) of a reference solution (z). Only these masses and the isotope ratios (Rb,i) in the blends and reference and spike solutions have to be measured. The derivation of the underlying equations based on linear regression is presented and compared to a related concept reported by Pagliano and Meija. The uncertainties achievable, e.g., in the case of the Si blank in extremely pure TMAH of urel (w(Si)) = 90% (linear regression method, this work) and urel (w(Si)) = 150% (the method reported by Pagliano and Meija) seem to suggest better applicability of the new method in practical use due to the higher robustness of regression analysis. KW - Isotope dilution mass spectrometry KW - tandard addition KW - ICP-MS KW - lank characterization KW - Silicon KW - Sulfur KW - Transferrin KW - Tetramethylammonium hydroxide KW - Biodiesel fuel KW - Human serum PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-526376 DO - https://doi.org/10.3390/molecules26092649 VL - 26 IS - 9 SP - 2649 PB - MDPI CY - Basel AN - OPUS4-52637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brauckmann, C. A1 - Pramann, A. A1 - Rienitz, O. A1 - Schulze, A. A1 - Phukphatthanachai, P. A1 - Vogl, Jochen T1 - Combining Isotope Dilution and Standard Addition - Elemental Analysis in Complex Samples N2 - A new method combining isotope dilution mass spectrometry (IDMS) and standard addition has been developed to determine the mass fractions w of different elements in complex matrices: (a) silicon in aqueous tetramethylammonium hydroxide (TMAH), (b) sulfur in biodiesel fuel, and (c) iron bound to transferrin in human serum. All measurements were carried out using inductively coupled plasma mass spectrometry (ICP–MS). The method requires the gravimetric preparation of several blends (bi)—each consisting of roughly the same masses (mx,i) of the sample solution (x) and my,i of a spike solution (y) plus different masses (mz,i) of a reference solution (z). Only these masses and the isotope ratios (Rb,i) in the blends and reference and spike solutions have to be measured. The derivation of the underlying equations based on linear regression is presented and compared to a related concept reported by Pagliano and Meija. The uncertainties achievable, e.g., in the case of the Si blank in extremely pure TMAH of urel (w(Si)) = 90% (linear regression method, this work) and urel (w(Si)) = 150% (the method reported by Pagliano and Meija) seem to suggest better applicability of the new method in practical use due to the higher robustness of regression analysis. T2 - CITAC Best Paper Award Ceremony CY - Online meeting DA - 21.06.2022 KW - Isotope dilution mass spectrometry KW - Standard addition KW - ICP-MS KW - Blank characterization KW - Silicon KW - Sulfur KW - Transferrin KW - Tetramethylammonium hydroxide KW - Biodiesel fuel KW - Human serum PY - 2022 AN - OPUS4-55032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weigert, Florian A1 - Müller, A. A1 - Häusler, I. A1 - Geißler, Daniel A1 - Skroblin, D. A1 - Unger, Wolfgang A1 - Radnik, Jörg A1 - Resch-Genger, Ute T1 - Combining HR‑TEM and XPS to elucidate the core–shell structure of ultrabright CdSe/CdS semiconductor quantum dots N2 - Controlling thickness and tightness of surface passivation shells is crucial for many applications of core–shell nanoparticles (NP). Usually, to determine shell thickness, core and core/shell particle are measured individually requiring the availability of both nanoobjects. This is often not fulfilled for functional nanomaterials such as many photoluminescent semiconductor quantum dots (QD) used for bioimaging, solid state lighting, and display technologies as the core does not show the applicationrelevant functionality like a high photoluminescence (PL) quantum yield, calling for a whole nanoobject approach. By combining high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS), a novel whole nanoobject approach is developed representatively for an ultrabright oleic acid-stabilized, thick shell CdSe/CdS QD with a PL quantum yield close to unity. The size of this spectroscopically assessed QD, is in the range of the information depth of usual laboratory XPS. Information on particle size and monodispersity were validated with dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) and compared to data derived from optical measurements. In addition to demonstrating the potential of this novel whole nanoobject approach for determining architectures of small nanoparticles, the presented results also highlight challenges faced by different sizing and structural analysis methods and method-inherent uncertainties. KW - Photoluminescence KW - Single particle KW - Microscopy KW - Particle architecture KW - Thickness KW - SAXS KW - Shell KW - XPS KW - TEM KW - Semiconductor KW - Quantum dot KW - Photophysics KW - Quantum yield PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517911 DO - https://doi.org/10.1038/s41598-020-77530-z VL - 10 IS - 1 SP - 20712 PB - Springer Nature AN - OPUS4-51791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Lisec, Jan A1 - Borca, C. A1 - Huthwelker, T. A1 - Simon, Franz-Georg T1 - Combining DGT and combustion ion chromatography (CIC) as screening tool for per- and polyfluoroalkyl substances (PFAS) contamination in wastewater-based fertilizers N2 - Per- and polyfluoroalkyl substances (PFAS) are a large group of organofluorine surfactants used in the formulations of thousands of consumer goods. The continuous use of PFAS in household products and the discharge of PFAS from industrial plants into the sewer system have been resulted in contaminated effluents and sewage sludge from wastewater treatment plants (WWTPs) which became an important pathway for PFAS into the environment. Because sewage sludge is often used as fertilizer its application on agricultural soils has been observed as significant input path for PFAS into our food chain. To produce high-quality phosphorus fertilizers for a circular economy from sewage sludge, PFAS and other pollutants (e.g. pesticides and pharmaceuticals) must be separated from sewage sludge. Normally, PFAS are analyzed using PFAS protocols typically with time-consuming extraction steps and LC-MS/MS target quantification. However, for screening of PFAS contaminations in wastewater-based fertilizers also the DGT technique can be used for the PFAS extraction. Afterwards, combustion ion chromatography (CIC) can be applied to analyze the “total” amount of PFAS on the DGT binding layer. The DGT method was less sensitive and only comparable to the extractable organic fluorine (EOF) method values of the fertilizers in samples with >150 µg/kg, because of different diffusion properties for various PFAS, but also kinetic exchange limitations. However, the DGT approach has the advantage that almost no sample preparation is necessary. Moreover, the PFAS adsorption on the DGT binding layer was investigated via surface sensitive spectroscopical methods, such as Fourier-transform infrared (FT-IR) and fluorine K-edge X-ray absorption near-edge structure (XANES) spectroscopy. T2 - DGT Konferenz CY - Paris, France DA - 11.10.2023 KW - Combustion Ion Chromatography KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Sewage sludge PY - 2023 AN - OPUS4-58575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kader, A. A1 - Kaufmann, Jan Ole A1 - Mangarova, D. B. A1 - Moeckel, J. A1 - Adams, L. C. A1 - Brangsch, J. A1 - Heyl, J. L. A1 - Zhao, J. A1 - Verlemann, C. A1 - Karst, U. A1 - Collettini, F. A1 - Auer, T. A. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Collagen-specific molecular magnetic resonance imaging of prostate cancer N2 - Constant interactions between tumor cells and the extracellular matrix (ECM) influence the progression of prostate cancer (PCa). One of the key components of the ECM are collagen fibers, since they are responsible for the tissue stiffness, growth, adhesion, proliferation, migration, invasion/metastasis, cell signaling, and immune recruitment of tumor cells. To explore this molecular marker in the content of PCa, we investigated two different tumor volumes (500 mm3 and 1000 mm3) of a xenograft mouse model of PCa with molecular magnetic resonance imaging (MRI) using a collagen-specific probe. For in vivo MRI evaluation, T1-weighted sequences before and after probe administration were analyzed. No significant signal difference between the two tumor volumes could be found. However, we detected a significant difference between the signal intensity of the peripheral tumor area and the central area of the tumor, at both 500 mm3 (p < 0.01, n = 16) and at 1000 mm3 (p < 0.01, n = 16). The results of our histologic analyses confirmed the in vivo studies: There was no significant difference in the amount of collagen between the two tumor volumes (p > 0.05), but within the tumor, higher collagen expression was observed in the peripheral area compared with the central area of the tumor. Laser ablation with inductively coupled plasma mass spectrometry further confirmed these results. The 1000 mm3 tumors contained 2.8 +- 1.0% collagen and the 500 mm3 tumors contained 3.2 +- 1.2% (n = 16). There was a strong correlation between the in vivo MRI data and the ex vivo histological data (y = 0.068x + 1.1; R2 = 0.74) (n = 16). The results of elemental analysis by inductively coupled plasma mass spectrometry supported the MRI data (y = 3.82x + 0.56; R2 = 0.79; n = 7). MRI with the collagen-specific probe in PCa enables differentiation between different tumor areas. This may help to differentiate tumor from healthy tissue, potentially identifying tumor areas with a specific tumor biology. KW - Molecular imaging KW - Magnetic resonance imaging KW - MRI KW - Prostate cancer KW - Collagen KW - Laser ablation-inductively coupled plasma-mass spectroscopy KW - EP-3533 KW - Peptide probe KW - Gd-DOTA KW - Contrast agent KW - Tumor PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568449 DO - https://doi.org/10.3390/ijms24010711 SN - 1422-0067 SN - 1661-6596 VL - 24 IS - 1 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-56844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Paul, Martin A1 - Tannenberg, Robert A1 - Tscheuschner, Georg A1 - Wilke, Marco A1 - Weller, Michael G. T1 - Cocaine Detection by a Laser-induced Immunofluorometric Biosensor N2 - The trafficking of illegal drugs by criminal networks at borders, harbors, or airports is an increasing issue in public health as these routes ensure the main supply of illegal drugs. The prevention of drug smuggling, including the installation of scanners and other analytical devices to detect ultra-small traces of drugs within a reasonable time frame, remains a challenge. The presented immunosensor is based on a monolithic affinity column with a large excess of immobilized hapten, which traps fluorescently labeled antibodies as long as the analyte cocaine is absent. In the presence of the drug, some binding sites of the antibody will be blocked, which leads to an immediate breakthrough of the labeled protein, detectable by highly sensitive laser-induced fluorescence with the help of a Peltier-cooled complementary metal-oxide-semiconductor (CMOS) camera. Liquid handling is performed with high-precision syringe pumps and microfluidic chip-based mixing devices and flow cells. The biosensor achieved limits of detection of 23 pM (7 ppt) of cocaine with a response time of 90 seconds and a total assay time below 3 minutes. With surface wipe sampling, the biosensor was able to detect 300 pg of cocaine. This immunosensor belongs to the most sensitive and fastest detectors for cocaine and offers near-continuous analyte measurement. KW - Drug search KW - Customs KW - Confiscation KW - Border surveillance KW - Narcotics KW - International drug trade KW - Drug trafficking KW - Illicit drug KW - Immunosensor KW - Antibodies KW - Detection PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529951 DO - https://doi.org/10.20944/preprints202107.0521.v1 SP - 1 PB - MDPI CY - Basel AN - OPUS4-52995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, A. A1 - Lischeid, G. A1 - Koch, Matthias A1 - Lentzsch, P. A1 - Sommerfeld, Thomas A1 - Müller, M.H. T1 - Co-Cultivation of Fusarium, Alternaria, and Pseudomonas on Wheat-Ears Affects Microbial Growth and Mycotoxin Production N2 - Mycotoxigenic fungal pathogens Fusarium and Alternaria are a leading cause of loss in cereal production. On wheat-ears, they are confronted by bacterial antagonists such as pseudomonads. Studies on these groups’ interactions often neglect the infection process’s temporal aspects and the associated priority effects. In the present study, the focus was on how the first colonizer affects the subsequent ones. In a climate chamber experiment, wheat-ears were successively inoculated with two different strains (Alternaria enuissima At625, Fusarium graminearum Fg23, or Pseudomonas simiae Ps9). Over three weeks, microbial abundances and mycotoxin concentrations were analyzed and visualized via Self Organizing Maps with Sammon Mapping (SOM-SM). All three strains revealed different characteristics and strategies to deal with co-inoculation: Fg23, as the first colonizer, suppressed the establishment of At625 and Ps9. Nevertheless, primary inoculation of At625 reduced all of the Fusarium toxins and stopped Ps9 from establishing. Ps9 showed priority effects in delaying and blocking the production of the fungal mycotoxins. The SOM-SM analysis visualized the competitive strengths: Fg23 ranked first, At625 second, Ps9 third. Our findings of species-specific priority effects in a natural environment and the role of the mycotoxins involved are relevant for developing biocontrol strategies. KW - Antagonists KW - Microbe interactions KW - Mycotoxins KW - Priority effect KW - SOM-SM PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521554 DO - https://doi.org/10.3390/microorganisms9020443 VL - 9 IS - 2 SP - 443 PB - MDPI AN - OPUS4-52155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steglich, P. A1 - Bondarenko, S. A1 - Mai, C. A1 - Paul, Martin A1 - Weller, Michael G. A1 - Mai, A. T1 - CMOS-Compatible Silicon Photonic Sensor for Refractive Index Sensing Using Local Back-Side Release N2 - Silicon photonic sensors are promising candidates for lab-on-a-chip solutions with versatile applications and scalable production prospects using complementary metal-oxide semiconductor (CMOS) fabrication methods. However, the widespread use has been hindered because the sensing area adjoins optical and electrical components making packaging and sensor handling challenging. In this work, a local back-side release of the photonic sensor is employed, enabling a separation of the sensing area from the rest of the chip. This approach allows preserving the compatibility of photonic integrated circuits in the front-end of line and metal interconnects in the back-end of line. The sensor is based on a micro-ring resonator and is fabricated on wafer-level using a CMOS technology. We revealed a ring resonator sensitivity for homogeneous sensing of 106 nm/RIU. KW - Photonic biosensor KW - Lab-on-a-chip KW - Ring resonator KW - Resonance wavelength shift KW - PIC technology KW - Back-side integration PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517139 DO - https://doi.org/10.1109/LPT.2020.3019114 VL - 32 IS - 19 SP - 1241 EP - 1244 PB - IEEE AN - OPUS4-51713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kage, Daniel A1 - Fischer, Linn A1 - Hoffmann, Katrin A1 - Thiele, T. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Close spectroscopic look at dye-stained polymer microbeads N2 - Dye-stained micrometer-sized polymer beads are important tools in the life sciences with applications in biomedical, biochemical, and clinical research. Here, bead-based assays are increasingly used, for example, in DNA sequencing and the detection of autoimmune diseases or pathogenic microorganisms. Moreover, stained beads are employed as calibration tools for fluorescence microscopy and flow cytometry methods with increasing complexity. To address the requirements concerning the relevant fluorescence features, the spectroscopic properties of representative polymer beads with diameters ranging from about 1 to 10 μm stained with varying concentrations of rhodamine 6G were systematically assessed. The observed dependence of the spectral properties, fluorescence decay kinetics, and fluorescence quantum yields on bead size and dye loading concentration is attributed to different fluorescence characteristics of fluorophores located in the particle core and near-surface dye molecules. Supported by the fluorescence anisotropy measurements, the origin of the observed alteration of fluorescence features is ascribed to a combination of excitation energy transfer and polarity-related effects that are especially pronounced at the interface of the bead and the surrounding medium. The results of our studies underline the need to carefully control and optimize all Parameters that can affect the fluorescence properties of the dye-stained beads. KW - Fluorophore KW - Polymer particles KW - Photophysics KW - Life sciences KW - Standards PY - 2018 DO - https://doi.org/10.1021/acs.jpcc.8b02546 SN - 1932-7447 VL - 122 IS - 24 SP - 12782 EP - 12791 PB - ACS Publications CY - Washington, DC AN - OPUS4-45453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kuner, Maximilian A1 - Kühn, S. A1 - Haase, H. A1 - Meyer, Klas A1 - Koch, Matthias T1 - Cleaving Ergot Alkaloids by Hydrazinolysis - A Promising Approach for a Sum Parameter Screening Method N2 - Ergot alkaloids are mycotoxins formed by fungi of the Claviceps genus, which are some of the most common contaminants of food and feed worldwide. These toxins are a structurally heterogeneous group of compounds, sharing an ergoline backbone. Six structures and their corresponding stereoisomers are typically quantified by either HPLC-FLD or HPLC-MS/MS and the values subsequently summed up to determine the total ergot alkaloid content. For the development of a screening method targeting all ergot alkaloids simultaneously, the alkaloids need to be transferred to one homogeneous structure: a lysergic acid derivative. In this study, two promising cleaving methods—acidic esterification and hydrazinolysis—are compared, using dihydroergocristine as a model compound. While the acidic esterification proved to be unsuitable, due to long reaction times and oxidation sensitivity, hydrazinolysis reached a quantitative yield in 40-60 min. Parallel workup of several samples is possible. An increasing effect on the reaction rate by the addition of ammonium iodide was demonstrated. Application of hydrazinolysis to a major ergot alkaloid mix solution showed that all ergopeptines were cleaved, but ergometrine/-inine was barely affected. Still, hydrazinolysis is a suitable tool for the development of a sum parameter screening method for ergot alkaloids in food and feed. KW - Ergot alkaloids KW - Sum parameter method KW - Hydrazinolysis KW - Esterification PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527508 DO - https://doi.org/10.3390/toxins13050342 VL - 13 IS - 5 SP - 342 PB - MDPI CY - Basel, Switzerland AN - OPUS4-52750 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuner, Maximilian A1 - Kühn, Susanne A1 - Koch, Matthias A1 - Haase, Hajo T1 - Cleaving ergot alkaloids - development of a novel food screening method N2 - Mycotoxins (toxic compounds formed by fungi) in food and feed have caused problems for mankind since the beginning of time. The group of ergot alkaloids plays a special role in human history. Several tens of thousands of deaths during the middle ages caused by to ergotism (the disease caused by continuous intake of ergot alkaloid contaminated food) underscore the importance of reliable analytical methods to ensure food safety. More than 50 compounds belong to the group of ergot alkaloids. The 12 most found structures – the major ergot alkaloids – are typically measured, when it comes to ergot alkaloid quantification. High performance liquid chromatography (HPLC) with a fluorescence detector (FLD) is typically used to quantify the ergot alkaloid content. The main disadvantage of this method are the high costs for calibration standards (12 different calibration substances are required). But also, the time and effort required for the analysis of 12 peaks and overlapping signals that occur in complex food samples such as bread. As all ergot alkaloids share the ergoline structure and just differ in the substituents attached to this backbone, measurement of all ergot alkaloids in one sum parameter presents a time and cost saving alternative. The most important step for the development of such a sum parameter method is the reaction used to transfer all ergot alkaloids to one uniform structure. Two promising reactions, the acidic esterification to lysergic acid methyl ester and hydrazinolysis to lysergic acid hydrazide, were examined for possible use in a routine analysis method. In addition to yield and reaction rate, factors such as handling of the reaction and the possibility of parallel sample workup play a role. T2 - Adlershofer Forschungsforum 2022 CY - Berlin, Germany DA - 11.11.2022 KW - Ergot alkaloids KW - Screening PY - 2022 AN - OPUS4-56585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meierhofer, F. A1 - Dissinger, F. A1 - Weigert, Florian A1 - Resch-Genger, Ute A1 - Waldvogel, S. R. A1 - Voss, T. T1 - Citric-Acid-Based Carbon Dots with Luminescence Quantum Yields > 50%: spectral tuning of the luminescence by ligand exchange and pH adjustment N2 - We report the synthesis and characterization of carbon nanodots (CDs) with high quantum yield (>50%) and tailored optical absorption as well as emission properties. A well-described protocol with polyethyleneimine (PEI) as amine precursor is used as a reference to a new CD system which is stabilized by aromatic 2,3-diaminopyridine (DAP) molecules instead. The DAP stabilizer is installed in order to red-shift the absorption peak of the n-π* electron transition allowing efficient radiative recombination and light emission. Size, shape, and chemical composition of the samples are determined by (HR)TEM, EDX and FTIR-spectroscopy. Optical parameters are investigated using UV-VIS, PL and QY measurements. Several parameters such as concentration, excitation wavelength and pH are studied. Zeta-potential analysis indicate that pH-induced (de-)protonation processes of functional moieties directly affect the n-π* energy bands. This results in unique pH-dependent absorption and emission characteristics which are discussed on the specific chemical composition of each CD system. T2 - MRS 2019 CY - Boston, MA, USA DA - 03.12.2019 KW - Nanoparticle KW - Carbon dot KW - Surface chemistry KW - Fluorescence KW - PH KW - Ligand KW - FTIR KW - Synthesis KW - Characterization PY - 2019 AN - OPUS4-49968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyerhofer, F. A1 - Dissinger, F. A1 - Weigert, Florian A1 - Jungclaus, J. A1 - Müller-Caspary, K. A1 - Waldvogel, S. R. A1 - Resch-Genger, Ute A1 - Voss, T. T1 - Citric Acid Based Carbon Dots with Amine Type Stabilizers: pHSpecific N2 - We report the synthesis and spectroscopic characteristics of two different sets of carbon dots (CDs) formed by hydrothermal reaction between citric acid and polyethylenimine (PEI) or 2,3-diaminopyridine (DAP). Although the formation of amide-based species and the presence of citrazinic acid type derivates assumed to be responsible for a blue emission is confirmed for both CDs by elemental analysis, infrared spectroscopy, and mass spectrometry, a higher abundance of sp2-hybridized nitrogen is observed for DAP-based CDs, which causes a red-shift of the n-π* absorption band relative to the one of PEI-based CDs. These CD Systems possess high photoluminescence quantum yields (QY) of ∼40% and ∼48% at neutral pH, demonstrating a possible tuning of the optical properties by the amine precursor. pH-Dependent spectroscopic studies revealed a drop in QY to < 9% (pH ∼ 1) and < 21% (pH ∼ 12) for both types of CDs under acidic and basic conditions. In contrast, significant differences in the pHdependency of the n-π* transitions are found for both CD types which are ascribed to different (de)protonation sequences of the CD-specific fluorophores and functional groups using Zeta potential analysis. KW - Fluorescence KW - Particle KW - Nano KW - Surface group analysis KW - Carbon dot KW - C-dot KW - Fluorescent probe KW - Quantum yield KW - Synthesis KW - IR KW - MS KW - Polymer KW - Ligand PY - 2020 DO - https://doi.org/10.1021/acs.jpcc.9b11732 VL - 124 IS - 16 SP - 8894 EP - 8904 PB - American Chemical Society AN - OPUS4-50813 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thinnes, A. A1 - Westenberger, M. A1 - Piechotta, Christian A1 - Letho, L. A1 - Wirth, F. A1 - Lau, H. A1 - Klein, J. T1 - Cholinergic and metabolic effects of metformin in mouse brain N2 - Metformin is widely used as a first-line treatment for type 2 diabetes, but central effects of metformin have received little attention. When metformin (200 mg/kg i.p.) was administered to C57Bl6 mice, metformin concentration in cerebrospinal fluid peaked at 29 μM after 30 min but dropped quickly and was low at 90 min. In mouse hypothalamus sampled by microdialysis, systemically administered metformin caused minor and transient increases of acetylcholine, glucose and lactate while choline levels decreased. When metformin (0.2−10 mM) was locally infused via retrodialysis, there was a short-lasting increase of acetylcholine in the hypothalamus. Extracellular lactate levels in hypothalamus showed a massive increase upon metformin infusion while glucose levels decreased. In isolated mitochondria of mouse brain, metformin inhibited oxygen consumption and the activity of complex I. Inhibition of mitochondrial respiration likely explains lactate formation in the brain during metformin infusion which may cause lactic acidosis during metformin intoxication. The changes of cholinergic activity in the hypothalamus may be associated with appetite suppression observed during metformin treatment. KW - Metformin KW - Blood-brain barrier KW - Lactate KW - Glucose KW - Microdialysis KW - Hypothalamus PY - 2021 DO - https://doi.org/10.1016/j.brainresbull.2021.02.018 SN - 0361-9230 VL - 170 SP - 211 EP - 217 PB - Elsevier CY - Amsterdam, Niederlande AN - OPUS4-52189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tatzel, M. A1 - Frings, P. J. A1 - Oelze, Marcus A1 - Herwartz, D. A1 - Lünsdorf, K. A1 - Wiedenbeck, M. T1 - Chert oxygen isotope ratios are driven by Earth's thermal evolution N2 - The 18O/16O ratio of cherts (δ18Ochert) increases nearly monotonically by ~15‰ from the Archean to present. Two end-member explanations have emerged: cooling seawater temperature (TSW) and increasing seawater δ18O (δ18Osw). Yet despite decades of work, there is no consensus, leading some to view the δ18Ochert record as pervasively altered. Here, we demonstrate that cherts are a robust archive of diagenetic temperatures, despite metamorphism and exposure to meteoric fluids, and show that the timing and temperature of quartz precipitation and thus δ18Ochert are determined by the kinetics of silica diagenesis. A diagenetic model shows that δ18Ochert is influenced by heat flow through the sediment column. Heat flow has decreased over time as planetary heat is dissipated, and reasonable Archean-modern heat flow changes account for ~5‰ of the increase in δ18Ochert, obviating the need for extreme TSW or δ18Osw reconstructions. The seawater oxygen isotope budget is also influenced by solid Earth cooling, with a recent reconstruction placing Archean δ18OSW 5 to 10‰ lower than today. Together, this provides an internally consistent view of the δ18Ochert record as driven by solid Earth cooling over billion-year timescales that is compatible with Precambrian glaciations and biological. KW - Climate KW - Oxygen isotope ratios KW - Silica diagenesis KW - Early Earth KW - Heat flow PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569359 DO - https://doi.org/10.1073/pnas.2213076119 SN - 0027-8424 VL - 119 IS - 51 SP - 1 EP - 7 PB - National Academy of Sciences CY - Washington, DC AN - OPUS4-56935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - You, Zengchao A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique T1 - Chemometrical analysis of spectral data obtained from glow discharge optical emission spectroscopy for elemental analysis of metals N2 - The poster shows the combination of GD-OES and machine learning. The gola of this project is to establish a new and robust calibration model, which can be used to identify elemental composition and concentration of metals from a single spectra. T2 - Salsa make and measure Konferenz CY - Online meeting DA - 16.09.2021 KW - Glow discharge optical emission spectroscopy KW - Machine learning PY - 2021 AN - OPUS4-53323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Muench, S. A1 - Okruss, M. A1 - Tatzel, Michael A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Chemometric analysis of High resolution spectra for precise and accurate isotope amount ratio determination N2 - Magnesium is a major element in the hydrosphere and biosphere and plays important roles in (bio-) geochemical and physiological cycles. Mg has three stable isotopes, 24Mg, 25Mg and 26Mg. It is due to their relatively large mass difference (~8% between) that isotope fractionation leads to slight variations of isotope amount ratios in biological, environmental and geological samples. Traditionally, isotope amount ratios are measured by mass spectrometric methods. Their drawbacks include the high costs for instruments and their operation, experienced operators and elaborate time-consuming chromatographic sample preparation. Recently, an optical spectrometric method has been proposed as faster and low-cost alternative for the analysis of isotope ratios: high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS). For the determination of Mg isotope ratios in selected rock reference materials, the high-resolution molecular absorption spectrum of in-situ generated MgF molecule was studied applying multivariate analysis and the results compared with MC-ICP-MS. Samples were dissolved by acid digestion and Mg isotopes analyzed with and without matrix. The absorption spectra were recorded for MgF for the electronic transition X 2Σ → B 2Σ+. The MgF spectrum is described as the linear combination of their isotopic components or isotopologues: 24MgF, 25MgF, and 26MgF. The isotope analysis was done by deconvolution of the MgF spectrum by partial least square regression (PLS). A PLS model was built and calibrated with enriched isotope spikes and certified reference materials. Spectra data was preprocessed by a derivate of second order and venetian blinds cross-validation was employed for finding the optimum latent variables. Finally, the model was refined by a genetic algorithm which identified the best subset of variables for a precise and accurate regression. Results are compatible with those obtained by MC-ICP-MS with an accuracy of ± 0.3‰ with uncertainties ranging between 0.02 to 0.6‰. T2 - Colloquium Analytische Atomspektroskopie CANAS 2019 CY - Freiberg, Germany DA - 23.09.2019 KW - Isotope analysis KW - Chemometric KW - Multivariate analysis KW - HR-CS-MAS KW - Molecular spectrum KW - Magnesium PY - 2019 AN - OPUS4-49878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. T1 - Chemistry in laser‑induced plasmas at local thermodynamic equilibrium N2 - The equation of state for plasmas containing negative and positive ions of elements and molecules formed by these elements is modeled under the assumption that all ionization processes and chemical reactions are at local thermal equilibrium and the Coulomb interaction in the plasma is described by the Debye–Hückel theory. The hierarchy problem for constants of molecular reactions is resolved by using three different algorithms for high, medium, and low temperatures: the contraction principle, the Newton–Raphson method, and a scaled Newton–Raphson method, respectively. These algorithms are shown to have overlapping temperature ranges in which they are stable. The latter allows one to use the developed method for calculating the equation of state in combination with numerical solvers of Navier–Stokes equations to simulate laser-induced Plasmas initiated in an atmosphere and to study formation of molecules and their ions in such plasmas. The method is applicable to a general chemical network. It is illustrated with examples of Ca–Cl and C–Si–N laser-induced plasmas. KW - Plasma KW - LIBS KW - Plasma modeling PY - 2018 DO - https://doi.org/10.1007/s00339-018-2129-9 SN - 1432-0630 SN - 0947-8396 VL - 124 IS - 10 SP - 716, 1 EP - 21 PB - Springer AN - OPUS4-46112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tannenberg, Robert A1 - Paul, Martin A1 - Röder, Bettina A1 - Gande, S. L. A1 - Sreeramulu, S. A1 - Saxena, K. A1 - Richter, C. A1 - Schwalbe, H. A1 - Swart, C. A1 - Weller, Michael G. T1 - Chemiluminescence biosensor for the determination of cardiac troponin I (cTnI) N2 - Cardiac troponin I (cTnI) is a crucial biomarker for diagnosing cardiac vascular diseases, including acute myocardial infarction (AMI). This study presents a proof-of-concept chemiluminescence-based immunosensor for rapid and accurate measurement of cTnI, with the potential for online monitoring. The immunosensor incorporates a flow cell design and a sensitive complementary metal-oxide-semiconductor (CMOS) camera for optical readout. A microfluidic setup was established to enable selective and quasi-online determination of cTnI within ten minutes. The sensor was tested with recombinant cTnI in phosphate buffer, demonstrating measurements in the concentration range of 2–25 µg/L, with a limit of detection (LoD) of 0.6 µg/L (23 pmol/L) achieved using the optimized system. The immunosensor exhibited high selectivity, as no cross-reactivity was observed with other recombinant proteins such as cTnT and cTnC at a concentration of 16 µg/L. Measurements with diluted blood plasma and serum yielded an LoD of 60 µg/L (2.4 nmol/L) and 70 µg/L (2.9 nmol/L), respectively. This biosensor offers a promising approach for the rapid and sensitive detection of cTnI, contributing to the diagnosis and management of acute myocardial infarction and other cardiac vascular diseases. N2 - Das kardiale Troponin I (cTnI) ist ein wichtiger Biomarker für die Diagnose von Herz-Kreislauf-Erkrankungen, einschließlich des akuten Myokardinfarkts (AMI). In dieser Studie wird ein auf Chemilumineszenz basierender Immunsensor für die schnelle und genaue Messung von cTnI vorgestellt, der das Potenzial für eine Online-Überwachung hat. Der Immunsensor besteht aus einer Durchflusszelle und einer empfindlichen CMOS-Kamera (Complementary Metal-Oxide-Semiconductor) zur optischen Detektion. Es wurde ein mikrofluidischer Aufbau entwickelt, der eine selektive und quasi Online-Bestimmung von cTnI innerhalb von zehn Minuten ermöglicht. Der Sensor wurde mit rekombinantem cTnI in Phosphatpuffer getestet und zeigte einen Messbereich von 2-25 µg/L, wobei mit dem optimierten System eine Nachweisgrenze (LoD) von 0,6 µg/L (23 pmol/L) erreicht wurde. Der Immunsensor zeigte eine hohe Selektivität, da keine Kreuzreaktivität mit anderen rekombinanten Proteinen wie cTnT und cTnC bei einer Konzentration von 16 µg/L beobachtet wurde. Messungen mit verdünntem Blutplasma und Serum ergaben einen LoD von 60 µg/L (2,4 nmol/L) bzw. 70 µg/L (2,9 nmol/L). Dieser Biosensor bietet einen vielversprechenden Ansatz für den schnellen und empfindlichen Nachweis von cTnI, der zur Diagnose und Behandlung des akuten Myokardinfarkts und anderer kardialer Gefäßerkrankungen beitragen kann. KW - Acute myocardial infarction KW - Heart attack KW - Emergency KW - Diagnosis KW - Cardiac troponin KW - Biomarker KW - Immunosensor KW - Biosensor KW - Chemiluminescence KW - Luminol KW - Peroxidase KW - Monoclonal antibodies KW - Flow injection immunoassay KW - Immunometric assay KW - Immunometric biosensor KW - Microfluidic system KW - Monolithic column KW - Online biosensor PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575471 DO - https://doi.org/10.3390/bios13040455 SN - 2079-6374 VL - 13 IS - 4 SP - 1 EP - 20 PB - MDPI CY - Basel AN - OPUS4-57547 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ziegler, K. A1 - Kunert, A. T. A1 - Reinmuth-Selzle, K. A1 - Leifke, A. L. A1 - Widera, D. A1 - Weller, Michael G. A1 - Schuppan, D. A1 - Fröhlich-Nowoisky, J. A1 - Lucas, K. A1 - Pöschl, U. T1 - Chemical modification of pro-inflammatory proteins by peroxynitrite increases activation of TLR4 and NF-κB: Implications for the health effects of air pollution and oxidative stress N2 - Environmental pollutants like fine particulate matter can cause adverse health effects through oxidative stress and inflammation. Reactive oxygen and nitrogen species (ROS/RNS) such as peroxynitrite can chemically modify proteins, but the effects of such modifications on the immune system and human health are not well understood. In the course of inflammatory processes, the Toll-like receptor 4 (TLR4) can sense damage-associated molecular patterns (DAMPs). Here, we investigate how the TLR4 response and pro-inflammatory potential of the proteinous DAMPs α-Synuclein (α-Syn), heat shock protein 60 (HSP60), and high-mobility-group box 1 protein (HMGB1), which are relevant in neurodegenerative and cardiovascular diseases, changes upon chemical modification with peroxynitrite. For the peroxynitrite-modified proteins, we found a strongly enhanced activation of TLR4 and the pro-inflammatory transcription factor NF-κB in stable reporter cell lines as well as increased mRNA expression and secretion of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-8 in human monocytes (THP-1). This enhanced activation of innate immunity via TLR4 is mediated by covalent chemical modifications of the studied DAMPs. Our results show that proteinous DAMPs modified by peroxynitrite more potently amplify inflammation via TLR4 activation than the native DAMPs, and provide first evidence that such modifications can directly enhance innate immune responses via a defined receptor. These findings suggest that environmental pollutants and related ROS/RNS may play a role in promoting acute and chronic inflammatory disorders by structurally modifying the body's own DAMPs. This may have important consequences for chronic neurodegenerative, cardiovascular or gastrointestinal diseases that are prevalent in modern societies, and calls for action, to improve air quality and climate in the Anthropocene. KW - Protein nitration KW - Protein oligomerization KW - Damage-associated molecular patterns (DAMPs) KW - Pattern recognition receptor KW - Anthropocene KW - Environmental pollutants PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517128 DO - https://doi.org/10.1016/j.redox.2020.101581 VL - 37 SP - 101581 PB - Elsevier B.V. AN - OPUS4-51712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gawlitza, Kornelia A1 - Fischer, Tobias A1 - Rurack, Knut T1 - Chemical functionalization for quantitative spectroscopic labeling on macroscopically flat surfaces N2 - This chapter highlights the application of chemical derivatization (CD) to facilitate the quantification of surface functional groups being an important issue for a wide field of applications. The selective attachment of a chemical label to a surface functional group being afterwards exclusively detectable by a highly sensitive technique overcomes the problem of characterizing low amounts of functional groups on macroscopically flat surfaces. The most frequently employed methods include CD X-ray photoelectron spectroscopy, ultraviolet/visible absorption, and fluorescence spectroscopy, as well as time-of-flight secondary ion mass spectrometry. Herein, the basic conditions for the different techniques regarding the specific surface functional group which need to be quantified are discussed. Additionally, the substrate highly influences the compatibility of the corresponding method. Because not just the quantification but also the preparation of the desired application is important, a summary of different preparation methods for glass, polymer and gold substrates is presented. KW - Chemical derivatization KW - Fluorescence KW - Surface group quantification KW - Time-of-flight secondary ion mass spectrometry KW - UV/vis spectroscopy KW - X-ray photoelectron spectroscopy PY - 2018 SN - 978-0-12-409547-2 DO - https://doi.org/10.1016/B978-0-12-409547-2.13191-9 SP - 1 PB - Elsevier AN - OPUS4-43767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander A1 - Hoffmann, V. A1 - Morcillo, Dalia A1 - Agudo Jacome, Leonardo A1 - Leonhardt, Robert A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique A1 - You, Zengchao T1 - Chemical characterization of aging processes in high energy-density lithium-ion batteries N2 - Introduction Lithium-ion batteries (LIBs) are one key technology to overcome the climate crisis and energy transition challenges. Demands of electric vehicles on higher capacity and power drives research on innovative cathode and anode materials. These high energy-density LIBs are operated at higher voltages, leading to increased electrolyte decay and the current collectors' degradation. Even though this fundamental corrosion process significantly affects battery performance, insufficient research is being done on the aluminum current collector. Fast and convenient analytical methods are needed for monitoring the aging processes in LIBs. Methods In this work glow-discharge optical emission spectrometry (GD-OES) was used for depth profile analysis of aged cathode material. The measurements were performed in pulsed radio frequency mode. Under soft and controlled plasma conditions, high-resolution local determination (in depth) of the elemental composition is possible. Scanning electron microscopy (SEM) combined with a focused ion beam (FIB) cutting and energy dispersive X-ray spectroscopy (EDX) was used to confirm GD-OES results and obtain additional information on elemental distribution. Results The aging of coin cells manufactured with different cathode materials (LCO, LMO, NMC111, NMC424, NMC532, NMC622, and NMC811) was studied. GD-OES depth profiling of new and aged cathode materials was performed. Quantitative analysis was possible through calibration with synthetic standards and correction by sputter rate. Different amounts of aluminum deposit on the cathode surface were found for different materials. The deposit has its origin in the corrosion of the aluminum current collector. The results are compatible with results from FIB-EDX. However, GD-OES is a faster and less laborious analytical method. Therefore, it will accelerate research on corrosion processes in high energy-density batteries. Innovative aspects - Quantitative depth profiling of cathode material -Monitoring of corrosion processes in high energy-density lithium-ion batteries - Systematic investigation of the influence of different cathode materials T2 - ANAKON 2023 CY - Vienna, Austria DA - 11.04.2023 KW - Lithium Ion Batteries KW - GD-OES KW - Depth-profiling PY - 2023 AN - OPUS4-58586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ickert, Stefanie A1 - Hofmann, J. A1 - Riedel, Jens A1 - Beck, S. A1 - Pagel, K. A1 - Linscheid, M. W. T1 - Charge-induced geometrical reorganization of DNA oligonucleotides studied by tandem mass spectrometry and ion mobility N2 - Mass spectrometry is applied as a tool for the elucidation of molecular structures. This premises that gas-phase structures reflect the original geometry of the analytes, while it requires a thorough understanding and investigation of the forces controlling and affecting the gas-phase structures. However, only little is known about conformational changes of oligonucleotides in the gas phase. In this study, a series of multiply charged DNA oligonucleotides (n¼15–40) has been subjected to a comprehensive tandem mass spectrometric study to unravel transitions between different ionic gas-phase structures. The nucleobase sequence and the chain length were varied to gain insights into their influence on the geometrical oligonucleotide organization. Altogether, 23 oligonucleotides were analyzed using collision-induced fragmentation. All sequences showed comparable correlation regarding the characteristic collision energy. This value that is also a measure for stability, strongly correlates with the net charge density of the precursor ions. With decreasing charge of the oligonucleotides, an increase in the fragmentation energy was observed. At a distinct charge density, a deviation from linearity was observed for all studied species, indicating a structural reorganization. To corroborate the proposed geometrical change, collisional cross-sections of the oligonucleotides at different charge states were determined using ion mobility-mass spectrometry. The results clearly indicate that an increase in charge density and thus Coulomb repulsion results in the transition from a folded, compact form to elongated structures of the precursor ions. Our data show this structural transition to depend mainly on the charge density, whereas sequence and size do not have an influence. KW - Ion mobility KW - Collision-induced dissociation KW - Mass spectrometry KW - Oligonucleotide KW - Fragmentation KW - Tandem-MS PY - 2018 DO - https://doi.org/10.1177/1469066717746896 SN - 1469-0667 SN - 1751-6838 VL - 24 IS - 2 SP - 225 EP - 230 PB - Sage AN - OPUS4-44429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Tavernaro, Isabella A1 - Radnik, Jörg A1 - Kunc, F. A1 - Brinkmann, A. A1 - Lopinski, G. A1 - Johnston, L. J. T1 - Characterization and quantification of functional groups and coatings on nanoobjects an overview N2 - Characterization of Nanoparticles – Questions to Ask, Functional Nanoparticles (NPs) – Organic, Inorganic, and Hybrid Nanoparticles Nanomaterial Characterization Standardization – Addressing Remaining Gaps Surface FGs Particle Surface Chemistry - Why is it Important? Particle Surface Chemistry - A Key Driver for Performance, Applications, and Safety Aspects Method Development for Quantifying FGs and Ligands on Particle Surfaces FG Quantification – Method Choice & Criteria Relevant for Data Interpretation Quantifying the Amount of Total and Accessible FGs on Aminated Silica Nanoparticles (SiO2-NH2) Comparing the Total and Accessible –NH2 Content on Aminated Silica NPs of Different Size Characterization of Nanoparticles Standardization Standardized Measurements of Surface FGs on Nanoparticles EMP Project SMURFnano EMP Project SMURFnano Work Packages & Goals Certified Reference Materials from BAM T2 - e-MRS 2024 (Spring Meeting of the European Materials Research Society, Altech Symposium) CY - Strasbourg, France DA - 27.05.2024 KW - Luminescence KW - Nano KW - Particle KW - Quantum yield KW - Quality assurance KW - Interlaboratory comparison KW - Method KW - Uncertainty KW - Reference material KW - Surface analysis KW - Optical assay KW - NMR KW - Silica KW - Ligand PY - 2024 AN - OPUS4-60495 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kazlagić, Anera A1 - Rosner, M. A1 - Cipriani, A. A1 - Frick, D. A. A1 - Glodny, J. A1 - Hoffmann, E. J. A1 - Hora, J. M. A1 - Irrgeher, J. A1 - Lugli, F. A1 - Magna, T. A1 - Meisel, T. C. A1 - Meixner, A. A1 - Possolo, A. A1 - Pramann, A. A1 - Pribil, M. J. A1 - Prohaska, T. A1 - Retzmann, Anika A1 - Rienitz, O. A1 - Rutherford, D. A1 - Paula-Santos, G. M. A1 - Tatzel, M. A1 - Widhalm, S. A1 - Willbold, M. A1 - Zuliani, T. A1 - Vogl, Jochen T1 - Characterisation of conventional 87Sr/86Sr isotope ratios in cement, limestone and slate reference materials based on an interlaboratory comparison study N2 - An interlaboratory comparison (ILC)was organised to characterise 87Sr/86Sr isotope ratios in geological and industrial reference materials by applying the so-called conventional method for determining 87Sr/86Sr isotope ratios. Four cements (VDZ 100a,VDZ 200a, VDZ 300a, IAG OPC-1), one limestone (IAG CGL ML-3) and one slate (IAG OU-6) reference materials were selected, covering a wide range of naturally occurring Sr isotopic signatures. Thirteen laboratories received aliquots of these six reference materials together with a detailed technical protocol. The consensus values for the six reference materials and their associated measurement uncertainties were obtained by applying a Gaussian, linear mixed effects model fitted to all the measurement results. By combining the consensus values and their uncertainties with an uncertainty contribution for potential heterogeneity, reference values ranging from 0.708134 mol mol-1 to 0.729778 mol mol-1 were obtained with relative expanded uncertainties of ≤ 0.007 %. This study represents an ILC on conventional 87Sr/86Sr isotope ratios, within which metrological principles were considered and the compatibility of measurement results obtained by MC-ICP-MS and by MC-TIMS is demonstrated. The materials characterised in this study can be used as reference materials for validation and quality control purposes and to estimate measurement uncertainties in conventional 87Sr/86Sr isotope ratio measurement. KW - Sr isotope analysis KW - Isotope ratios KW - Cement KW - Geological material KW - MC-TIMS KW - MC-ICP-MS KW - Interlaboratory comparison KW - Measurement uncertainty KW - Cconventional method PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579836 DO - https://doi.org/10.1111/ggr.12517 SN - 1639-4488 VL - 47 IS - 4 SP - 821 EP - 840 PB - Wiley online library AN - OPUS4-57983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Silke A1 - Kipphardt, Heinrich A1 - Recknagel, Sebastian A1 - Pfeifer, Jens T1 - Characterisation of a high purity nickel material to be used as a primary standard for element determination N2 - A candidate material for the use as primary standard for nickel determination was characterized with respect to total purity. For element determination a pure material can serve as primary standard. However, real world materials are never absolutely pure, hence the total purity of such materials need to be determined experimentally. A reasonable target uncertainty for the purity statement is 10-4 relative. Usually, the purer the material, the easier it is to achieve this target uncertainty. There are two basic ways in order to be able to establish a total purity statement. One is to determine the main component of a high purity material by a direct method such as coulometry, gravimetry or titrimetry. However, these methods are not selective enough for one element and therefore require certain efforts to analyse the material with respect to impurities with interfering analytes. Moreover, to reach the defined target uncertainty is not easy or often impossible to achieve. The second approach is to determine the sum of all possible impurities (as mass fraction) and to subtract it from the ideal purity of 100 % (1 kg/kg). In principle all impurities (all elements not being the matrix element), metals and non-metals must be considered. In this work both approaches to determine the total purity of the nickel material were followed and compared. The primary (solid) standards are usually used to prepare primary calibration solutions to which secondary and lower order calibration solutions are linked. T2 - BERM-15 CY - Berlin, Germany DA - 23.09.2018 KW - Primary standard KW - High purity material KW - Nickel PY - 2018 AN - OPUS4-46216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Lisec, Jan A1 - Koch, Matthias T1 - Changes in Black Truffle (Tuber melanosporum) Aroma during Storage under Different Conditions N2 - The enticing aroma of truffles is a key factor for their culinary value. Although all truffle species tend to be pricy, the most intensely aromatic species are the most sought after. Research into the aroma of truffles encompasses various disciplines including chemistry, biology, and sensory science. This study focusses on the chemical composition of the aroma of black truffles (Tuber melanosporum) and the changes occurring under different storage conditions. For this, truffle samples were stored under different treatments, at different temperatures, and measured over a total storage time of 12 days. Measurements of the truffle aroma profiles were taken with SPME/GC–MS at regular intervals. To handle the ample data collected, a systematic approach utilizing multivariate data analysis techniques was taken. This approach led to a vast amount of data which we made publicly available for future exploration. Results reveal the complexity of aroma changes, with 695 compounds identified, highlighting the need for a comprehensive understanding. Principal component analyses offer initial insights into truffle composition, while individual compounds may serve as markers for age (formic acid, 1-methylpropyl ester), freshness (2-Methyl-1-propanal; 1-(methylthio)-propane), freezing (tetrahydrofuran), salt treatment (1-chloropentane), or heat exposure (4-hydroxy-3-methyl-2-butanone). This research suggests that heat treatment or salt contact significantly affects truffle aroma, while freezing and cutting have less pronounced effects in comparison. The enrichment of compounds showing significant changes during storage was investigated with a metabolomic pathway analysis. The involvement of some of the enriched compounds on the pyruvate/glycolysis and sulfur pathways was shown. KW - Mass Spectrometry KW - Metabolomics KW - Tuber melanosporum KW - Truffle Aroma PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601731 DO - https://doi.org/10.3390/jof10050354 VL - 10 IS - 5 SP - 1 EP - 22 PB - MDPI AN - OPUS4-60173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klein, Luise A1 - Wilke, Olaf T1 - Chamber comparison for the determination of initial VOC emissions from consumer products N2 - Volatile organic compound (VOC) emissions from consumer products contribute to human inhalation exposure and may cause adverse health effects. Existing methods to determine long-term VOC emissions from e.g. building products need to be verified for their suitability to reliably detect initial VOC emissions from consumer products within the first hours and days of use, which would facilitate realistic inhalation exposure assessments. To investigate this issue, VOCs emitted from a test sample were determined in a large-scale emission test chamber and in two micro-chambers of different volumes, and the results were compared. T2 - Healthy Buildings 2023 Europe CY - Aachen, Germany DA - 11.06.2023 KW - Micro-chamber KW - Emission test chamber KW - Volatile organic compounds KW - Inhalation exposure KW - Consumer products PY - 2023 SP - 6 EP - 8 AN - OPUS4-58055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Recknagel, Sebastian T1 - Certified reference materials for the determination of cadmium (Cd) in cocoa N2 - BAM has produced three cocoa CRMs certified for cadmium (ERM-BD513 – 515) as tools for checking analytical methods for Cd-determination. KW - Certified reference material KW - Cocoa KW - Cadmium PY - 2021 SP - 4 EP - 4 AN - OPUS4-53694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Philipp, Rosemarie A1 - Topal, K. A1 - Calzado, M. A1 - Bebic, J. A1 - Lalere, B. T1 - Certified reference materials for breath alcohol control – the ALCOREF project N2 - ALCOREF is a project within the European Metrology Programme for Innovation and Research (EMPIR. It is part of the 2016 EMPIR Research Potential Call dedicated to build up metrological and research capacity in less developed National Metrology Institutes (NMIs). The project will develop long term expertise for the production and certification of ethanol/water reference materials in the participating NMIs. Materials to be developed will be suitable for the calibration and approval of evidential breath alcohol analysers as defined by recommendation R 126 of the International Organization of Legal Metrology (OIML). Certification includes the characterisation of the materials, assessment of homogeneity, stability and uncertainty. Target certified values and volumes will address end-users’ needs regarding regional legal limits for alcohol in traffic and the instrumentation for breath analyser calibration available in different countries. Thus, the project supports the law enforcement of national drink-driving legislation. The consortium comprises of 11 institutions from 10 European countries. Project participants will establish reliable analytical methods for the purity assessment of ethanol, such as Karl-Fischer titration, to achieve traceability of their certified values. Chromatographic or density methods for the quantification of ethanol in water will also be established, validated and applied for homogeneity and stability assessment. An interlaboratory comparison will be conducted within the European Association of National Metrology Institutes’ (EURAMET) Technical Committee Metrology in Chemistry to test the equivalence of the new certified reference materials and the analytical methods implemented. The poster will present the outline and first results of the ALCOREF project. T2 - BERM-15 International Symposium on Biological and Environmental Reference Materials CY - Berlin, Germany DA - 24.09.2018 KW - Certified Reference Material KW - Breath alcohol control KW - ALCOREF PY - 2018 AN - OPUS4-46061 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Batzorig, L. A1 - Recknagel, Sebastian A1 - Scharf, Holger A1 - Oyuntungalag, U. A1 - Tegshjargal, E. A1 - Rausch, J. T1 - Certified reference material of total cyanide in soil/BAM-U 116/CGL 306 N2 - Due to their toxicity and widespread application for mining and industrial purposes, cyanides are ranking among the most important inorganic pollutants which should be tested and monitored not only in the aquatic environment, but also in soils and soil-like materials. Reference materials of soils with relevant contents of cyanide to ensure reliable test results of laboratories are rare today. New certified reference material (CRM) BAM-U116/CGL306 “Cyanide in soil” was produced within a framework of cooperation between Central Geological Laboratory (CGL) of Mongolia and Federal Institute for Materials Research and Testing (BAM) of Germany in 2013-2017. The CRM BAM-U116/CGL306 represents a mixture of a sandy soil collected from a contaminated former gasworks area in the Berlin region (Germany) and an unpolluted sandy soil from Nalaikh region (Mongolia). The bulk candidate material for this reference material was prepared at CGL CRM Laboratory exclusively destined to the preparation of reference materials and equipped with modern technical equipment. Homogeneity, stability and shelf life were studied in full compliance with ISO Guide 35. The CRM was evaluated as sufficiently homogeneous. Statistical evaluation of certification analysis was performed using software packages SoftCRM and ProLab Plus. Certified value of total cyanide of the CRM is 12.0 mg/kg and expanded uncertainty was assigned as 0.8 mg/kg. The intended purpose of this material is the verification of analytical results obtained for the mass fraction of total cyanide in soils and soil-like materials applying the standardized procedure ISO 11262:2011. As any reference material, it can also be used for routine performance checks (quality control charts) or validation studies. T2 - Geoanalysis 2018 CY - Sydney, Australia DA - 08.07.2018 KW - Certified reference material KW - Cyanide in soil KW - Total cyanide PY - 2018 AN - OPUS4-45417 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Recknagel, Sebastian T1 - Certified reference material for the determination of hydrolytic resistance of borosilicate glass N2 - The preparation of certified reference material for the determination of hydrolytic resistance of borosilicate glass is described. Certified properties are the acid consumption according to the relevant standard procedures described in ISO 720, USP<660> and Ph.Eur. 3.2.1. T2 - PharmaGlass Workshop CY - Sheffield, UK DA - 09.10.2019 KW - CRM KW - Hydrolytic resistance KW - Borosilicate glass PY - 2019 AN - OPUS4-49466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Recknagel, Sebastian T1 - Certified reference material for the determination of hydrolytic resistance of borosilicate glass N2 - The preparation, analysis and certification of a new certified glass reference material (CRM) for the determination of hydrolytic resistance of borosilicate glass with the glass grains test is described. The CRM BAM-S053 is available in the form of glass rods (length: 185 mm, diameter: 9 mm, weight: 27·5 g). Certified properties are the acid consumption determined according to the procedures described in ISO 720, USP<660>, Ph.Eur. 3.2.1, data obtained following the procedure of ISO 719 was scattering too widely. The certified values are based on the results of 15 laboratories which participated in the certification interlaboratory comparison. The CRM is intended for the quality control when applying ISO 720, USP<660>, Ph.Eur. 3.2.1 and with limitations ISO 719. KW - CRM KW - Hydrolytic resistance KW - Borosilicate glass PY - 2021 DO - https://doi.org/10.13036/17533562.62.1.001 VL - 62 IS - 1 SP - 25 EP - 27 AN - OPUS4-52195 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Recknagel, Sebastian T1 - Certified reference material for the determination of hydrolytic resistance of borosilicate glass N2 - The preparation of certified reference material for the determination of hydrolytic resistance of borosilicate glass is described. Certified properties are the acid consumption according to the relevant standard procedures described in ISO 720, USP<660> and Ph.Eur. 3.2.1. T2 - 26. International Congress on Glass CY - Berlin, Germany DA - 03.07.2022 KW - Borosilicate glass KW - CRM KW - Hydrolytic resistance PY - 2022 AN - OPUS4-55521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Recknagel, Sebastian A1 - Scharf, Holger A1 - Lkhagvasuren, B. A1 - Oyuntungalag, U. A1 - Rausch, J. T1 - Certified reference material for determination of total cyanide in soil [BAM-U116/CGL306] N2 - CRM (Certified Reference Material) BAM-U116/CGL306 “Cyanide in soil” was produced within a framework of cooperation between CGL (Central Geological Laboratory) of Mongolia and Federal Institute for Materials Research and Testing (BAM) of Germany in 2013-2017. The CRM BAM-U116/CGL306 represents a mixture of a sandy soil collected from a contaminated former gasworks area in the Berlin region (Germany) and an unpolluted sandy soil from Nalaikh region (Mongolia). The bulk candidate material for this reference material was prepared at CGL CRM Laboratory exclusively destined to the preparation of reference materials and equipped with modern technical equipment. Homogeneity, stability and shelf life were studied in full compliance with ISO Guide 35. The CRM was evaluated as sufficiently homogeneous. Statistical evaluation of certification analysis was software packages SoftCRM and ProLab Plus. Certified value of total cyanide of the CRM is 12.0 mg/kg and expanded uncertainty was assigned as 0.8 mg/kg. The intended purpose of this material is the verification of analytical results obtained for the mass fraction of total cyanide in soils and soil-like materials applying the standardized procedure ISO 11262:2011. As any reference material, it can also be used for routine performance checks (quality control charts) or validation studies. KW - CRM KW - Cyanide in soil KW - Total cyanide PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-469694 DO - https://doi.org/10.17265/2162-5263/2018.04.004 SP - 149 EP - 161 PB - David Publishing AN - OPUS4-46969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauli, Jutta A1 - Güttler, Arne A1 - Schneider, Thomas A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Certified Fluorescence Quantum Yield Standards as New Optical Reference Materials N2 - Luminescence techniques are amongst the most commonly used analytical methods in life and material sciences due to their sensitivity and their nondestructive and multiparametric character. Photoluminescence signals are, however, affected by wavelength, polarization and time dependent instrument specific effects, and provide only relative intensities. This hampers the comparability of fluorescence measure-ments and calls for simple tools for instrument characterization and the quantification of measured fluorescence intensities. Well characterized fluorescence standards for instrument calibration and performance validation (IPV) can be used as references for fluorescence signals. Of special importance is the correct determination of photoluminescence quantum yields (QF) (number of emitted per absorbed photons) that provides a direct comparison of the fluorescence efficiency of emitters. Such well characterized standards have been successfully developed by BAM for the relative determination of f values of transparent solutions of molecular and nanoscale emitters in the wavelength range from 350 and 1100 nm and will be soon certified. These standards can also be used to evaluate integrating sphere setups, which are increasingly being used for absolute measurements of QF values. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2091 KW - Fluoreszenz KW - Referenzmaterial PY - 2019 AN - OPUS4-47795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Isleyen, Alper A1 - Can, Suleyman Z. A1 - Cankur, Oktay A1 - Tunc, Murat A1 - Vogl, Jochen A1 - Koenig, Maren A1 - Horvat, Milena A1 - Jacimovic, Radojko A1 - Zuliani, Tea A1 - Fajon, Vesna A1 - Jotanovic, Aida A1 - Gaževic, Luka A1 - Milosevic, Milena A1 - Ochsenkuehn–Petropoulou, Maria A1 - Tsopelas, Fotis A1 - Lymberopoulou, Theopisti A1 - Tsakanika, Lamprini-Areti A1 - Serifi, Olga A1 - Ochsenkuehn, Klaus M. A1 - Bulska, Ewa A1 - Tomiak, Anna A1 - Kurek, Eliza A1 - Cakılbahçe, Zehra A1 - Aktas, Gokhan A1 - Altuntas, Hatice A1 - Basaran, Elif A1 - Kısacık, Barıs A1 - Gumus, Zeynep T1 - Certification of the total element mass fractions in UME EnvCRM 03 soil sample via a joint research project N2 - Soil certified reference material (CRM), UME EnvCRM 03 was produced by a collaborative approach among national metrology institutes, designated institutes and university research laboratories within the scope of the EMPIR project: Matrix Reference Materials for Environmental Analysis. This paper presents the sampling and processing methodology, homogeneity, stability, characterization campaign, the assignment of property values and their associated uncertainties in compliance with ISO 17034:2016. The material processing methodology involves blending a natural soil sample with a contaminated soil sample obtained by spiking elemental solutions for 8 elements (Cd, Co, Cu, Hg, Ni, Pb, Sb and Zn) to reach the level of warning risk monitoring values specified for metals and metalloids of soils in Europe. Comparative homogeneity and stability test data were obtained by two different institutes, ensuring the reliability and back up of the data. The certified values and associated expanded uncertainties for the total mass fractions of thirteen elements (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, V and Zn) are established. The developed CRM can be used for the development and validation of measurement procedures for the determination of the total mass fractions of elements in soil and also for quality control/assurance purposes. The developed CRM is the first example of a soil material originating from Türkiye. KW - Total element content KW - Soil KW - CRM KW - Certification KW - Environmental pollution monitoring PY - 2024 DO - https://doi.org/10.1007/s00769-024-01597-8 SN - 1432-0517 SP - 1 EP - 9 PB - Springer Science and Business Media LLC AN - OPUS4-59954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinrich, Hans-Joachim A1 - Richter, Silke A1 - Recknagel, Sebastian T1 - Certification of the mass fractions of trace elements in a medium purity graphite reference material N2 - The increasing application of graphite materials in various fields of technology and science enhances the demand for strictly controlled properties which are often directly correlated to the contents of trace element impurities. Therefore, the availability of powerful, rapid and reliable analytical methods for the determination of trace impurities is essential for process and quality control. Certified reference materials, indispensable for the development and validation of appropriate trace analytical methods for the characterization of special purity graphite materials are still lacking. Therefore, BAM in co-operation with the working group “Special Materials” of the committee of chemists of GDMB (Gesellschaft der Metallurgen und Bergleute e.V.) certified an industrially sourced graphite material with genuine elemental impurities. The candidate material was a commercial product (NBG 18) taken from the customary production line of the producer SGL CARBON, Chedde (France). The homogeneity of the powdered material was assessed by means of ETV-ICP OES and DC Arc-OES. Certification of the candidate reference material was based on an inter-laboratory comparison involving 17 expert laboratories from Germany, France, Slovenia, USA, South Africa. A variety of different mineralization, digestion, leaching, fusion and combustion techniques prior to ICP OES and photometry, methods without sample preparation (INAA, k0-INAA) as well as typical solid sampling methods (ETV-ICP OES, ETV-ICP-MS, SS-ET AAS, DC Arc-OES, MF-DC Arc-OES) were used to characterise the material. Certified mass fractions and their expanded uncertainties (k = 2) were assigned for 27 elements (Al, B, Ba, Be, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Si, Sr, Ti, V, W, Y, Zn, Zr), ranging from (0.00050 ± 0.00027) mg/kg for Be to (41 ± 6) mg/kg for Si. Additionally, informative values are given for the: trace element contents of Ag, As, Au, Bi, Cd, Cs, Dy, Eu, Ga, Gd, Hg, In, La, Nb, Rb, Re, Rh, Sb, Sc, Se, Sm, Sn, Ta, Tb, Te, Th, U; method specific values obtained by ETV-ICP OES (BETV and SiETV) and the ash content of the material. The certified material “BAM-S009 Medium Purity Graphite Powder” is available for purchase from BAM. T2 - ESAS & CANAS 2018 CY - Berlin, Germany DA - 20.03.2018 KW - Graphite KW - Certification KW - Trace elements KW - Reference material PY - 2018 AN - OPUS4-44775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinrich, Hans-Joachim A1 - Richter, Silke A1 - Recknagel, Sebastian T1 - Certification of the mass fractions of trace elements in a medium purity graphite reference material N2 - The increasing application of graphite materials in various fields of technology and science enhances the demand for strictly controlled properties which are often directly correlated to the contents of trace element impurities. Therefore, the availability of powerful, rapid and reliable analytical methods for the determination of trace impurities is essential for process and quality control. Certified reference materials, indispensable for the development and validation of appropriate trace analytical methods for the characterization of special purity graphite materials are still lacking. Therefore, BAM in co-operation with the working group “Special Materials” of the committee of chemists of GDMB (Gesellschaft der Metallurgen und Bergleute e.V.) certified an industrially sourced graphite material with genuine elemental impurities. The candidate material was a commercial product (NBG 18) taken from the customary production line of the producer SGL CARBON, Chedde (France). The homogeneity of the powdered material was assessed by means of ETV-ICP OES and DC Arc-OES. Certification of the candidate reference material was based on an inter-laboratory comparison involving 17 expert laboratories from Germany, France, Slovenia, USA, South Africa. A variety of different mineralization, digestion, leaching, fusion and combustion techniques prior to ICP OES and photometry, methods without sample preparation (INAA, k0-INAA) as well as typical solid sampling methods (ETV-ICP OES, ETV-ICP-MS, SS-ET AAS, DC Arc-OES, MF-DC Arc-OES) were used to characterise the material. Certified mass fractions and their expanded uncertainties (k = 2) were assigned for 27 elements (Al, B, Ba, Be, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Si, Sr, Ti, V, W, Y, Zn, Zr), ranging from (0.00050 ± 0.00027) mg/kg for Be to (41 ± 6) mg/kg for Si. Informative values are given for further parameters: trace element contents of Ag, As, Au, Bi, Cd, Cs, Dy, Eu, Ga, Gd, Hg, In, La, Nb, Rb, Re, Rh, Sb, Sc, Se, Sm, Sn, Ta, Tb, Te, Th, U; method specific values obtained by ETV-ICP OES (BETV and SiETV) and ash content. The new certified material is available as BAM Reference Material BAM-S009 Medium Purity Graphite Powder. T2 - BERM-15 CY - Berlin, Germany DA - 23.09.2018 KW - Certification KW - Graphite KW - Reference material KW - Trace elements PY - 2018 AN - OPUS4-46235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Yim, Y.-H. A1 - Lee, K.-S. A1 - Goenaga-Infante, H A1 - Malinovskiy, D. A1 - Hill, S. A1 - Ren, T. A1 - Wang, J. A1 - Vocke, R. D. A1 - Murphy, K. E. A1 - Nonose, N. A1 - Rienitz, O. A1 - Noordmann, J. T1 - Certification of ERM-EB400, the first matrix reference material for lead isotope amount ratios, and ERM-AE142, a lead solution providing a lead isotopic composition at the edge of natural variation N2 - Lead isotope amount ratios are commonly used in diverse fields such as archaeometry, geochemistry and forensic science. Currently, five reference materials with certified lead isotope amount ratios are available, namely NIST SRM 981, 982 and 983, GBW-04442 and NMIJ 3681-a. Only NIST SRM 981 and NMIJ 3681-a have approximately natural isotopic compositions, and NIST SRM 981 is predominantly used for correcting mass discrimination/mass fractionation in the applied mass spectrometric procedures. Consequently, there is no other certified reference material available to be used for validation and/or quality control of the analytical procedures applied to lead isotope amount ratio measurements. To fill this gap, two new reference materials have been produced and certified for their lead isotope amount ratios. For both certified reference materials, complete uncertainty budgets have been calculated and SI traceability has been established. This provides the users with independent means for validating and verifying their analytical procedures and for conducting quality control measures. ERM-EB400 is a bronze material with a nominal lead mass fraction of 45 mg kg-1 and certified lead isotope amount ratios of n(206Pb)/n(204Pb) = 18.072(17) mol mol-1, n(207Pb)/n(204Pb) = 15.578(18) mol mol-1 and n(208Pb)/n(204Pb) = 38.075(46) mol mol-1 with the associated expanded uncertainties (k = 2) given in brackets. ERM-AE142 is a high-purity solution of lead in 2% nitric acid with a nominal mass fraction of 100 mg kg-1 and certified Pb isotope amount ratios of n(206Pb)/n(204Pb) = 21.114(17) mol mol-1, n(207Pb)/n(204Pb) = 15.944(17) mol mol-1 and n(208Pb)/n(204Pb) = 39.850(44) mol mol-1 with the associated expanded uncertainties (k = 2) given in brackets. Both materials are specifically designed to fall within the natural lead isotopic variation and to assist users with the validation and verification of their analytical procedures. Note that while one of these reference materials requires the chemical separation of Pb from its matrix (ERM-EB400), the other does not (ERM-AE142). As additional information, δ208/206PbNIST SRM981 values are provided for both materials. For ERM-AE142, a delta value of δ208/206PbNIST SRM981 = -28.21(30) ‰ was obtained, and for ERM-EB400, a delta value of δ208/206PbNIST SRM981 = -129.47(38) ‰ was obtained, with the associated expanded uncertainties (k = 2) given in brackets. KW - Lead isotope variations KW - Radiogenic isotopes KW - Isotope reference material KW - Metrology in chemistry KW - Measurement uncertainty PY - 2019 DO - https://doi.org/10.1111/ggr.12253 SN - 1751-908X SN - 1639-4488 VL - 43 IS - 1 SP - 23 EP - 37 PB - John Wiley & Sons AN - OPUS4-47383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blanchard, V. A1 - Traub, Heike A1 - Biskup, K. A1 - Wieczorek, M. A1 - Saatz, Jessica A1 - Pagel, K. T1 - Central project for biochemical analysis of proteoglycans and glycosaminoglycans and for element-specific microscopy N2 - Nearly all disease processes are associated with variations of components of the extracellular matrix (ECM) that are typically observed during the development of inflammation. This concerns for example proteoglycans and their associated glycosaminoglycans (GAG), which have been shown to bind to cationic metal imaging probes due to their strong complexing activity. The complexing activity largely depends on the degree of GAG sulfation and/or carboxylation as well as on the GAG isomericity. In this central project, we investigate GAG structures from inflammatory disorders (namely cardiovascular diseases, inflammatory intestinal diseases and neuroinflammation) provided by researchers of the Collaborative Research Center at the molecular disaccharidic level using chromatographic and mass spectrometric methods. In parallel, the spatial localization and quantification of metal-based imaging probes are evaluated by LA-ICP-MS imaging. T2 - 1st International Symposium In vivo Visualization of Extracellular Matrix Pathology CY - Online Meeting DA - 27.05.2021 KW - Laser ablation KW - ICP-MS KW - MALDI PY - 2021 AN - OPUS4-52716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kepsutlu, B. A1 - Wycisk, V. A1 - Achazi, K. A1 - Kapishnikov, S. A1 - Perez-Berna, A.J. A1 - Guttmann, P. A1 - Cossmer, Antje A1 - Pereiro, E. A1 - Ewers, H. A1 - Ballauff, M. A1 - Schneider, G. A1 - McNally, J.G. T1 - Cells Undergo Major Changes in the Quantity of Cytoplasmic Organelles after Uptake of Gold Nanoparticles with Biologically Relevant Surface Coatings N2 - Here, we use cryo soft X-ray tomography (cryo-SXT), which delivers 3D ultrastructural volumes of intact cells without chemical fixation or staining, to gain insight about nanoparticle uptake for nanomedicine. We initially used dendritic polyglycerol sulfate (dPGS) with potential diagnostic and therapeutic applications in inflammation. Although dPGS-coated gold nanoparticle (dPGS-AuNP) uptake followed a conventional endocytic/degradative pathway in human lung epithelial cell lines (A549), with cryo-SXT, we detected ∼5% of dPGS-AuNPs in the cytoplasm, a level undetectable by confocal light microscopy. We also observed ∼5% of dPGS-AuNPs in a rarely identified subcellular site, namely, lipid droplets, which are important for cellular energy metabolism. Finally, we also found substantial changes in the quantity of cytoplasmic organelles upon dPGS-AuNP uptake over the 1–6 h incubation period; the number of small vesicles and mitochondria significantly increased, and the number of multivesicular bodies and the number and volume of lipid droplets significantly decreased. Although nearly all organelle numbers at 6 h were still significantly different from controls, most appeared to be returning to normal levels. To test for generality, we also examined cells after uptake of gold nanoparticles coated with a different agent, polyethylenimine (PEI), used for nucleic acid delivery. PEI nanoparticles did not enter lipid droplets, but they induced similar, albeit less pronounced, changes in the quantity of cytoplasmic organelles. We confirmed these changes in organelle quantities for both nanoparticle coatings by confocal fluorescence microscopy. We suggest this cytoplasmic remodeling could reflect a more common cellular response to coated gold nanoparticle uptake. KW - Cellular trafficking KW - Confocal laser scanning microscopy KW - Cytoplasmic remodeling KW - Dendritic polyglycerol sulfate KW - Polyethylenimine KW - 3D ultrastructural analysis KW - Cryo-soft X-ray tomography PY - 2020 DO - https://doi.org/10.1021/acsnano.9b09264 VL - 14 IS - 2 SP - 2248 EP - 2264 AN - OPUS4-50464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - CCQM-P213: BAM procedure for obtaining Cu delta values N2 - BAM participated in the CCQM pilot study P213 for obtaining copper isotope delta values. This presentations provides details on the MC-ICP-MS based measruement procedure, which has been applied to obtain such copper delta values. T2 - IRWG Meeting CY - Online meeting DA - 12.05.2022 KW - Isotope delta value KW - Copper KW - Metrology KW - Traceability PY - 2022 AN - OPUS4-55162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - CCQM-P213: BAM procedure for obtaining Cu delta values N2 - BAM participated in the CCQM pilot study P213 for obtaining copper isotope delta values. This presentations provides details on the MC-ICP-MS based measruement procedure, which has been applied to obtain such copper delta values. T2 - IRWG Meeting 2022 CY - Online meeting DA - 20.09.2022 KW - Isotope ratio KW - Copper KW - Metrology KW - Traceability KW - Uncertainty PY - 2022 AN - OPUS4-55864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Duewer, D. L. A1 - Murray, J. A. A1 - Wood, L. J. A1 - Wise, S. A. A1 - Hein, Sebastian A1 - Koch, Matthias A1 - Philipp, Rosemarie A1 - Werneburg, Martina A1 - Hackenberg, R. A1 - Polzer, J. A1 - Avila, M. A. A1 - Serrano, V. A1 - Kakoulides, E. A1 - Alexopoulos, C. A1 - Giannikopoulou, P. A1 - Gui, E. M. A1 - Lu, T. A1 - Teo, T. L. A1 - Hua, T. A1 - Dazhou, C. A1 - Chunxin, L. A1 - Changjun, Y. A1 - Hongmei, L. A1 - Nammoonnoy, J. A1 - Sander, L. C. A1 - Lippa, K. A1 - Quinn, L. A1 - Swiegelaar, C. A1 - Fernandes-Whaley, M. A1 - Gören, A. C. A1 - Gökcen, T. T1 - CCQM-K95.1 Low-polarity analytes in a botanical matrix: Polycyclic aromatic hydrocarbons (PAHs) in tea N2 - Extraction, chromatographic separation, and quantification of low-concentration organic compounds in complex matrices are core challenges for reference material producers and providers of calibration services. Evidence of successful participation in formal, relevant international comparisons is needed to document measurement capability claims made by national metrology institutes (NMIs) and designated institutes (DIs). To enable NMIs and DIs to update or establish their claims, in 2014 the Organic Analysis Working Group (OAWG) initiated CCQM-K95.1 "Low-Polarity Analytes in a Botanical Matrix: Polycyclic Aromatic Hydrocarbons (PAHs) in Tea". This was a follow-on comparison from CCQM-K95 which was completed in 2014. The polycyclic aromatic hydrocarbons (PAHs) benz[a]anthracene (BaA) and benzo[a]pyrene (BaP) are considered priority pollutants by U.S. Environmental Protection Agency and are regulated contaminants in food, pose chromatographic separation challenges, and for which exist well-characterized measurement procedures and standard materials. BaA and BaP in a smoked tea were therefore selected as representative target measurands for CCQM-K95.1. Ten NMIs participated in CCQM-K95.1. The consensus summary mass fractions for the two PAHs are in the range of (50 to 70) ng/g with relative standard deviations of (6 to 10) %. Successful participation in CCQM K95.1 demonstrates the following measurement capabilities in determining mass fraction of organic compounds, with molar mass of 100 g/mol to 500 g/mol and having polarity pKow −2, in a botanical matrix ranging in mass fraction from 10 ng/g to 1000 ng/g: (1) value assignment of primary reference standards (if in-house purity assessment carried out), (2) value assignment of single and/or multi-component organic solutions, (3) extraction of analytes of interest from the matrix, (4) cleanup and separation of analytes of interest from interfering matrix or extract components, and (5) separation and quantification using gas chromatography or liquid chromatography. KW - Benz[a]anthracene (BaA) KW - Benzo[a]pyrene (BaP) KW - Gas chromatography (GC) KW - Isotope dilution (ID) KW - Liquid chromatography (LC) KW - Mass spectrometry (MS) KW - Polycyclic aromatic hydrocarbon (PAH) KW - Yerba mate tea PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471430 DO - https://doi.org/10.1088/0026-1394/56/1A/08002 SN - 0026-1394 SN - 1681-7575 VL - 56 IS - 1 A SP - 08002, 1 EP - 89 PB - IOP Science AN - OPUS4-47143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hill, Sarah A1 - Infante, Heidi Goenaga A1 - Entwisle, John A1 - Strekopytov, Stanislav A1 - Ward-Deitrich, Christian A1 - Cowen, Simon A1 - Rienitz, Olaf A1 - Roethke, Anita A1 - Goerlitz, Volker A1 - Schulz, Ursula A1 - Pape, Carola A1 - Vogl, Jochen A1 - Koenig, Maren A1 - Jacimovic, Radojko A1 - Fisicaro, Paola A1 - Ren, Tongxiang A1 - Wang, Song A1 - Song, Panshu A1 - Li, Haifeng A1 - Linsky, Maré A1 - Sobina, Egor A1 - Lozano, Hernán Ezequiel A1 - Puelles, Mabel A1 - Yamani, Randa A1 - Haraldsson, Conny T1 - CCQM-K160: platinum group elements in automotive catalyst N2 - The platinum group elements (PGEs) play an important role in reducing emissions from automotive vehicles through their use in catalytic convertors but also for catalysis in the pharmaceutical industry. The immense economic value of platinum (Pt), palladium (Pd) and rhodium (Rh) highlights the importance of highly accurate measurements. Therefore, there is a need for National Metrology Institutes (NMIs) and Designated Institutes (DIs) to demonstrate measurement capability in this space. A pilot comparison (CCQM-P63) for precious metals in automotive catalyst took place in 2006, but with a limited number of institutes participating. Furthermore, this study was performed over 17 years ago. Therefore, there was a need to maintain existing capability and demonstrate new capability in a key comparison, in order to claim calibration and measurement capability claims (CMCs). With the core capability matrix, this study falls into the "Difficult to dissolve metals/metal oxides" which will support CMC categories 8 (Metal and metal alloys), 9 (Advanced materials) and 14 (Other materials). Eleven NMIs and DIs participated in the Key Comparison CCQM-K160 Platinum Group Elements in Automotive Catalyst. Participants were requested to evaluate the mass fractions of Pt, Pd and Rh in mg/kg in an unused autocatalyst material (cordierite ceramic base). The Key Comparison Reference Values (KCRVs) and Degrees of Equivalence (DoEs) were calculated utilising the NIST Decision Tree for the measurands. The participants utilised a number of sample preparation and analytical methods including hot plate digestion, microwave digestion and sodium fusion, followed by either atomic absorption spectroscopy (AAS), inductively coupled plasma optical emission spectroscopy (ICP-OES) or inductively coupled plasma mass spectrometry (ICP-MS) detection. Several calibration techniques were used, namely external calibration, standard addition, isotope dilution mass spectrometry (IDMS) and an exact matching procedure. Additionally, one participant employed instrumental neutron activation analysis (INAA) with k0 standardisation which is a direct solid analysis method. The majority of participants claimed traceability to NIST primary calibrants or their own CRMs. Furthermore, several matrix CRMs were included or spiked samples for quality control. All institutes were required to determine the dry mass fraction using the stipulated protocol. The NIST decision tree was implemented for the calculation of the KCRVs and DoEs. The participant results overall showed good agreement with the KCRV, despite the variety of dissolution procedures and measurement techniques for this highly complex matrix and challenging measurands. Successful participation in CCQM-K160 demonstrated measurement capabilities for the determination of mass fraction of Pt, Pd and Rh in the mg/kg range and will support broad scope CMC claims for a wide range of challenging matrices. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database https://www.bipm.org/kcdb/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA). KW - Metrology in Chemistry KW - Traceability KW - Uncertainty PY - 2024 DO - https://doi.org/10.1088/0026-1394/61/1A/08011 VL - 61 IS - 1A SP - 1 EP - 39 PB - IOP Publishing AN - OPUS4-60524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, X.M. A1 - Li, H.M. A1 - Zhang, Q.H. A1 - Lu, X.H. A1 - Li, S.Q. A1 - Koch, Matthias A1 - Polzer, J. A1 - Hackenber, R. A1 - Moniruzzaman, M. A1 - Khan, M. A1 - Kakoulides, E. A1 - Pak-Wing, K. A1 - Richy, A1 - Chi-Shing, N. A1 - Lu, T. A1 - Gui, E.M. A1 - Cheow, P.S. A1 - Teo, T.L. A1 - Rego, E. A1 - Garrido, B. A1 - Carvalho, L. A1 - Leal, R. A1 - Violante, F. A1 - Baek, S.Y. A1 - Lee, S. A1 - Choi, K. A1 - Kim, B. A1 - Bucar-Miklavcic, M. A1 - Hopley, C. A1 - Nammoonnoy, J. A1 - Murray, J. A1 - Wilson, W. A1 - Toman, B. A1 - Itoh, N. A1 - Gokcen, T. A1 - Krylov, A. A1 - Mikheeva, A. T1 - CCQM-K146 low-polarity analyte in high fat food: benzo a pyrene in olive oil N2 - The demonstration of competency and equivalence for the assessment of levels of contaminants and nutrients in primary foodstuffs is a priority within the 10-year strategy for the OAWG Track A core comparisons. The measurements are core challenges for reference material producers and providers of calibration Services. This key comparison related to low polarity analytes in a high fat, low protein, low carbohydrate food matrix and Benzo[a]pyrene in edible oil was the model System selected to align with this class within the OAWG strategy. Evidence of successful participation in formal, relevant international comparisons is needed to document measurement capability claims (CMCs) made by national metrology institutes (NMIs) and designated institutes (Dis). 16 National Metrology Institutions participated in the Track A Key Comparison CCQM-K146 Low-Polarity Analyte in high fat food: Benzo[a]pyrene in Olive Oil. Participants were requested to evaluate the mass fractions, expressed in µg/kg, of Benzo[a]pyrene in the olive oil material. The KCRV was determined from the results of all NMIs/DIs participating in the key comparison that used appropriately validated methods with demonstrated metrological traceability. Different methods such as liquid-liquid extraction, GPC and SPE were applied in the sample pretreatment and HPLC-FLD, HPLC-MS/MS, and GC-MS or GC-MS/MS were applied for detection by the participants. The mass fractions for BaP were in the range of (1.78 to 3.09) µg/kg with Standard uncertainties of (0.026 to 0.54) µg/kg, with corresponding relative Standard uncertainties from 0.9% to 21%. Five labs withdrew their result from the Statistical evaluation of the KCRV for technical reasons. One lab was excluded from the KCRV evaluation, as they did not meet the CIPM metrological traceability requirements. A Hierarchical Bayes option was selected for the KCRV value, which was determined as 2.74 µg/kg with a Standard uncertainty of 0.03 µg/kg. The 10 institutes those were included in the calculation of the consensus KCRV all agreed within their Standard uncertainties. Successful participation in CCQM-K146 demonstrates the measurement capabilities in determining mass fraction of organic compounds, with molecular mass of 100 g/mol to 500 g/mol, having low polarity pKow < -2, in mass fraction range from 0.1 µg/kg to 1000 µg/kg in a high fat, low protein, low carbohydrate food matrix. KW - Metrology KW - CCQM KW - Food KW - PAH PY - 2020 DO - https://doi.org/10.1088/0026-1394/57/1a/08017 VL - 57 IS - 1a SP - 08017 AN - OPUS4-52435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Molloy, J. L. A1 - Winchester, M. R. A1 - Butler, T. A. A1 - Possolo, A. M. A1 - Rienitz, O. A1 - Roethke, A. A1 - Goerlitz, V. A1 - Caciano de Sena, R. A1 - Dominguez Almeida, M. A1 - Yang, L. A1 - Methven, B. A1 - Nadeau, K. A1 - Romero Arancibia, P. A1 - Bing, W. A1 - Tao, Z. A1 - Snell, J. A1 - Vogl, Jochen A1 - Koenig, Maren A1 - Kotnala, R. K. A1 - Swarupa Tripathy, S. A1 - Elishian, C. A1 - Ketrin, R. A1 - Suzuki, T. A1 - Oduor Okumu, T. A1 - Yim, Y.-H. A1 - Heo, S. W. A1 - Min, H. S. A1 - Sub Han, M. A1 - Lim, Y. A1 - Velina Lara Manzano, J. A1 - Segoviano Regalado, F. A1 - Arvizu Torres, M. A1 - Valle Moya, E. A1 - Buzoianu, M. A1 - Sobina, A. A1 - Zyskin, V. A1 - Sobina, E. A1 - Migal, P. A1 - Linsky, M. A1 - Can, S. Z. A1 - Ari, B. A1 - Goenaga Infante, H. T1 - CCQM-K143 Comparison of Copper Calibration Solutions Prepared by NMIs/DIs N2 - CCQM-K143 is a key comparison that assesses participants’ ability to prepare single element calibration solutions. Preparing calibration solutions properly is the cornerstone of establishing a traceability link to the International System of Units (SI), and therefore should be tested in order to confirm the validity of CCQM comparisons of more complex materials. CCQM-K143 consisted of participants each preparing a single copper calibration solution at 10 g/kg copper mass fraction and shipping 10 bottled aliquots of that solution to the coordinating laboratory, the National Institute of Standards and Technology (NIST). The masses and mass fraction for the prepared solutions were documented with the submitted samples. The solutions prepared by all participants were measured at NIST by high performance inductively coupled plasma optical emission spectroscopy (HP-ICP-OES). The intensity measurements for copper were not mapped onto values of mass fraction via calibration. Instead, ratios were computed between the measurements for copper and simultaneous measurements for manganese, the internal standard, and all subsequent data reductions, including the computation of the KCRV and the degrees of equivalence, were based on these ratios. Other than for two participants whose measurement results appeared to suffer from calculation or preparation errors, all unilateral degrees of equivalence showed that the measured values did not differ significantly from the KCRV. These results were confirmed by a second set of ICP-OES measurements performed by the Physikalisch-Technische Bundesanstalt (PTB). CCQM-K143 showed that participants are capable of preparing calibration solutions starting from high purity, assayed copper metal. Similar steps are involved when preparing solutions for other elements, so it seems safe to infer that similar capabilities should prevail when preparing many different, single-element solutions. KW - Metrology KW - Primary calibration solution KW - Traceability PY - 2020 DO - https://doi.org/10.1088/0026-1394/58/1A/08006 SN - 0026-1394 VL - 58 IS - 1A SP - 08006 PB - IOP Science CY - Cambridge AN - OPUS4-51983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Duewer, D. L. A1 - Sander, L. C. A1 - Wise, S. A. A1 - Philipp, Rosemarie A1 - Hein, Sebastian A1 - Hackenberg, R. A1 - Polzer, J. A1 - Avila, M. A. A1 - Serrano, V. A1 - Kakoulides, E. A1 - Alexopoulos, C. A1 - Giannikopoulou, P. A1 - Chan, P. A1 - Lee, H. A1 - Tang, H. A1 - Tang, P. A1 - Yip, Y. A1 - Lu, T. A1 - Cheow, P. S. A1 - Teo, T. L. A1 - Sega, M. A1 - Rolle, F. A1 - Baek, S. A1 - Kim, B. A1 - Lee, S. A1 - Cabillic, J. A1 - Fallot, C. A1 - Hua, T. A1 - Dazhou, C. A1 - Changjun, Y. A1 - Chunxin, L. A1 - Hongmei, L. A1 - Lippa, K. A1 - Itoh, N. A1 - Quinn, L. A1 - Prevoo-Franzsen, D. A1 - Fernandes-Whaley, M. A1 - Gören, A. C. A1 - Gökcen, T. A1 - Gündüz, S. A1 - Krylov, A. A1 - Mikheeva, A. A1 - Baldan, A. A1 - van der Hout, J. W. A1 - van der Veen, A. M. H. T1 - CCQM-K131 Low-polarity analytes in a multicomponent organic solution: Polycyclic aromatic hydrocarbons (PAHs) in acetonitrile N2 - Solutions of organic analytes of known mass fraction are typically used to calibrate the measurement processes used to determine these compounds in matrix samples. Appropriate value assignments and uncertainty calculations for calibration solutions are critical for accurate measurements. Evidence of successful participation in formal, relevant international comparisons is needed to document measurement capability claims (CMCs) made by national metrology institutes (NMIs) and designated institutes (DIs). To enable NMIs and DIs to update or establish their claims, in 2015 the Organic Analysis Working Group (OAWG) sponsored CCQM-K131 "Low-Polarity Analytes in a Multicomponent Organic Solution: Polycyclic Aromatic Hydrocarbons (PAHs) in Acetonitrile". Polycyclic aromatic hydrocarbons (PAHs) result from combustion sources and are ubiquitous in environmental samples. The PAH congeners, benz[a]anthracene (BaA), benzo[a]pyrene (BaP), and naphthalene (Nap) were selected as the target analytes for CCQM-K131. These targets span the volatility range of PAHs found in environmental samples and include potentially problematic chromatographic separations. Nineteen NMIs participated in CCQM-K131. The consensus summary mass fractions for the three PAHs are in the range of (5 to 25) μg/g with relative standard deviations of (2.5 to 3.5) %. Successful participation in CCQM-K131 demonstrates the following measurement capabilities in determining mass fraction of organic compounds of moderate to insignificant volatility, molar mass of 100 g/mol up to 500 g/mol, and polarity pKow < −2 in a multicomponent organic solution ranging in mass fraction from 100 ng/g to 100 μg/g: (1) value assignment of primary reference standards (if in-house purity assessment carried out), (2) value assignment of single and/or multi-component organic solutions, and (3) separation and quantification using gas chromatography or liquid chromatography. KW - Benz[a]anthracene (BaA) KW - Benzo[a]pyrene (BaP) KW - Gas chromatography (GC) KW - Isotope dilution (ID) KW - Liquid chromatography (LC) KW - Mass spectrometry (MS) KW - Naphthalene (Nap) KW - Organic calibration solution KW - Polycyclic aromatic hydrocarbon (PAH) PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471442 DO - https://doi.org/10.1088/0026-1394/56/1A/08003 SN - 0026-1394 SN - 1681-7575 VL - 56 IS - 1A SP - 08003, 1 EP - 102 PB - IOP Science AN - OPUS4-47144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rienitz, O. A1 - Jährling, R. A1 - Noordmann, J. A1 - Pape, C. A1 - Röhker, K. A1 - Vogl, Jochen A1 - Manzano, J. V. L. A1 - Kozlowski, W. A1 - Caciano de Siena, R. A1 - Marques Rodrigues, J. A1 - Galli, A. H. A1 - Yim, Y.-H. A1 - Lee, K.-S. A1 - Lee, J. H. A1 - Min, H.-S. A1 - Chingbo, C. A1 - Naijie, S. A1 - Qian, W. A1 - Ren, T. A1 - Jun, W. A1 - Tangpaisarnkul, N. A1 - Suzuki, T. A1 - Nonose, N. A1 - Mester, Z. A1 - Yang, L. A1 - Pagliano, E. A1 - Greenberg, P. A1 - Mariassy, M. A1 - Näykki, T. A1 - Cankur, O. A1 - Coskun, F. G. A1 - Ari, B. A1 - Can, S. Z. T1 - CCQM-K122 "Anionic impurities and lead in salt solutions" N2 - The determination of the mass fractions of bromide, sulfate, and lead as well as the isotopic composition of the lead (expressed as the molar mass and the amount fractions of all four stable lead isotopes) in an aqueous solution of sodium chloride with a mass fraction of 0.15 g/g was the subject of this comparison. Even though the mass fractions ranged from 3 μg/g (bromide) to 50 ng/g (lead), almost all results reported agreed with the according KCRVs. KW - Absolute isotope ratio KW - Lead isotope ratios KW - Metrology KW - Traceability PY - 2020 DO - https://doi.org/10.1088/0026-1394/57/1A/08012 VL - 57 IS - 1A SP - 8012 PB - IOP Science AN - OPUS4-51156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, X.Q. A1 - Li, H.M. A1 - Jiao, H. A1 - Guo, Z.H. A1 - Zhang, Q.H. A1 - Kneeteman, L.E. A1 - Lewin, M. A1 - Pires do Rego, E.C. A1 - Leal, R.V. A1 - Violante, F.G.M. A1 - Riedel, Juliane A1 - Koch, Matthias T1 - CCQM Key Comparison track A CCQM-K168: Non-polar analytes in high carbohydrate food matrix: trans-zearalenone in maize powder N2 - Demonstrating competency and equivalence for the measurement capacity of contaminants and nutrients in primary foodstuffs is a priority of the OAWG 10-year strategy for Track A core comparisons. Such measurements have posed significant challenges for reference material producers and calibration service providers. This key comparison (KC), under the topic of “non- polar analyte in high carbohydrate food matrix: trans-Zearalenone (trans-ZEN) in maize powder” , was a sector of the model system selected to align with this class within the OAWG strategy. Evidence of successful participation in formal, relevant international comparisons is needed to demonstrate the Calibration and Measurement Capabilities (CMCs) of national metrology institutes (NMIs) and designated institutes (DIs). 17 NMIs and DIs participated in the Track A KC CCQM- 168 “non-polar analyte in high carbohydrate food matrix: trans-ZEN in maize powder” . Participants were requested to evaluate the mass fraction (μg/kg) of trans-ZEN in maize powder material. Methods like liquid-liquid extraction and SPE were applied in the pre-treatment, and HPLC-MS/MS and HPLC-FLD were used for detection by the participants. The mass fractions for trans-ZEN were in the range of (91.8 to 169) μg/kg with standard uncertainties of (1.5 to 24.7) μg/kg, and corresponding relative standard uncertainties from 1.5% to 14.6%. Two labs, INTI and BAM were excluded from the KCRV evaluation. INTI result was identified as an outlier and confirmed their method had insufficient specificity. For BAM the calibration approach they used does not meet the CIPM traceability requirements. The other 15 labs included in the calculation of the consensus KCRV all agreed within their standard uncertainties. Hierarchical Bayes was used as estimators in calculating KCRV and standard uncertainty. Successful participation in CCQM-K168 demonstrates the measurement capabilities in determining mass fraction of organic compounds, with molecular mass of 100 g/mol to 500 g/mol, having low polarity pKow < -2, in mass fraction range from 1 μg/kg to 1000 μg/kg in a high carbohydrate food matrix. KW - Metrology KW - Quality Assurance KW - Mycotoxin Analysis KW - Sustainable Food Safety PY - 2023 DO - https://doi.org/10.1088/0026-1394/60/1A/08021 VL - 60 IS - 1a SP - 08021 AN - OPUS4-59059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - CCQM IRWG draft strategy for all elements except for noble gases and H, C, N, O N2 - The presentation describes the draft strategy for metalloids and semi-metals within the IRWG at CCQM. This includes the definition of the measurements space, a suitable set of key comparisons and pilot studies and a proposal for a harmonized CMC application. T2 - EURAMET TC-MC Workshop on Isotope Ratio Analysis CY - Bern, Switzerland DA - 05.02.2020 KW - CMC KW - Measurement space KW - Metrology KW - Isotope ratio PY - 2020 AN - OPUS4-50345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fiedler, Saskia A1 - Stamatopoulou, E.P. A1 - Assadillayev, A. A1 - Wolff, C. A1 - Sugimoto, H. A1 - Fuji, M. A1 - Mortensen, N.A. A1 - Raza, S. A1 - Tserkezis, C. T1 - Cathodoluminescence Spectroscopy of Silicon Nanoparticles N2 - The fabrication of nanostructures with ever-decreasing sizes has increased the demand of suitable characterization methods which allow to determine their shape and size at the true nanoscale, and similarly important, enable the investigation of their optical properties beyond the diffraction limit. Due to its high spectral and spatial resolution down to the (sub-) nanometer range, electron beam-based techniques, namely cathodoluminescence (CL) has become a powerful characterization tool, particularly to study plasmonic and dielectric nanostructures. However, the interpretation of the resulting spectral CL maps is not always unambiguously straightforward. In this work, Mie resonances in single Si nanospheres of different sizes have been systematically studied, using experimental CL spectroscopy and an analytical CL model. For smaller spheres (r ~ 75 nm), the eigenmodes can be unequivocally identified, with relative changes in intensity of the electric and magnetic dipole depending on the electron beam position within the sphere. However, in larger spheres (r ~ 105 nm), the modal assignment becomes increasingly difficult due to a larger number of Mie modes in the visible spectral range. Additionally, penetrating electron beams generate two radiating dipoles at the two Si interfaces – due to the electron and its image charge collapsing at those interfaces – which can, depending on the electron beam’s velocity and its path length inside the particle, produce distinct resonances or dips (constructive or destructive interference of those two radiative dipoles). It is demonstrated that superimposed on the eigenmodes of the studied nanospheres, these resonances can distort the recorded spectrum and lead to potentially erroneous assignment of modal characters to the spectral features. An intuitive analogy is developed to unambiguously distinguish those resonance induced by transition radiation from the nanoparticle-specific Mie resonances. T2 - Optoelectronic Processes at Nanostructured Interfaces 2022 CY - Bad Honnef, Germany DA - 21.03.2022 KW - Cathodoluminescence KW - Silicon nanoparticles KW - Mie resonances PY - 2022 AN - OPUS4-54526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Zhiyang A1 - Gernert, U. A1 - Gerhardt, R. F. A1 - Höhn, E.-M. A1 - Belder, D. A1 - Kneipp, Janina T1 - Catalysis by Metal Nanoparticles in a Plug-In Optofluidic Platform: Redox Reactions of p-Nitrobenzenethiol and p-Aminothiophenol N2 - The spectroscopic characterization by surface-enhanced Raman scattering (SERS) has shown great potential in studies of heterogeneous catalysis. We describe a plug-in multifunctional optofluidic platform that can be tailored to serve both as a variable catalyst material and for sensitive optical characterization of the respective reactions using SERS in microfluidic systems. The platform enables the characterization of reactions under a controlled gas atmosphere and does not present with limitations due to nanoparticle adsorption or memory effects. Spectra of the gold-catalyzed reduction of p-nitrothiophenol by sodium borohydride using the plug-in probe provide evidence that the borohydride is the direct source of hydrogen on the gold surface, and that a radical anion is formed as an intermediate. The in situ monitoring of the photoinduced dimerization of p-aminothiophenol indicates that the activation of oxygen is essential for the plasmon-catalyzed oxidation on gold nanoparticles and strongly supports the central role of metal oxide species. KW - Gaseous reactants KW - Heterogeneous catalysis KW - Microfluidics KW - Optofluidics KW - Radicals KW - Reusable KW - Surface-enhanced Raman scattering (SERS) PY - 2018 UR - https://pubs.acs.org/doi/10.1021/acscatal.8b00101 DO - https://doi.org/10.1021/acscatal.8b00101 VL - 8 IS - 3 SP - 2443 EP - 2449 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-44628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nagli, L. A1 - Gaft, M. A1 - Raichlin, Y. A1 - Gornushkin, Igor B. T1 - Cascade generation in Al laser induced plasma N2 - We found cascade IR generation in Al laser induced plasma. This generation includes doublet transitions 3s25s 2S1∕2→ 3s24p 2P1∕2,3∕2 → 3s24s 2S1∕2; corresponding to strong lines at 2110 and 2117 nm, and much weaker lines at 1312–1315 nm. The 3s25s2S 1∕2 starting IR generation level is directly pumped from the 3s23p 2P3∕2 ground level. The starting level for UV generation at 396.2 nm (transitions 3s24s 2S1∕2 → 4p 2P3∕2) is populated due to the fast collisional processes in the plasma plume. These differences led to different time and special dependences on the lasing in the IR and UV spectral range within the aluminum laser induced plasma. KW - Plasma diagnostics KW - Laser induced plasma KW - LIBS KW - Plasma modeling PY - 2018 DO - https://doi.org/10.1016/j.optcom.2018.01.041 VL - 415 SP - 127 EP - 129 PB - Elsevier B.V. AN - OPUS4-44274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lisec, Jan A1 - Jaeger, Carsten A1 - Rashid, R. A1 - Munir, R. A1 - Zaidi, N. T1 - Cancer cell lipid class homeostasis is altered under nutrient-deprivation but stable under hypoxia N2 - Background: Cancer cells modify the balance between fatty acid (FA) synthesis and uptake under metabolic stress, induced by oxygen/nutrient deprivation. These modifications were shown to alter the levels of individual triglyceride (TG) or phospholipid sub-species. To attain a holistic overview of the lipidomic profiles of cancer cells under stress we performed a broad lipidomic assay, comprising 244 lipids from six major classes. This assay allowed us to perform robust analyses and assess the changes in averages of broader lipid-classes, stratified on the basis of saturation index of their fatty-acyl side chains. Methods: Global lipidomic profiling using Liquid Chromatography-Mass Spectrometry was performed to assess lipidomic profiles of biologically diverse cancer cell lines cultivated under metabolically stressed conditions. Results: Neutral lipid compositions were markedly modified under serum-deprived conditions and, strikingly, the cellular level of triglyceride subspecies decreased with increasing number of double bonds in their fatty acyl chains. In contrast and unexpectedly, no robust changes were observed in lipidomic profiles of hypoxic (2% O2) Cancer cells despite concurrent changes in proliferation rates and metabolic gene expression. Conclusions: Serum-deprivation significantly affects lipidomic profiles of cancer cells. Although, the levels of individual lipid moieties alter under hypoxia (2% O2), the robust averages of broader lipid classes remain unchanged. KW - Tumor metabolism KW - Fatty acid metabolism KW - Lipidomic profile KW - Metabolic stress PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-481061 DO - https://doi.org/10.1186/s12885-019-5733-y SN - 1471-2407 VL - 19 SP - 501, 1 EP - 11 PB - Springer Nature AN - OPUS4-48106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lisec, Jan A1 - Jaeger, C. A1 - Zaidi, Nousheen T1 - Cancer cell lipid class homeostasis is altered under nutrient-deprivation but stable under hypoxia N2 - Under oxygen/nutrient deprivation cancer cells modify the Balance between fatty acid (FA) synthesis and uptake, which alters the levels of individual triglyceride or phospholipid sub-species. These modifications may affect survival and drug-uptake in cancer cells. Here, we aimed to attain a more holistic overview of the lipidomic profiles of cancer cells under stress and assess the changes in Major lipid-classes. First, expressions of markers of FA synthesis/uptake in cancer cells were assessed and found to be differentially regulated under metabolic stress. Next, we performed a broad lipidomics assay, comprising 244 lipids from six major classes, which allowed us to investigate robust stress induced changes in median levels of different lipid classes -additionally stratified by fatty acid side chain saturation status. The lipidomic profiles of cancer cells were predominantly affected by nutrient-deprivation. Neutral lipid compositions were markedly modified under serum-deprivation and, strikingly, the cellular level of triglyceride subspecies decreased with increasing number of double bonds in their fatty acyl chains. In contrast, cancer cells maintained lipid class homeostasis under hypoxic stress. We conclude that although the levels of individual lipid moieties alter under hypoxia, the robust averages of broader lipid class remain unchanged. KW - Mass-Spectrometry KW - Tumor metabolism KW - Fatty acid metabolism KW - Lipidomic profile KW - Metabolic stress PY - 2018 DO - https://doi.org/10.1101/382457 SP - 1 EP - 25 PB - Cold Spring Harbor Laboratory CY - Cold Spring Harbor, NY AN - OPUS4-46814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lisec, Jan A1 - Jaeger, Carsten A1 - Rashid, R. A1 - Munir, R. A1 - Zaidi, N. T1 - Cancer cell lipid class homeostasis is altered under nutrient-deprivation but stable under hypoxia N2 - Background: Cancer cells modify the balance between fatty acid (FA) synthesis and uptake under metabolic stress, induced by oxygen/nutrient deprivation. These modifications were shown to alter the levels of individual triglyceride (TG) or phospholipid sub-species. To attain a holistic overview of the lipidomic profiles of cancer cells under stress we performed a broad lipidomic assay, comprising 244 lipids from six major classes. This assay allowed us to perform robust analyses and assess the changes in averages of broader lipid-classes, stratified on the basis of saturation index of their fatty-acyl side chains. Methods: Global lipidomic profiling using Liquid Chromatography-Mass Spectrometry was performed to assess lipidomic profiles of biologically diverse cancer cell lines cultivated under metabolically stressed conditions. Results: Neutral lipid compositions were markedly modified under serum-deprived conditions and, strikingly, the cellular level of triglyceride subspecies decreased with increasing number of double bonds in their fatty acyl chains. In contrast and unexpectedly, no robust changes were observed in lipidomic profiles of hypoxic (2% O2) cancer cells despite concurrent changes in proliferation rates and metabolic gene expression. Conclusions: Serum-deprivation significantly affects lipidomic profiles of cancer cells. Although, the levels of individual lipid moieties alter under hypoxia (2% O2), the robust averages of broader lipid classes remain unchanged. KW - Tumor metabolism KW - Fatty acid metabolism KW - Lipidomic profile KW - Metabolic stress PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483186 DO - https://doi.org/10.1186/s12885-019-5733-y SN - 1471-2407 VL - 19 SP - 501 PB - Springer Nature CY - Berlin AN - OPUS4-48318 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Munir, R. A1 - Noureen, N. A1 - Bashir, M. A1 - Shoaib, N. A1 - Ashraf, A. A1 - Lisec, Jan A1 - Zaidi, N. T1 - Cancer Awareness Measure (CAM) and Cancer Awareness Measure MYthical Causes Scale (CAM‑MY) scores in Pakistani population N2 - Lifestyle modifications could prevent almost one‑third to one‑half of all cancer cases. The awareness of cancer risk factors could motivate people to make such changes in their behaviors and lifestyles. This work aims to investigate the cancer awareness level in the Pakistani population. Telephone interviews of 657 individuals in Pakistan were carried out using the Cancer Awareness Measure (CAM) and Cancer Awareness Measure–MYthical Causes Scale (CAM‑MY). We observed that participants scored significantly better on the CAM scale than the CAM‑MY scale, and CAM scores were negatively associated with CAM‑MY scores. Years of formal education or a biology major at undergraduate or graduate level did not affect our population’s cancer awareness levels. Age displayed a weak but statistically significant negative association with CAM scores. Most participants failed to identify modifiable cancer risk factors, e.g., low physical activity. Efforts should be made to improve awareness of modifiable risk factors. We observed that brief training sessions could markedly improve people’s understanding of cancer risk factors and myths. KW - Cancer KW - Cancer awareness measure KW - Cancer risk PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548960 DO - https://doi.org/10.1038/s41598-022-13012-8 SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 10 PB - Nature Publishing Group CY - London AN - OPUS4-54896 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Gornushkin, Igor ED - Galbács, G. T1 - Calibration-Free Quantitative Analysis N2 - Calibration-free methods in laser-induced breakdown spectroscopy, CF LIBS, serve as an alternative to calibration-based LIBS techniques. Their major advantage is the ability for fast chemical analysis in situations where matrix-matched standards are not readily available (as, e.g., in the analysis of biological materials and remote analysis) or amount of samples are limited. Their main applications are in the industry, geology, biology, archeology, and even space exploration. This chapter overviews the principle of operation and performance of CF LIBS techniques. KW - Laser induced plasma KW - Calibration-free LIBS PY - 2022 SN - 978-3-031-14501-8 DO - https://doi.org/10.1007/978-3-031-14502-5 SP - 67 EP - 100 PB - Springer Nature Switzerland AG AN - OPUS4-56651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Calibration-free LIBS of steel samples N2 - An improved algorithm for calibration-free laser induced breakdown spectroscopy (CF LIBS) is presented which includes several novel features in comparison with previously proposed similar algorithms. In particular, it allows using spectral lines with arbitrary optical thickness for the construction of Saha-Boltzmann plots, retrieves the absorption path length (plasma diameter) directly from a spectrum, replaces the Lorentzian line profile function by the Voigt function, and allows for self-absorption correction using pre-calculated and tabulated data rather than approximating functions. The tabulated data embody the solutions of the radiative transfer equation for numerous combinations of optical thicknesses and line widths. The algorithm is used to analyze 100 low alloy steel spectra. T2 - 20.06.2019 LTB workshop on LIBS analysis of steel CY - Berlin, LTB, Germany DA - 20.06.2019 KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics KW - Chemical reactors PY - 2019 AN - OPUS4-48600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bornemann-Pfeiffer, Martin A1 - Kern, Simon A1 - Maiwald, Michael A1 - Meyer, Klas T1 - Calibration-Free Chemical Process and Quality Control Units as Enablers for Modular Production N2 - Modular chemical production is a tangible translation of the digital transformation of the process industry for specialty chemicals. In particular, it enables the speeding-up of process development and thus a quicker time to market by flexibly connecting and orchestrating standardised physical modules and bringing them to life (i.e., parameterising them) with digitally accumulated process knowledge. We focus on the specific challenges of chemical process and quality control, which in its current form is not well suited for modular production and provide possible approaches and examples of the change towards direct analytical methods, analytical model transfer or machine-supported processes. KW - Modular Production KW - Chemical Process Control KW - Process Analytical Technology KW - Digital Transformation KW - Industry 4.0 PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517264 DO - https://doi.org/10.1002/cite.202000150 SN - 1522-2640 VL - 93 IS - 1-2 SP - 62 EP - 70 PB - Wiley-VCH CY - Weinheim AN - OPUS4-51726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Rienitz, O. A1 - Rosner, M. A1 - Brandt, B. A1 - Kasemann, S. A. A1 - Kraft, R. A1 - Malinovskiy, D. A1 - Meixner, A. A1 - Noordmann, J. A1 - Raab, S. A1 - Schuessler, J. A. A1 - Vocke, R. D. T1 - Calibration of Mg isotope amount ratios and delta values N2 - In the past, δ26/24Mg measurements were referenced to NIST SRM 980, the initial zero of the δ26/24Mg scale. With the development of MC-ICPMS, the detection of small but measurable isotopic differences in different chips of SRM 980 became apparent. To solve this problem a suite of magnesium isotope reference materials, ERM-AE143, -AE144 and -AE145, has been certified in a first study by applying an ab initio calibration for absolute Mg isotope ratios without any a priori assumptions, a procedure which fulfils all requirements of a primary method of measurement. We could achieve for the first time measurement uncertainties for isotope amount ratios close to the typical precision of magnesium delta values, δ26/24Mg, which are at the 0.1 ‰ level (2SD). In addition, it was demonstrated that commonly used fractionation laws are invalid for correcting Mg isotope ratios in multi-collector ICPMS as they result in a bias which is not covered by its associated uncertainty. Depending on their type, fractionation laws create a bias up to several per mil, with the exponential law showing the smallest bias between 0.1 ‰ to 0.7 ‰. With these isotope reference materials, it is possible to establish SI-traceability for magnesium delta measurements. To realize this, we organized a second study within which five expert laboratories participated to cross-calibrate all available magnesium isotope standards, which are NIST SRM 980, IRMM-009, ERM-AE143, ERM-AE144, ERM-AE145 and the standards DSM3 and Cambridge-1. The mean δ26/24Mg values for the individual iRMs, calculated from the laboratory means show 2 SD reproducibilities varying between 0.025 and 0.093 ‰. Propagated measurement uncertainties suggest a standard uncertainty of about 0.1‰ for δ26/24Mg determinations (2SD). Thus, SI traceability for magnesium isotope amount ratios and delta values is demonstrated to be established. T2 - European Winter Conference on Plasma Spectrochemistry CY - Pau, France DA - 03.02.2019 KW - Delta value KW - SI-traceability KW - Absolute isotope ratio PY - 2019 AN - OPUS4-47710 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -