TY - CONF A1 - Resch-Genger, Ute A1 - Nirmalananthan-Budau, Nithiya A1 - Tavernaro, Isabella A1 - Kläber, Christoph A1 - Kunst, Alexandra T1 - Design, characterization, and application of fluorescent sensor particles N2 - pH and oxygen are amongst the most important and frequently measured analytes in the life and material sciences, indicating, e.g., diseases and corrosion processes. This includes the optical monitoring of pH in living cells for studying cellular internalization pathways, such as phagocytosis, endocytosis, and receptor ligand internalization with the aid of molecular and nanoscale fluorescent sensors. Nanoparticle (NP)-based sensors, that are labeled or stained with a multitude of sensor dyes, have several advantages as compare to conventional molecular probes like enhanced brightness, i.e., amplified signals, ease of designing ratiometric systems by combining analyte sensitive and inert reference dyes, and increased photostability. Moreover, this can enable the use of hydrophobic dyes in aqueous environments. Versatile templates and carriers for the fabrication of nanosensors by the staining and/or labelling with different fluorophores and sensor molecules or surface functionalized NP like silica (SiO2-NP) and polystyrene (PS-NP) particles provide. Here we present the design of a versatile platform of color emissive nanosensors and stimuli-responsive microparticles for the measurement of pH, oxygen, and other targets utilizing both types of matrices and sets of spectrally distinguishable sensor and reference dyes and their characterization and demonstrate the applicability of representative sensor particle for cellular studies. T2 - Vortrag bei dem Projekttreffen MicraGen CY - Copenhagen, Denmark DA - 18.08.2022 KW - Dye KW - Luminescence KW - Quantitative spectroscopy KW - Photophysics KW - Quality assurance KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Standard KW - Integrating sphere spectroscopy KW - Sensor KW - pH KW - Oxygen KW - Microfluidics KW - Cancer KW - Cell KW - Life sciences PY - 2022 AN - OPUS4-57049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Osipova, Viktoriia A1 - Srivastava, Priyanka A1 - Huang, Zixuan A1 - Merei, Rabih A1 - Resch-Genger, Ute T1 - Design of Fluorescent, Amorphous Silica-NPs and their Versatile Use in Sensing Applications N2 - Surface functionalized silica nanoparticles (SiO2-NP) gained great interest in the life and material sciences, as they can be used e.g. as drug carriers, fluorescent sensors, and multimodal labels in bioanalytical assays and imaging applications. They are highly stable, are easily produced and modified on a large scale at low cost and can be labeled or stained with a multitude of sensor dyes. These dye modified particle conjugates have several advantages as compared to conventional molecular probes like enhanced brightness, ease of designing ratiometric systems by combining analyte-sensitive and inert reference dyes, and increased photostability. Moreover, stained nanoparticles can enable the use of hydrophobic dyes in aqueous environments. Here we present our work on multicolored sensors for the measurement of pH, oxygen and saccharides utilizing amorphous SiO2 NPs. T2 - Focus Area Day Analytical Sciences 2023 CY - Berlin, Germany DA - 20.04.2023 KW - Amorphous silica particles KW - Particle Synthesis KW - Nano KW - Ratiometric Sensors KW - Fluorescence KW - pH probe KW - Dye PY - 2023 AN - OPUS4-59151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bornemann-Pfeiffer, Martin A1 - Kern, Simon A1 - Jurtz, N. A1 - Thiede, Tobias A1 - Kraume, M. A1 - Maiwald, Michael T1 - Design and validation of an additively manufactured flowCell–static mixer combination for inline NMR spectroscopy N2 - There have been an increasing number of publications on flow chemistry applications of compact NMR. Despite this, there is so far no comprehensive workflow for the technical design of flow cells. Here, we present an approach that is suitable for the design of an NMR flow cell with an integrated static mixing unit. This design moves the mixing of reactants to the active NMR detection region within the NMR instrument, presenting a feature that analyses chemical reactions faster (5–120 s region) than other common setups. During the design phase, the targeted mixing homogeneity of the components was evaluated for different types of mixing units based on CFD simulation. Subsequently, the flow cell was additively manufactured from ceramic material and metal tubing. Within the targeted working mass flow range, excellent mixing properties as well as narrow line widths were confirmed in validation experiments, comparable to common glass tubes. KW - Inline NMR Spectroscopy KW - Integrated Processes KW - Reaction Monitoring KW - Process Analytical Technology KW - Flow Chemistry KW - Static Mixing KW - Modular Production PY - 2019 UR - https://pubs.acs.org/doi/abs/10.1021/acs.iecr.9b03746 DO - https://doi.org/10.1021/acs.iecr.9b03746 SN - 0888-5885 SN - 1520-5045 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. VL - 58 IS - 42 SP - 19562 EP - 19570 PB - American Chemical Society CY - Washington AN - OPUS4-49041 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Design and Quantitative Characterization of Functional Molecular Chromophores and Nanomaterials with UV/vis/NIR/IR Emission – An Overview of Research Activities in Division Biophotonics N2 - In the focus of division Biophotonics are the design, preparation, analytical and spectroscopic characterization, and application of molecular and nanoscale functional materials, particularly materials with a photoluminescence in the visible, near infrared (NIR) and short-wave infrared (SWIR). This includes optical reporters for bioimaging and sensing, security and authentication barcodes, and materials for solid state lighting, energy conversion, and photovoltaics. For the identification of optimum particle structures quantitative spectroscopic studies are performed under application-relevant conditions, focusing on the key performance parameter photoluminescence quantum yield. In addition, simple, cost-efficient, and standardizable strategies for quantifying functional groups on the surface of nano- and microparticles are developed, here with a focus on optical assays and electrochemical titration methods, cross-validated by more advanced methods such as quantitative NMR. In addition, reference materials and reference products are developed for optical methods, particularly luminescence techniques, and for analytical methods utilized for the characterization of nanomaterials. T2 - Projekttreffen Nile-Chrome 2.0 CY - Mainz, Germany DA - 11.12.2023 KW - Fluorescence KW - Quantum yield KW - Optical spectroscopy KW - Reference material KW - Reference data KW - Quality assurance KW - Dye KW - Reference product KW - NIR KW - SWIR KW - Nano KW - Particle KW - Silica KW - Polymer KW - Surface group analysis KW - Sensor molecules PY - 2023 AN - OPUS4-59123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Deposition of Titanium Oxides by Nanosecond Laser Ablation: Simulation and Experiment N2 - Surface modification of titanium by laser ablation is investigated theoretically and experimentally. The modification consists in texturing the surface and redeposition of chemically transformed material from the ablation plasma. The redeposition is driven by the hydrodynamic flow in the plasma. Such surface modification improves the biocompatibility of titanium implants. T2 - 2022 Winter Conference on Plasma Spectrochemistry CY - Tucson, Arizona, USA DA - 17.01.2022 KW - Laser ablation KW - Laser induced plasma deposition KW - Surface coating KW - Titanium dioxide KW - Emission spectroscopy KW - Hydrodynamic model KW - Plasma chemistry PY - 2022 AN - OPUS4-54289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Smeir, E. A1 - Leberer, S. A1 - Blumrich, A. A1 - Vogler, G. A1 - Vasiliades, A. A1 - Dresen, S. A1 - Jaeger, Carsten A1 - Gloaguen, Y. A1 - Klose, C. A1 - Beule, D. A1 - Schulze, P. A1 - Bodmer, R. A1 - Foryst-Ludwig, A. A1 - Kintscher, U. T1 - Depletion of Cardiac Cardiolipin Synthase Alters Systolic and Diastolic Function N2 - Cardiolipin (CL) is a major cardiac mitochondrial phospholipid maintaining regular mitochondrial morphology and function in cardiomyocytes. Cardiac CL production includes ist biosynthesis and a CL-remodeling process. Here we studied the impact of CL-biosynthesis and the enzyme Cardiolipin Synthase (CLS) on cardiac function. CLS and cardiac CL-species were significantly downregulated in cardiomyocytes following catecholamine-induced cardiac damage in mice, accompanied by increased oxygen consumption rates, signs of oxidative stress and mitochondrial uncoupling. RNAi-mediated cardiomyocyte-specific knockdown of CLS in Drosophila melanogaster resulted in marked cardiac dilatation, severe impairment of systolic performance and slower diastolic filling velocity assessed by fluorescence-based heart imaging. Finally, we showed that CL72:8 is significantly decreased in cardiac samples from patients with heart failure with reduced ejection fraction (HFrEF). In summary, we identified CLS as a regulator of cardiac function. Considering the cardiac depletion of CL-species in HFrEF, pharmacological targeting of CLS may be a promising therapeutic approach.zeige mehrzeige weniger KW - High-resolution mass spectrometry KW - Nontarget analysis KW - Heart failure KW - Cardiolipins KW - Lipidomics PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536833 DO - https://doi.org/10.1016/j.isci.2021.103314 VL - 24 IS - 11 SP - 103314 PB - Cell Press AN - OPUS4-53683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Vocke, B. T1 - Delta values & isotope ratios - potential CCQM comparisons N2 - The talk presents several potential CCQM comparisons for delta values and isotope ratios with a focus on metals and semi-metals. T2 - CCQM IRWG Meeting CY - Paris, France DA - 18.04.2018 KW - Isotope amount ratio KW - Traceability KW - Uncertainty PY - 2018 AN - OPUS4-45895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brasse, Y. A1 - Colbus, A. A1 - Tavernaro, Isabella A1 - Kraegeloh, Annette T1 - Delivery of macromolecular drugs via coated silica particles N2 - Modified silica particles are of great interest in biomedical applications, since they can be used e.g. as drug carriers, fluorescent sensors, or multimodal labels in bioimaging. Here we present novel approaches for drug labeled and loaded silica nanoparticles. T2 - NanoMedicine International Conference 2021 CY - Milan, Italy DA - 20.10.2021 KW - Silica nanoparticles KW - Drug delivery KW - Particle modification KW - Cell studies PY - 2021 AN - OPUS4-57728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbrich, Adelina-Elisa A1 - An Stepec, Biwen Annie A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Deciphering microbiological influenced corrosion processes on steel with single cell-ICP-ToF-MS N2 - Microbiologically influenced corrosion (MIC) is a highly unpredictable process dictated by the environment, microorganisms, and the respective electron source. Interaction pathways between cells and the metal surface remain unclear. The development of this novel single cell-inductively coupled plasma-time of flight-mass spectrometry analytical method and a MIC-specific staining procedure facilitate the investigation of steel-MIC interactions. With this it is possible to analyze the multi-elemental fingerprint of individual cells. The detection method revealed elemental selectivity for the corrosive methanogenic archaeal strain Methanobacterium-affiliated IM1. The interface between material and environmental analysis thus receives special attention, e.g., when considering MIC on solid steel. Hence, the possible uptake of individual elements from different steel samples is investigated. Results showed the cells responded at a single-cell level to the different types of supplemented elements and displayed the abilities to interact with chromium, vanadium, titanium, cobalt, and molybdenum from solid metal surfaces. The information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts, thus combining modern methods of analytical sciences with materials research. References. T2 - Future WiNS CY - Berlin, Germany DA - 07.12.2022 KW - Single cell KW - Microbiological influenced corrosion MIC KW - Sc-ICP-ToF-MS KW - Method development KW - Ir DNA staining approach KW - Carbon steel corrosion PY - 2022 AN - OPUS4-56567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dinter, Adelina-Elisa A1 - An-Stepec, Biwen A1 - Wurzler, Nina A1 - Özcan Sandikcioglu, Özlem A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Deciphering corrosion processes of MIC organisms - single cell-ICP-ToF-MS analysis of archaea on solid steels N2 - ICP-ToF (time of flight) MS enables the analysis of the multi-element fingerprint of single cells. The single cell ICP-ToF-MS is used in the presented poster for the analysis of archaea involved in microbiologically influenced corrosion (MIC) of steel. By means of sc-ICP-ToF-MS, the possible uptake of individual elements from the respective steel is investigated - the information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts. The work combines modern methods of analytical sciences with materials. T2 - SALSA - Make & Measure 2021 CY - Online meeting DA - 16.09.2021 KW - Sc-ICP-ToF-MS KW - Single cell analysis KW - Microbiologically influenced corrosion KW - Archaea KW - Poster presentation PY - 2021 AN - OPUS4-53337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -