TY - CONF A1 - Heinrich, Thomas A1 - Schneider, Markus A1 - Schäpe, Kaija A1 - Unger, Wolfgang A1 - Stockmann, Jörg M. T1 - Classification of engineered Titania nanomaterials via surface analysis using principal component analysis (PCA) assisted Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) N2 - Due to the growing number of engineered nanomaterials (NM) the need for a reliable risk assessment for these materials is today bigger than ever before. Especially the nanomaterial’s surface or shell directly interacts with its environment and therefore is a crucial factor for NM’ toxicity or functionality. Especially, titania is one of the NM with the greatest technological importance. It is used for a large number of applications and can be found in food, cosmetics, glasses, mirrors, paints to mention only a few. In 2012, experts estimate[d] the annual European nano-titania production or utilization at an amount of more than 10,000 t. Great progress has been achieved in the area of NM investigation and characterization during the past decade. A variety of publications provide information about technological innovation as well as hazard potential, which means the potential risk on human health and ecosystems. However, enhanced data harmonization and well-defined standards for nanomaterial analysis, could significantly improve the reliability of such studies which often suffers from varying methods, parameters and sample preparations. To develop a suitable approach for the NM’s risk assessment, the ACEnano project aims at establishing a toolbox of verified methods. The size of this well-structured European project allows to handle even those big challenges like data harmonization and standardization. Due to its powerful combination of superior surface sensitivity and lateral resolution down to the Nano regime, ToF-SIMS could become one of these toolbox methods. Supported by multivariate data analysis such as principal component analysis (PCA), the method can be used for sub-classification of nanomaterial families using slight differences in surface chemistry. Here, we show a PCA supported classification of titania nanoparticles from various sources (NIST, JRC, BAM) with ToF-SIMS. Parameters like size, shell, pre-preparation and crystal system cause variance in the data and allow us to distinguish the species from each other. Moreover, this variance in the data also occurs and can be used for investigation when we compare our measurements of particle ensembles with those of grown titania films. The carefully selected and refined peaks allow a reasonable particle categorization and further a reliable allocation of blank feeds, which introduces a promising approach for NM characterization in the context of NM risk assessment. T2 - SIMS-Europe CY - Münster, Germany DA - 16.09.2018 KW - Nanoparticles KW - ToF-SIMS KW - XPS KW - PCA KW - Titania PY - 2018 AN - OPUS4-46250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Overview on the most advanced and suitable NanoDefine measurement methods N2 - The EC Recommendation on the definition of nanomaterial, based solely on size of the constituent particles, foresees development of harmonised measurement methods ensuring ‘consistent results across materials and over time’. The EU/FP7 research project NanoDefine has been exclusively dedicated to support the implementation of this EC Recommendation for the European Union’s legislation. For the first time, measurement techniques able to determine the size of nanoparticles have been evaluated systematically on a well-defined set of quality control materials (spherical, monodisperse) as well as industrial materials of complex shapes and considerable polydispersity. Particularly based on the analytical performance of the measurement techniques as tested on the challenging real-world particulate materials, it was possible to formulate recommendations for use of a new tiered approach consisting of screening and confirmatory techniques. Thus, a consistent framework of guidance for nanomaterial identification according to the EC Definition has been issued in form of the NanoDefiner e-tool, with a transparent decision flow scheme and an extensive user manual. Selected examples of analysis and classification as nano-/non-nanomaterials will be given, highlighting the limits of applicability of the available measurement techniques in dependence on sample properties. On some recent relevant developments in sample preparation – as a crucial part for an accurate analysis - will be also reported. T2 - VCI-NanoDefine Follow-up Meeting CY - VCI, Frankfurt am Main, Germany DA - 25.09.2018 KW - Nanoparticles KW - Nanomaterial KW - EC definition of nanomaterial KW - Nanoparticle size distribution PY - 2018 AN - OPUS4-46251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - EMPIR nPSize - improved traceability chain of nanoparticle size measurements - Is a liaison to CEN/TC 352 nanotechnologies useful? N2 - The main objectives of the new EMPIR project nPSize are to establish EU capability of traceable measurement of NP size and shape, lower uncertainties of NP size measurement by developement of new nano-CRMs, new models (physical and machine learning), 3D method combination, and also by new ISO and CEN standards on accurate NP size measurement and guidance and knowledge transfer. The envisaged outcomes of the project will be presented and their suitability will be discussed to be taken over as pertinent contributions to normative projects within CEN/TC 352 Nanotechnologies. T2 - Joint Working Groups and 24th CEN/TC 352 Nanotechnologies Meetings CY - DIN, Berlin, Germany DA - 09.10.2018 KW - Nanoparticles KW - Size KW - Particle size distribution KW - Particle shape KW - Traceability KW - Standardisation KW - CEN/TC 352 Nanotechnologies PY - 2018 AN - OPUS4-46252 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Procop, Mathias T1 - Check of the energy-dispersive X-ray spectrometers (EDS) performance with the BAM test material EDS-TM001/2 and BAM software EDS spectrometer test N2 - The test material EDS-TM001 together with an accompanying software package, “EDX spectrometer check”, have been made available in 2009 by BAM to be employed by EDS (energy dispersive spectrometer) users to check the performance of an EDS attached to the SEM. Particularly for test laboratories operating under accreditation schemes like ISO/IEC 17025, a periodical control of the critical instrumental parameters in end-user laboratories is required. With EDS-TM001 or EDS-TM002 (second generation) test material, this periodical check is reduced to the acquisition of only one 10 kV spectrum. The software “EDX spectrometer check” is destined to evaluate automatically this spectrum and determine the performance of the EDS in terms of energy resolution and calibration as well as possible alteration of low-energy efficiency due to detector contamination. Energy resolution can be compared with the specified values according to the international ISO standard ISO 15632:2012. EDS-TM is a synthetic material consisting of a thick layer of C, Al, Mn, Cu and Zr in a well-defined composition, deposited on a steel (in case of EDS-TM001) or silicon (in case of EDS-TM002) substrate. Meanwhile, more than one hundred laboratories (most of them located in Germany) use the EDS-TM001 or EDS-TM002 test material for the periodical check of their EDS. A detailed description of the test material and software together with examples of application was published recently. New results and gained experiences will be presented as well. T2 - BERM-15: International Symposium on Biological and Environmental Reference Materials CY - Berlin, Germany DA - 24.09.2018 KW - EDS KW - SEM/EDX KW - Test material KW - EDS-TM001 KW - EDS-TM002 KW - EDS Spectrometer Test KW - X-rays PY - 2018 AN - OPUS4-46253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kunz, Valentin A1 - Kjaervik, Marit A1 - Müller, Anja A1 - Hodoroaba, Vasile-Dan A1 - Unger, Wolfgang T1 - How to meet new challenges in advanced nanoparticle analytics N2 - Three current research projects performed at BAM’s Division for Surface Analysis and Interfacial Chemistry are presented that tackle important challenges with regard to the characterization of nanomaterials: 1) The characterization at ambient pressure, 2) the investigation of core-shell nanoparticles, and 3) the characterization of non-spherical particles by electron microscopy. 1) Surface analytical techniques such as Photoelectron Spectroscopy (XPS) or Secondary Ion Mass Spectrometry (SIMS) typically require measurements in ultra-high vacuum. However, for many applications (e.g. catalysis and nanotoxicology) it is important to know the surface chemical properties of nanomaterials at ambient conditions. Therefore, near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) was used to investigate nanoparticles in suspension. The used instrumental set-up allows to directly insert nanoparticle suspensions into the analysis chamber and to measure without prior sample preparation. Compared to dry reference samples measured under high-vacuum, a shift towards higher binding energies was observed for silver nanoparticles in water, indicating a change of surface potential at the water-nanoparticle interface. 2) To determine the dimensions of core-shell nanoparticles (shell thickness, core and total diameter), scanning transmission X-ray microscopy (STXM) was used. The analyzed model system consists of a polytetrafluorethylene (PTFE) core surrounded by a polystyrene (PS) shell, providing a strong X-ray absorption contrast at the C K-edge and a well-defined interface. The introduced STXM‐based methodology yields particle dimensions in agreement with scanning electron microscopy (SEM) results and provides additional information such as the position of the particle core, which cannot be extracted from a SEM micrograph. 3) The accurate measurement of size distributions of non-spherically shaped nanoparticles (representing most of the industrial nanoparticulate materials) is a challenging analytical task. High-resolution electron microscopy (TEM and SEM) is best suited to access the shape of individual nanoparticles. To fill the gap between ideal, monodisperse particles of spherical shape and complex real-world samples, BAM has started the work to develop reference nanoparticles of controlled shape, such as TiO2 platelets, bipyramids, and elongated particles. Results of a recent ISO inter-laboratory comparison will be shown with emphasis on the measurement parameters, descriptors and data analysis. T2 - NanoSafe Conference 2018 CY - Grenoble, France DA - 5.11.2018 KW - Nanoparticles PY - 2018 AN - OPUS4-46730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Donėlienė, J. A1 - Rudzikas, M. A1 - Rades, Steffi A1 - Dörfel, Ilona A1 - Peplinski, Burkhard A1 - Sahre, Mario A1 - Pellegrino, F. A1 - Maurino, V. A1 - Ulbikas, J. A1 - Galdikas, A. A1 - Hodoroaba, Vasile-Dan T1 - Morphology and structure of TixOy nanoparticles generated by femtosecond laser ablation in water N2 - In this work femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated byXRD(two instruments operated in different geometries) and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation. KW - Titanium oxide KW - Nanoparticles KW - Laser ablation in liquid KW - Particle morphology KW - Nanoparticle structure PY - 2018 DO - https://doi.org/10.1088/2053-1591/aaba56 SN - 2053-1591 VL - 5 IS - 4 SP - 045015-1 EP - 045015-12 PB - IOP Publishing CY - London, UK AN - OPUS4-44678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Donėlienė, J. A1 - Rudzikas, M. A1 - Rades, Steffi A1 - Dörfel, Ilona A1 - Peplinski, Burkhard A1 - Sahre, Mario A1 - Pellegrino, F. A1 - Maurino, V. A1 - Ulbikas, J. A1 - Galdikas, A. A1 - Hodoroaba, Vasile-Dan T1 - Electron Microscopy and X-Ray Diffraction Analysis of Titanium Oxide Nanoparticles Synthesized by Pulsed Laser Ablation in Liquid N2 - A femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated by XRD(two instruments operated in different geometries) and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation. KW - Laser ablation in liquid KW - Nanoparticles KW - Titanium oxide KW - Particle morphology PY - 2018 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/electron-microscopy-and-xray-diffraction-analysis-of-titanium-oxide-nanoparticles-synthesized-by-pulsed-laser-ablation-in-liquid/AE368446FAC70E08C514F9AEABFD131B DO - https://doi.org/10.1017/S1431927618009030 VL - 24 IS - S1 (August) SP - 1710 EP - 1711 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-45949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Donėlienė1, J. A1 - Rudzikas, M. A1 - Rades, Steffi A1 - Dörfel, Ilona A1 - Peplinski, Burkhard A1 - Sahre, Mario A1 - Pellegrino, F. A1 - Maurino, V. A1 - Ulbikas, J. A1 - Galdikas, A. T1 - Electron Microscopy and X-Ray Diffraction Analysis of Titanium Oxide Nanoparticles Synthesized by Pulsed Laser Ablation in Liquid N2 - A femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated by XRD and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation. T2 - Microscopy & Microanalysis 2018 CY - Baltimore, MD, USA DA - 05.08.2018 KW - Nanoparticles KW - Titanium oxide KW - Laser ablation in liquid KW - Electron microscopy KW - XRD PY - 2018 AN - OPUS4-46502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Lippitz, Andreas A1 - Hodoroaba, Vasile-Dan A1 - Schmid, Thomas A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Zirconium permanent modifiers for graphite furnaces used in absorption spectrometry: understanding their structure and mechanism of action N2 - The mechanism of action of zirconium permanent modifiers on graphite surfaces was investigated in order to understand its influence on the analytical signal in atomic and molecular absorption spectrometry (AAS/MAS). For this, the molecule formation of CaF was studied, which is used for the indirect analytical determination of fluorine in high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS). The kinetics of this reaction was established by monitoring its molecular spectrum at different atomisation temperatures. An Arrhenius plot showed a pseudo-first order reaction with respect to fluorine (n = 1). An intermediate state was isolated, and its structure was elucidated by spectroscopic methods: scanning electron microscopy with energy dispersive X-ray spectroscopy (SEMEDX), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XANES and EXAFS), and Raman microspectroscopy. We propose here a mechanism, where ZrO2 acts as a heterogeneous catalyst: after a pyrolytic step, an intermediate state of ZrO(OCaF) is activated, and at higher temperatures, CaF(g) is released from the zirconium-coated graphite surface. No evidence of the formation of zirconium carbide was found. Consequently, as the CaF formation is catalysed by a heterogeneous catalyst, surface modifications with ZrO2 nanoparticles and ZrO xerogels were investigated in order to increase the surface area. Their influence was evaluated in the molecule formation of CaF, CaCl, CaBr, and CaI. Graphite furnace modification with zirconium oxide nanoparticles proves to be the best choice for fluorine analysis with a signal enhancement of more than eleven times with respect a non-coated graphite furnace. However, the influence of zirconium modifications in the analytical signals of Cl, and I is lower than the F signals or even negative in case of the Br. Understanding zirconium modifiers as heterogeneous catalysts offers a new perspective to AAS and MAS, and reveals the potential of surface analytical methods for development of improved permanent modifiers and graphite furnace coatings. KW - Zirconium KW - HR-CS-MAS KW - Graphite furnace KW - Nanoparticles KW - Xerogel KW - Calcium monofluoride KW - Absorption spectrometry PY - 2018 UR - https://pubs.rsc.org/en/content/articlelanding/2018/ja/c8ja00190a DO - https://doi.org/10.1039/C8JA00190A SN - 0267-9477 VL - 33 IS - 12 SP - 2034 EP - 2042 PB - Royal Society of Chemistry AN - OPUS4-46775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Griepentrog, Michael A1 - Hertwig, Andreas A1 - Sahre, Mario A1 - Unger, Wolfgang A1 - Hodoroaba, Vasile-Dan A1 - Krüger, Jörg T1 - Plasma Germany, Fachausschuss Normung, Berichtszeitraum Herbst 2017 – Frühjahr 2018 N2 - Der Vortrag gibt den aktuellen Stand der Normung im Bereich der Oberflächen-technik insbesondere der Oberflächenanalytik und der Oberflächenmess- und -prüftechnik wider. Vorgestellt wird der Status technischer Berichte, Normenentwürfe und Normen u.a. zur Charakterisierung von funktionellen Glasoberflächen für bioanalytische Anwendungen, zur Messung der Schichtdicke von Nanomaterialien mittels Ellipsometrie, zur Kalibrierung von Interferometern und Interferenzmikroskopen für die Formmessung, zur Rockwelleindringprüfung zur Bewertung der Schicht-haftung, zu den Grundlagen der Ellipsometrie, zur Messung der Schichtdicke mittels Wirbelstromverfahren, zur Schichtpotentialmessung von Mehrfach-Nickelschichten, zu Filtern und Augenschutzgeräten gegen Laserstrahlung sowie zur Bestimmung der Schichthaftung mittels Zugversuch. T2 - Plasma Germany, Fachausschuss Normung, Frühjahrssitzung CY - Kiel, Germany DA - 17.04.2018 KW - Stand der Normung KW - Oberflächentechnik KW - Oberflächenanalytik KW - Oberflächenmesstechnik KW - Oberflächenprüftechnik PY - 2018 AN - OPUS4-44729 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Griepentrog, Michael A1 - Hertwig, Andreas A1 - Sahre, Mario A1 - Unger, Wolfgang A1 - Hodoroaba, Vasile-Dan A1 - Krüger, Jörg T1 - Plasma Germany, Fachausschuss Normung, Berichtszeitraum Frühjahr 2018 - Herbst 2018 N2 - Der Vortrag gibt den aktuellen Stand der Normung im Bereich der Oberflächen-technik insbesondere der Oberflächenanalytik und der Oberflächenmess- und -prüftechnik wider. Vorgestellt wird der Status technischer Berichte, Normenentwürfe und Normen u.a. zur Charakterisierung von funktionellen Glasoberflächen für bioanalytische Anwendungen, zur Messung der Schichtdicke von Nanomaterialien mittels Ellipsometrie, zur Kalibrierung von Interferometern und Interferenzmikroskopen für die Formmessung, zur Rockwelleindringprüfung zur Bewertung der Schicht-haftung, zu den Grundlagen der Ellipsometrie, zur Messung der Schichtdicke mittels Wirbelstromverfahren, zur Schichtpotentialmessung von Mehrfach-Nickelschichten, zu Filtern und Augenschutzgeräten gegen Laserstrahlung sowie zur Bestimmung der Schichthaftung mittels Zugversuch. T2 - Fachausschuss Normung, Herbstsitzung CY - Jena, Germany DA - 06.11.2018 KW - Stand der Normung KW - Oberflächentechnik KW - Oberflächenanalytik KW - Oberflächenmesstechnik KW - Oberflächenprüftechnik PY - 2018 AN - OPUS4-48894 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Bernsmeier, D. A1 - Hertwig, Andreas A1 - Hodoroaba, Vasile-Dan A1 - Kraehnert, R. T1 - Spectroscopic ellipsometry for the determination of thickness and porosity of mesoporous metal oxide films N2 - Thin mesoporous metal oxide films are versatile and attractive candidates for several energy applications like photovoltaics, electrolysis or batteries. Due to their high surface area and ordered pore structure, mesoporous metal oxides demonstrate higher activities. The performance of the porous films is affected by properties like size and shape of the mesopores as well as the crystallinity of the framework. The exact determination and metrological evaluation of the complex morphology of thin mesoporous films requires a new analytical approach employing to combined data of different analytical methods. In this contribution we present a novel evaluation procedure for spectroscopic ellipsometry (SE) to analyse thin mesoporous iridium oxide films. Mesoporous iridium oxide films were prepared via dip-coating of a solution containing a triblock-copolymer as structure directing agent and an iridium precursor in ethanol. Deposited films were calcined in air at temperatures between 300 and 600 °C. Their morphology was studied with SEM and an electron probe microanalysis (EPMA)and correlated via SE with a Bruggeman effective medium approximation (BEMA). The developed SE model described the film thickness as well as the porosity. Figure 1a shows a top-view SEM image of mesoporous IrO2 film calcined at 375 °C. The image reveals that the films exhibit a well-ordered mesopore structure with an average pore diameter of 16 nm and a periodic distance between pore centres of 24 nm (FFT inset). Figure 1b is a parity plot of film thicknesses determined by cross-section SEM versus SE of IrO2 film samples prepared at different calcination temperatures. The porosity from the SE model is in good agreement to the porosity values obtained by EPMA. The contribution will assess in detail the novel approach to analyse the morphology and porosity of thin metal oxide films with spectroscopic ellipsometry. Moreover, the advantages of the new developed approach will be discussed as well as combination of datasets from multiple measurements to development new methods for innovative energy technologies. T2 - 30. Deutsche Zeolith-Tagung und Jahrestreffen der ProcessNet-Fachgruppe Adsorption CY - Kiel, Germany DA - 28.02.2018 KW - Mesoporous materials KW - Iridium oxide films KW - Electro catalyst KW - Spectroscopic ellipsometry KW - Thin film metrology KW - Multi-sample analysis PY - 2018 AN - OPUS4-45101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Hertwig, Andreas A1 - Hodoroaba, Vasile-Dan A1 - Kraehnert, R. T1 - Spectroscopic ellipsometry for the determination of thickness and porosity of mesoporous metal oxide films N2 - Thin mesoporous metal oxide films are versatile and attractive candidates for several energy applications like photovoltaics, electrolysis or batteries. Due to their high surface area and ordered pore structure, mesoporous metal oxides demonstrate higher activities. The performance of the porous films is affected by properties like size and shape of the mesopores as well as the crystallinity of the framework. The exact determination and metrological evaluation of the complex morphology of thin mesoporous films requires a new analytical approach employing to combined data of different analytical methods. In this contribution we present a novel evaluation procedure for spectroscopic ellipsometry (SE) to analyse thin mesoporous iridium oxide films. Mesoporous iridium oxide films were prepared via dip-coating of a solution containing a triblock-copolymer as structure directing agent and an Iridium precursor in ethanol. Deposited films were calcined in air at temperatures between 300 and 600 °C. Their morphology was studied with SEM and an electron probe microanalysis (EPMA) and correlated via SE with a Bruggeman effective medium approximation (BEMA). The developed SE model described the film thickness as well as the porosity. ... The contribution will assess in detail the novel approach to analyse the morphology and porosity of thin metal oxide films with spectroscopic ellipsometry. Moreover, the advantages of the new developed approach will be discussed as well as combination of datasets from multiple measurements to development new methods for innovative energy technologies. T2 - 10th Workshop Ellipsometry 2018 CY - Chemnitz University of Technology, Germany DA - 19.03.2018 KW - Mesoporous materials KW - Iridium oxide films KW - Electro catalyst KW - Spectroscopic ellipsometry KW - Thin film metrology KW - Multi-sample analysis PY - 2018 AN - OPUS4-45143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Bernsmeier, Denis A1 - Hertwig, Andreas A1 - Hodoroaba, Vasile-Dan A1 - Kraehnert, Ralph T1 - Spectroscopic ellipsometry for the determination of thickness and porosity of mesoporous metal oxide films N2 - Thin mesoporous metal oxide films are versatile and attractive candidates for several energy applications like photovoltaics, electrolysis or batteries. Due to their high surface area and ordered pore structure, mesoporous metal oxides demonstrate higher activities. The performance of the porous films is affected by properties like size and shape of the mesopores as well as the crystallinity of the framework. The exact determination and metrological evaluation of the complex morphology of thin mesoporous films requires a new analytical approach employing to combined data of different analytical methods. In this contribution we present a novel evaluation procedure for spectroscopic ellipsometry (SE) to analyse thin mesoporous iridium oxide films. Mesoporous iridium oxide films were prepared via dip-coating of a solution containing a triblock-copolymer as structure directing agent and an iridium precursor in ethanol. Deposited films were calcined in air at temperatures between 300 and 600 °C. Their morphology was studied with SEM and an electron probe microanalysis (EPMA) and correlated via SE with a Bruggeman effective medium approximation (BEMA). The developed SE model described the film thickness as well as the porosity. ... The contribution will assess in detail the novel approach to analyse the morphology and porosity of thin metal oxide films with spectroscopic ellipsometry. Moreover, the advantages of the new developed approach will be discussed as well as combination of datasets from multiple measurements to development new methods for innovative energy technologies. T2 - 30. Deutsche Zeolith-Tagung gemeinsam mit dem Jahrestreffen der ProcessNet-Fachgruppe Adsorption CY - Christian-Albrechts-Universität zu Kiel, Germany DA - 28.02.2018 KW - Mesoporous materials KW - Iridium oxide films KW - Electro catalyst KW - Spectroscopic ellipsometry KW - Thin film metrology KW - Multi-sample analysis PY - 2018 AN - OPUS4-45134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Hertwig, Andreas A1 - Hodoroaba, Vasile-Dan A1 - Krähnert, R. T1 - Multi-method analysis of pore-controlled mesoporous oxide materials N2 - Determining the porosity of catalytic layers is crucial for quality assurance. We present results of a multi-method study to determine thickness, porosity, dielectric function and other properties of pure and mixed iridium and titanium oxide layers used in electrocatalytic water splitting. T2 - European Optical Society Biennial Meeting (EOSAM) 2018 CY - Delft, The Netherlands DA - 08.10.2018 KW - Multi-method analysis KW - Mesoporous oxide materials KW - Electro catalytic water splitting KW - Electron probe X-ray microanalysis (EPMA) KW - Spectroscopic ellipsometry (SE) KW - Optical porosimetry PY - 2018 AN - OPUS4-46740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Hertwig, Andreas A1 - Kraehnert, R. A1 - Hodoroaba, Vasile-Dan T1 - Analysis of mesoporous iridium oxide thin films by the combined methodical approach SEM/EDS/STRATAGem N2 - For the determination of porosity of Ir oxide thin films, electron probe microanalysis (EPMA) can be used as part of a combined SEM/EDS/STRATAGem analysis. The mass deposition (in μg cm-2) of films was calculated with the analysis software STRATAGem via k-values measured with EDS. The average density of coated films was obtained from the mass deposition and the film thickness as measured by the cross-section SEM. The porosity was calculated by dividing the average film density by the bulk (theoretical) density of the film material. Film porosities were counterchecked by spectroscopic ellipsometry (SE) using the Bruggeman effective medium approximation (BEMA). The results obtained by both analytical approaches/methods used, SEM/EDS/STRATAGem and SE were in good agreement. KW - Porous thin films KW - Iridium oxide KW - Electron probe microanalysis (EPMA) KW - Spectroscopic ellipsometry PY - 2018 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/analysis-of-mesoporous-iridium-oxide-thin-films-by-the-combined-methodical-approach-semedsstratagem/7607018338B542D8B8C4D944392781EF DO - https://doi.org/10.1017/S1431927618004300 SN - 1431-9276 SN - 1435-8115 VL - 24 IS - S1 (August) SP - 762 EP - 763 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-45951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Sachse, René A1 - Hertwig, Andreas A1 - Kraehnert, R. T1 - Analysis of Mesoporous Iridium Oxide Thin Films by the Combined Methodical Approach SEM/EDS/STRATAGem N2 - For the determination of porosity of Ir oxide thin films, electron probe microanalysis (EPMA) can be used as part of a combined SEM/EDS/STRATAGem analysis. The mass deposition (in μg cm-2) of films was calculated with the analysis software STRATAGem via k-values measured with EDS. The average density of coated films was obtained from the mass deposition and the film thickness as measured by the cross-section SEM. The porosity was calculated by dividing the average film density by the bulk (theoretical) density of the film material. Film porosities were counterchecked by spectroscopic ellipsometry (SE) using the Bruggeman effective medium approximation (BEMA). The results obtained by both analytical approaches/methods used, SEM/EDS/STRATAGem and SE were in good agreement. T2 - Microscopy & Microanalysis 2018 CY - Baltimore, MD, USA DA - 05.08.2018 KW - Electron probe microanalysis (EPMA) KW - Iridium oxide KW - Porous thin films KW - Spectroscopic ellipsometry PY - 2018 AN - OPUS4-46509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Radnik, Jörg A1 - Lippitz, Andreas A1 - Unger, Wolfgang T1 - Progress Talk 3 / Non-destructive depth profiling of core-shell nanoparticles by ER-XPS N2 - This presentation deals with the progress between month twenty and twenty-nine of my PhD thesis. I prepared it, in order to update my supervisor Prof. Kemnitz and my colleagues from the department of chemistry at the Humboldt-Universität zu Berlin (HU). T2 - Working Group Meeting of Prof. Erhard Kemnitz CY - Humboldt-Universität zu Berlin (HU), Germany DA - 20.11.2018 KW - ER-XPS KW - Synchrotron KW - Core-shell nanoparticles KW - Depth-profiling PY - 2018 AN - OPUS4-46676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mino, L. A1 - Pellegrino, F. A1 - Rades, Steffi A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Spotto, G. A1 - Maurino, V. A1 - Martra, G. T1 - Beyond shape engineering of TiO2 nanoparticles: Post-synthesis treatment dependence of surface hydration, hydroxylation, Lewis acidity and photocatalytic activity of TiO2 anatase nanoparticles with dominant {001} or {101} facets N2 - TiO2 anatase nanoparticles are among the relevant players in the field of light-responsive semiconductor nanomaterials used to face environmental and energy issues. In particular, shape-engineered TiO2 anatase nanosheets with dominant {001} basal facets gained momentum because of the possibility to exploit different and/or improved functional behaviors with respect to usual bipyramidal TiO2 anatase nanoparticles, mainly exposing {101} facets. Nevertheless, such behavior depends in a significant extent on the physicochemical features of surfaces exposed by nanosheets. They can vary in dependence on the presence or removal degree of capping agents, namely, fluorides, used for shape-engineering, and experimental investigations in this respect are still a few. Here we report on the evolution of interfacial/ surface features of TiO2 anatase nanosheets with dominant {001} facets from pristine nanoparticles fluorinated both in the bulk and at their surface to nanoparticles with F− free surfaces by treatment in a basic solution and to totally F− free nanoparticles by calcination at 873 K. The nanoparticles fluorine content and its subsequent evolution is determined by complementary techniques (ion chromatography, TOF-SIMS, XPS, AES, SEM-EDX), probing different depths. In parallel, the evolution of the electronic properties and the Ti valence state is monitored by UV−vis spectroscopy and XPS. The calcination treatment results in {001} facets poorly hydroxylated, hydrated, and hydrophilic, which appear as surface features consequent to the expected (1 × 4) reconstruction. Moreover, IR spectroscopy of CO adsorbed as probe molecule indicates that the Lewis acidity of Ti4+ sites exposed on (1 × 4) reconstructed {001} facets of calcined TiO2 nanosheets is weaker than that of cationic centers on {101} facets of bipyramidal TiO2 anatase nanoparticles. The samples have also been tested in phenol photodegradation highlighting that differences in surface hydration, hydroxylation, and Lewis acidity between TiO2 nanoparticles with nanosheet (freed by F− by calcination at 873 K) and bipyramidal shape have a strong impact on the photocatalytic activity that is found to be quite limited for the nanoparticles mainly exposing (1 × 4) reconstructed {001} facets. KW - Nanoparticles KW - TiO2 KW - F- doping KW - Shape-controlled nanoparticles KW - Nanosheets PY - 2018 DO - https://doi.org/10.1021/acsanm.8b01477 SN - 2574-0970 VL - 1 IS - 9 SP - 5355 EP - 5365 PB - ACS Publications CY - Washington, DC, U.S.A. AN - OPUS4-46157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rades, Steffi A1 - Oswald, F. A1 - Narbey, S. A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Analytical approach for characterization of morphology and chemistry of a CH3NH3PbI3/TiO2 solar cell layered system N2 - Manufacturing of new perovskite layered solar cells with constant high light conversion Efficiency over time may be hampered by the loss of efficiency caused by structural and/or chemical alterations of the complex layered system. SEM/EDX combined with XPS were chosen as an appropriate methodical approach to characterize perovskite laboratory cells in depth and at surface, before and after light exposure. The layered perovskite system investigated here is based on glass covered with fluorine doped tin oxide, followed by thin films of TiO2, ZrO2, and a thick monolithic carbon. TiO2 film is subdivided into a dense layer covered by porous one constituted of nanoparticles of truncated bipyramidal shape. This layered system serves as the matrix for the perovskite. EDX spectral maps on cross sections of specimen have shown that Pb and I are distributed homogeneously throughout the porous layers C, ZrO2, and TiO2. SEM/EDX data show that 20 weeks of ambient daylight did not change significantly the in‐depth distribution of the elemental composition of Pb and I throughout the entire solar cell system. It was confirmed with EDX that nanoparticles identified in high‐resolution SEM micrographs contain mainly Pb and I, indicating these to be the perovskite crystals. However, a compositional and chemical altering began in the near‐surface region of the outermost ~10 nm after 2 months of illumination which was observed with XPS. T2 - ECASIA 2017 CY - Montpellier, France DA - 24.09.2017 KW - Solar Cell KW - SEM KW - EDX KW - XPS KW - layered system PY - 2018 DO - https://doi.org/10.1002/sia.6410 SN - 0142-2421 SN - 1096-9918 VL - 50 IS - 11 SP - 1234 EP - 1238 PB - John Wiley & Sons, Ltd. AN - OPUS4-46394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - XPS at BAM - Some insights into our activities N2 - Some examples will be given showing the application of XPS in different fields, like polymers, nanoparticles, solar cells and inorganic thin films. T2 - Besuch beim GFZ Potsdam CY - Potsdam, Germany DA - 18.05.2018 KW - XPS KW - Surface analytics KW - Nanoparticles KW - Polymers KW - Solar cells PY - 2018 AN - OPUS4-44981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nietzold, Carolin A1 - Dietrich, Paul A1 - Holzweber, M. A1 - Lippitz, Andreas A1 - Kamalakumar, A. A1 - Blanchard, V. A1 - Ivanov-Pankov, S. A1 - Weigel, W. A1 - Panne, Ulrich A1 - Unger, Wolfgang T1 - Surface chemical characterization of model glycan surfaces and shelf life studies of glycan microarrays using XPS, NEXAFS spectroscopy, ToF-SIMS and fluorescence scanning N2 - Biomedical applications, including functional biomaterials, carbohydrate-arrays, and glycan-based biosensors. The chemistry of glycan immobilization plays an essential role in the bioavailability and function of surface bound carbohydrate moieties. For biomedical applications the stability over time (shelf life) of glycan arrays is a crucial factor. Herein we report on approaches for surface and interface characterization relevant to the needs of production of glycan microarrays which were tested using model carbohydrate surfaces. For detailed characterization of glycan model surfaces we used a combination of X-ray photoelectron spectroscopy (XPS), near edge X-ray absorption fine structure spectroscopy (NEXAFS) and ToF SIMS which are complementary techniques of surface chemical analysis. Links to fluorescence spectroscopy often used for characterization in the microarray community were established as well. In detail, amine-reactive silicon oxide and glass surfaces were used for anchoring oligosaccharides with an amino linker. The amount of surface bound carbohydrates was estimated by X-ray photoelectron spectroscopy (XPS). Glycan immobilization was investigated using lectins, which are glycan-binding molecules. A shelf life study of model glycan microarrays on epoxy-coated glass surfaces was done over a period of 160 days under different storage conditions utilizing fluorescence, ToF-SIMS and XPS analysis. It was shown that glycan activity of the models used can be maintained at least for half a year of storage at 4 °C. KW - Glycan microarray KW - XPS KW - NEXAFS KW - ToF-SIMS KW - Fluorescence PY - 2018 UR - https://www.sciencedirect.com/science/article/pii/S0169433218320300?via%3Dihub DO - https://doi.org/10.1016/j.apsusc.2018.07.133 SN - 0169-4332 SN - 1873-5584 VL - 459 SP - 860 EP - 873 PB - Elsevier B.V. AN - OPUS4-46212 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seeburg, Dominik A1 - Liu, Dongjing A1 - Radnik, Jörg A1 - Atia, Hanan A1 - Pohl, Marga-Martina A1 - Schneider, Matthias A1 - Martin, Andreas A1 - Wohlrab, Sebastian T1 - Structural changes of highly active Pd/MeOx (Me = Fe, Co, Ni) during catalytic methane combustion N2 - Fe2O3, Co3O4 and NiO nanoparticles were prepared via a citrate method and further functionalized with Pd by impregnation. The pure oxides as well as Pd/Fe2O3, Pd/Co3O4, and Pd/NiO (1, 5 and 10 wt % Pd) were employed for catalytic methane combustion under methane lean (1 vol %)/oxygen rich (18 vol %, balanced with nitrogen) conditions. Already, the pure metal oxides showed a high catalytic activity leading to complete conversion temperature of T100 ≤ 500 °C. H2-TPR (Temperature-programmed reduction) experiments revealed that Pd-functionalized metal oxides exhibited enhanced redox activity compared to the pure oxides leading to improved catalytic combustion activity at lower temperatures. At a loading of 1 wt % Pd, 1Pd/Co3O4 (T100 = 360 °C) outperforms 1Pd/Fe2O3 (T100 = 410 °C) as well as 1Pd/NiO (T100 = 380 °C). At a loading of 10 wt % Pd, T100 could only be slightly reduced in all cases. 1Pd/Co3O4 and 1Pd/NiO show reasonable stability over 70 h on stream at T100. XPS (X-ray photoelectron spectroscopy) and STEM (Scanning transmission electron microscopy) investigations revealed strong interactions between Pd and NiO as well as Co3O4, respectively, leading to dynamic transformations and reoxidation of Pd due to solid state reactions, which leads to the high long-term stability. KW - Methane total oxidation KW - Methane removal KW - Carbon dioxide KW - X-ray photoelectron spectroscopy PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-439412 DO - https://doi.org/10.3390/catal8020042 SN - 2073-4344 VL - 8 IS - 2 SP - Article 42, 1 EP - 13 PB - MDPI AN - OPUS4-43941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Radnik, Jörg ED - Wandelt, K. T1 - X-ray photoelectron spectroscopy for investigation of heterogeneous catalytic process N2 - Heterogeneous catalysis is a key technology in modern industrial societies. The main steps of a catalytic process take place at the surfaces of complex materials. For the investigations of these surfaces X-ray photoelectron spectroscopy is widely used and fits ideally. At some suitable examples, it will be explained how XPS can help to understand such catalysts better. The focus is on selective oxidation catalysts, one of the main challenges of present research. Here it will illustrate, how changes in the near surface region influence the catalyst performance and, herewith the different stages (activation, maximum performance and deactivation) in the life of catalysts. Additionally, it will be stressed out how important information at different depth regions (surface, near-surface region, bulk) can be useful for comprehensive understanding of the material. Another important subject is nanostructured catalysts with molecular sieves as supports or defined complexes as precursors. Finally, the combination of XPS with other methods used in the analysis of catalysts, e.g. electron microscopy, X-ray absorption spectroscopy and low energy ion scattering will be discussed. KW - X-ray photoelectron spectroscopy KW - Depth information KW - Heterogeneous catalysis KW - Structure-properties relationships PY - 2018 SN - 978-0-12-809739-7 VL - 1 SP - 607 EP - 614 PB - Elsevier AN - OPUS4-44876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Photoelectron spectroscopy N2 - A short introduction into the basics of Photoelectron Spectroscopy with the focus on surface sensitivity and applications is presented. T2 - Industrietreffen im Forschungs- und Innovationszentrum (FIZ) der BMW Group CY - Munich, Germany DA - 09.01.2018 KW - XPS KW - ESCA KW - Surface analytics PY - 2018 AN - OPUS4-43737 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neamtu, Mariana A1 - Nadejde, C. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Verestiuc, L. A1 - Panne, Ulrich T1 - Functionalized magnetic nanoparticles: Synthesis, characterization, catalytic application and assessment of toxicity N2 - Cost-effective water cleaning approaches using improved Treatment technologies, for instance based on catalytic processes with high activity catalysts, are urgently needed. The aim of our study was to synthesize efficient Fenton-like photo-catalysts for rapid degradation of persistent organic micropollutants in aqueous medium. Iron-based nanomaterials were chemically synthesized through simple procedures by immobilization of either iron(II) oxalate (FeO) or iron(III) citrate (FeC) on magnetite (M) nanoparticles stabilized with polyethylene glycol (PEG). Various investigation techniques were performed in order to characterize the freshly prepared catalysts. By applying advanced oxidation processes, the effect of catalyst dosage, hydrogen peroxide concentration and UV-A light exposure were examined for Bisphenol A (BPA) conversion, at laboratory scale, in mild conditions. The obtained results revealed that BPA degradation was rapidly enhanced in the presence of low-concentration H2O2, as well as under UV-A light, and is highly dependent on the surface characteristics of the catalyst. Complete photo-degradation of BPA was achieved over the M/PEG/FeO catalyst in less than 15 minutes. Based on the catalytic performance, a hierarchy of the tested catalysts was established: M/PEG/FeO > M/PEG/FeC > M/PEG. The results of cytotoxicity assay using MCF-7 cells indicated that the aqueous samples after treatment are less cytotoxic. KW - Bisphenol A KW - Magnetic nanocatalyst KW - Endocrine disruptor KW - Nanoparticle KW - Photodegradation KW - Fenton PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-448297 DO - https://doi.org/10.1038/s41598-018-24721-4 SN - 2045-2322 VL - 8 SP - Article 6278, 1 EP - 11 PB - Springer Nature CY - London AN - OPUS4-44829 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neamtu, M. A1 - Nadejde, C. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Panne, Ulrich T1 - Singlet oxygen generation potential of porphyrin-sensitized magnetite nanoparticles: Synthesis, characterization and photocatalytic application N2 - Singlet oxygen generation potential of two novel free-base-porphyrin photocatalysts was investigated. The freebase-porphyrin-sensitized Fe3O4 magnetic nanoparticles (MNPs) were tested for the degradation of the model pollutant Bisphenol A (BPA) in aqueous solution, for the first time. MNPs with either cubic or spherical shape were synthesized using the sonochemical approach, followed by sensitizing with photoactive 4,4′,4′′,4′′′- (Porphine-5,10,15,20-tetrayl)tetrakis(benzoic acid) (TCPP). The resulted photocatalysts were characterized in detail by scanning and transmission electron microscopy, Brunauer–Emmett–Teller analysis, spectral techniques and vibrating sample magnetometry. The electron spin resonance experiments have confirmed the high activity of the photocatalysts through the efficient formation of singlet oxygen in solution. The optimum operational parameters for BPA degradation were established as follows: 1.0 μmol L−1 BPA, 1.0 g L−1 of photocatalyst, 100 μmol L−1 H2O2, under UVA irradiation. In these conditions, the results for both photocatalysts revealed that after only 10 min of reaction, over 64% and ca. 90% of BPA have been removed from solution in the absence and presence of H2O2, respectively. Whereas after 60 minutes of treatment, only 24% of BPA in real wastewater effluent samples were removed under UVA irradiation in the absence of H2O2, showing the high complexity of real wastewater. Moreover, both photocatalysts were successfully used for BPA removal in three consecutive runs, without significant loss of catalytic features. KW - Bisphenol A KW - Magnetpartikel KW - Photooxidation KW - Singulettsauerstoff KW - TEM KW - SEM KW - Brunauer-Emmett-Teller KW - Katalysator KW - Abwasser KW - ESR PY - 2018 DO - https://doi.org/10.1016/j.apcatb.2018.03.079 SN - 0926-3373 VL - 232 SP - 553 EP - 561 PB - Elsevier B.V. CY - Amsterdam, NL AN - OPUS4-45267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -