TY - CONF A1 - Bertovic, Marija T1 - Menschen in ZfP: Wie gut verstehen wir die menschliche Faktoren? N2 - Menschliche Faktoren spielen eine zentrale Rolle für die Zuverlässigkeit, Sicherheit und Leistungsfähigkeit zerstörungsfreier Prüfsysteme (ZfP), werden jedoch in technischen Bewertungen häufig nur unzureichend berücksichtigt. Der Beitrag untersucht den Einfluss individueller, organisatorischer und technologischer Faktoren auf die menschliche Leistung in manuellen und mechanisierten ZfP-Verfahren. Auf Basis empirischer Untersuchungen und systemorientierter Analysen werden typische Risiken wie Arbeitsbelastung, Automatisierungsbias, unzureichendes Interaktionsdesign und organisatorische Rahmenbedingungen aufgezeigt. Die Ergebnisse verdeutlichen, dass der Einsatz automatisierter und KI-gestützter Technologien menschliche Risiken nicht per se reduziert, sondern teilweise neue, weniger sichtbare Risiken erzeugt. Der Beitrag plädiert daher für einen ganzheitlichen, menschzentrierten Ansatz, der Human Factors systematisch in Entwicklung, Einführung und Bewertung von ZfP-Systemen integriert, um die Gesamtzuverlässigkeit nachhaltig zu verbessern. T2 - Hamburger NDT Tage 2016 CY - Hamburg, Germany DA - 16.11.2016 KW - Human Factors KW - Menschliche Faktoren KW - NDT Reliability PY - 2016 AN - OPUS4-65459 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bertovic, Marija A1 - Feistkorn, S. A1 - Kanzler, D. A1 - Valeske, B. A1 - Vrana, J. T1 - ZfP aus der Sicht der ZfP-Community: Umfrageergebnisse, Herausforderungen und Perspektiven N2 - Im vorliegenden Artikel werden die Ergebnisse des Fragebogens der DGZfP zur Thematik „ZfP 4.0“ vorgestellt und diskutiert. Die Befragung zielte darauf ab, das allgemeine Verständnis der ZfP-Community zur Begrifflichkeit „ZfP 4.0“ herauszuarbeiten und daraus Bedarfe und Handlungsempfehlungen für die identifizierten Herausforderungen abzuleiten. Außerdem zeigt sich aus Sicht der Autor*innen, dass relevante Terminologien zu dem Themenkomplex Digitalisierung einer weiteren Klärung bedürfen, was im Bericht aufgegriffen wird. Im Ausblick zu den angelaufenen Arbeiten im nationalen Fachausschuss ZfP 4.0 und in den sich etablierenden internationalen Fachkreisen werden daraus abgeleitete Perspektiven für die Zukunftsgestaltung vorgestellt. KW - Zerstörungsfreie Prüfung KW - ZfP 4.0 KW - Zuverlässigkeit KW - Human Factors KW - Mensch-Maschine-Interaktion KW - Automatisierung KW - Schnittstellen KW - Fachausschuss KW - Digitalisierung PY - 2021 UR - www.dgzfp.de/DesktopModules/Bring2mind/DMX/API/Entries/Download?Command=Core_Download&EntryId=30879&language=de-DE&PortalId=24&TabId=1515 SN - 1616-069X IS - 174 SP - 43 EP - 49 PB - DGZfP e.V., ÖGfZP und SGZP AN - OPUS4-53550 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertovic, Marija A1 - Given, Joseph A1 - Rentala, V. K. A1 - Lehleitner, Johannes A1 - Kanzler, D. A1 - Heckel, Thomas A1 - Tkachenko, Viktoriya T1 - Human Factors in der POD - ist das möglich? N2 - Menschliche Faktoren sind ein häufig genanntes Thema, wenn wir über die Zuverlässigkeit der zerstörungsfreien Prüfung (ZfP) sprechen. Die Probability of Detection (POD), das üblicherweise verwendete Maß für die Zuverlässigkeit der ZfP, betrachtet jedoch nur die technische Fähigkeit eines ZfP-Systems, einen Fehler zu entdecken. Nach mehreren Jahrzehnten der Erforschung des Einflusses der menschlichen Faktoren auf die Zuverlässigkeit der ZfP gibt es immer noch keinen allgemein akzeptierten Ansatz, um menschliche Faktoren in der Zuverlässigkeitsbewertung sichtbar zu machen. Dieser Beitrag gibt einen Überblick über verschiedene verfügbare Methoden zur Einbeziehung menschlicher Faktoren in die Zuverlässigkeitsbewertung. Das Thema ist ein essenzieller Bestandteil des laufenden WIPANO-Projekts "normPOD", das sich als Ziel gesetzt hat, die Standardisierung der Zuverlässigkeitsbewertung in Deutschland voranzutreiben und im Vergleich zu den schon bekannten internationalen Normen einen Fokus auf den Umgang mit den menschlichen Faktoren zu legen. T2 - DGZfP Jahrestagung 2022 CY - Kassel, Germany DA - 23.05.2022 KW - Human factors KW - Zuverlässigkeit KW - POD KW - Probability of detection KW - Reliability PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559942 SP - 1 EP - 15 AN - OPUS4-55994 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GOVDOC A1 - Bethke, John T1 - Verfahren zur Anerkennung und Anwendung alternativer Prüfverfahren im Rahmen der Baumusterprüfung sowie der Fertigungsüberwachung von Gefahrgutverpackungen N2 - Diese BAM-Gefahrgutregel gilt für alternative Prüfverfahren im Rahmen der Durchführung der Baumusterprüfungen sowie der Fertigungsüberwachung (Eigenüberwachung und Überwachungsbegehungen nach BAM-GGR 001) von Verpackungen, Großpackmitteln (IBC) und Großverpackungen für den Transport gefährlicher Güter. KW - Prüfverfahren KW - Baumusterprüfung KW - Fertigungsüberwachung KW - Gefahrgutverpackungen PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-644530 UR - https://tes.bam.de/TES/Content/DE/Downloads/ggr-025_allgemeinverf%C3%BCgung.pdf?__blob=publicationFile VL - BAM-GGR 025 SP - 1 EP - 5 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin ET - Revision 0 AN - OPUS4-64453 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Binder, F. T1 - Ein praxisnaher Leitfaden für computertomografische Untersuchungen mit der radiografischen Simulationsumgebung aRTist N2 - Radiografische Simulationswerkzeuge wie aRTist, ScorpiusXLab, SimCT oder CIVA CT verwenden analytische Methoden und physikalische Monte-Carlo-Teilchentransportsimulationen, um die Interaktionsprozesse zwischen Röntgenstrahlung und Materie zu simulieren. Die berechneten Projektionen bilden anschließend unter Berücksichtigung einer definierten Scan-Trajektorie die Basis der Simulation einer röntgencomputertomografischen Untersuchung. Radiografische Simulationswerkzeuge befinden sich in einem stetigen Wandel, beispielsweise durch die Entwicklung neuer Rekonstruktionsmethoden, durch Erweiterung von analytischen Modellen, durch Integration komplexer Trajektorien oder durch Berücksichtigung von prozessbedingten geometrischen Abweichungen. Im laufenden EMPIR-Projekt „AdvanCT“ entsteht deshalb ein „Good Practice Guide“ für die Simulationsumgebung aRTist. Ziel dieses Guides ist es, die mit steigender Komplexität verbundenen Einstiegshürden für Anwender von aRTist zu reduzieren, um damit einen praxisnahen Zugang zur virtuellen Computertomografie zu ermöglichen. Dabei werden anhand von praktisch nachvollziehbaren Beispielen die grundlegenden Mechanismen der Simulationsumgebung erklärt und ein strukturierter Leitfaden zur Simulation röntgencomputertomografischer Untersuchungen mit aRTist vermittelt. In diesem Beitrag werden erste Auszüge des Guides sowie eine Übersicht der weiteren geplanten Themen für die anschließende Diskussion vorgestellt. T2 - DGZfP-Jahrestagung 2021 CY - Online meeting DA - 10.05.2021 KW - Computertomographie Simulation PY - 2021 AN - OPUS4-54030 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Binder, F. A1 - Bellon, Carsten A1 - Wohlgemuth, F. A1 - Hausotte, T. T1 - Ein praxisnaher Leitfaden für computertomografische Untersuchungen mit der radiografischen Simulationsumgebung aRTist N2 - Radiografische Simulationswerkzeuge wie aRTist, ScorpiusXLab, SimCT oder CIVA CT verwenden analytische Methoden und physikalische Monte-Carlo-Teilchentransportsimulationen, um die Interaktionsprozesse zwischen Röntgenstrahlung und Materie zu simulieren. Die berechneten Projektionen bilden anschließend unter Berücksichtigung einer definierten Scan-Trajektorie die Basis der Simulation einer röntgencomputertomografischen Untersuchung. Für den erfolgreichen Einsatz der Computertomografie, sei es als zerstörungsfreie Prüfmethode oder beim dimensionellen Messen, ist es generell notwendig, bekannte Fehler- bzw. Abweichungsquellen des Messverfahrens auszuschließen oder zu reduzieren. Dabei hat sich gezeigt, dass die Auswahl der Messparameter und die Erfahrung des Anwenders direkten Einfluss auf das erzielbare Messergebnis einer computertomografischen Untersuchung nehmen. Es ist daher sinnvoll, die Parameterauswahl in einem virtuellen Simulationsaufbau vorher zu erproben und an die Messaufgabe anzupassen. Neben der Optimierung von Messparametern finden radiografische Simulationswerkzeuge auch Anwendung für Machbarkeitsstudien und werden zur Schulung von Anwendern im Bereich der Röntgen-Computertomografie verwendet. Radiografische Simulationswerkzeuge befinden sich in einem stetigen Wandel, beispielsweise durch die Entwicklung neuer Rekonstruktionsmethoden, durch Erweiterung von analytischen Modellen, durch Integration komplexer Trajektorien oder durch Berücksichtigung von prozessbedingten geometrischen Abweichungen. Im laufenden EMPIR-Projekt „AdvanCT“ entsteht deshalb ein „Good Practice Guide“ für die Simulationsumgebung aRTist. Ziel dieses Guides ist es, die mit steigender Komplexität verbundenen Einstiegshürden für Anwender von aRTist zu reduzieren, um damit einen praxisnahen Zugang zur virtuellen Computertomografie zu ermöglichen. Dabei werden anhand von praktisch nachvollziehbaren Beispielen die grundlegenden Mechanismen der Simulationsumgebung erklärt und ein strukturierter Leitfaden zur Simulation röntgencomputertomografischer Untersuchungen mit aRTist vermittelt. In diesem Beitrag werden erste Auszüge des Guides sowie eine Übersicht der weiteren geplanten Themen für die anschließende Diskussion vorgestellt. T2 - DGZfP-Jahrestagung 2021 CY - Online meeting DA - 10.05.2021 KW - Computertomografie KW - Simulation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530476 UR - https://jahrestagung.dgzfp.de/portals/jt2021/bb176/inhalt/poster.htm SN - 978-3-947971-18-3 VL - 176 SP - 1 EP - 9 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) CY - Berlin AN - OPUS4-53047 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Biyikal, Mustafa T1 - Handgeräte zur Detektion von Sprengstoffspuren N2 - Der Übersichtsvortrag stellt den aktuellen Stand zu Handgeräten zur Detektion von Sprengstoffspuren vor. T2 - Symposium Anlagensicherheit 2025 CY - Hamburg, Germany DA - 04.02.2025 KW - Explosivstoffe KW - Detektion KW - Handgerät PY - 2025 AN - OPUS4-65029 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blöth, Anton A1 - Bolling, Janina A1 - Teutenberg, Thorsten A1 - Meyer, Lena T1 - Digital LabHub - Gemeinsam die digitale Transformation der Laborbranche vorantreiben N2 - Als zentrale Drehscheibe für Information und Vernetzung begleitet der Digital LabHub Labore auf dem Weg der digitalen Transformation: praxisnah, kollaborativ und zukunftsorientiert. Die Drehscheibe bietet Orientierung, fördert den Austausch und macht bestehende Initiativen sichtbar. Der Digital LabHub bringt Akteure aus der und um die Laborbranche zusammen, um Wissen zu teilen, Synergien zu schaffen und Innovationen voranzutreiben. T2 - QI-Digital Forum 2025 CY - Berlin, Germany DA - 08.10.2025 KW - Digitale Transformation KW - Digitalisierung KW - Kalibrierlabor KW - Prüflabor KW - QI-Digital KW - Qualitätsinfrastruktur PY - 2025 AN - OPUS4-64481 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bolling, Janina A1 - Koch, Claudia T1 - Digital LabHub: Inkubator für die Digitale Transformation der Laborbranche N2 - In den Praxiswerkstätten für Prüf- und Kalibrierlabore, einem Dialogprozess mit der Laborbranche, der von BAM, DAkkS und dem Verband unabhängiger Prüflabore gestaltet wurde, wurde der Bedarf der Labore nach einem Zentralen Informations- und Netzwerkangebot zum Thema digitale Transformation im Labor als zentral identifiziert. Der Vortrag präsentiert die daraufhin gestartete Initiative des Digital Labhub. Als Zusammenschluss zentraler Akteure zu Themen der digitalen Transformation im Labor, treiben die Akteur*innen gemeinsam die Gestaltung eines vernetzten, standardisierten und interoperablen digitalen Labor-Ökosystems voran. Der Vortrag gibt Einblick in die Initiative. T2 - VUP Jahrestagung CY - Berlin, Germany DA - 24.06.2025 KW - Qualitätsinfrastruktur KW - Prüflabor KW - Kalibrierlabor KW - QI-Digital KW - Digitalisierung KW - Digitale Transformation PY - 2025 AN - OPUS4-64277 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bornemann-Pfeiffer, Martin T1 - Additively manufactured Flow Cells for Inline Mixing and Reaction Monitoring with Low-Field NMR Spectroscopy N2 - The demand for increasing product diversity in the chemical process industry calls for new production processes that enable greater flexibility. Therefore, plants are needed that produce significant quantities for market supply that can be scaled up to several tons per year. Compared to traditional batch processes, intensified continuous production enables not only flexibility but also the production of compounds that are difficult to produce. Custom-designed small-scale reactors significantly improve heat and mass transfer through micro mixing and can improve safety, e.g. in the case of high grade exothermic or high-pressure reactions, and might play an important role for customized, modular production facilities.1 Combined with optimally designed flow cells, compact NMR instruments currently present promising analytical tools for use in flow chemistry applications.2,3 In recent process monitoring applications, the flow cell and the mixing unit are usually separated parts leading to a severe time delay between mixing and first data acquisition. In this work, we present a comprehensive workflow for the design of a flow cell−mixer combination based on CFD simulation and other design principles.4 Due to the increasing opportunities in additive manufacturing of ceramics, it was possible to realize an optimized SMX-type mixer with a fully integrated NMR flow cell (cf. Fig. 1). Validation studies exhibited 1H NMR spectra with a quality comparable to common NMR glass tubes. So far, the mixing performance of the system has been evaluated for different mass flow rates within the intended working range of 5–120 seconds region and compared to ideally mixed samples. Thus, the integrated flow cell−static mixer combination can be used for different purposes such as evaluation of fluid properties, equilibration studies, or reaction monitoring of two instantaneously mixed samples. The ceramic flow cell was additively manufactured and analyzed through x-ray microtomography revealing surface characteristics due to the manufacturing process (cf. Fig. 2). Furthermore, the working range of the whole system was characterized leading to an operational specification for further applications. In summary, the role of custom-designed components for modular, chemical production, amongst other essential factors like fast development of reliable evaluation models is discussed. References [1] Bornemann-Pfeiffer et al., Chem. Ing. Tech. (2021), 93: 1–10 [2] Kern et al., Anal. Bioanal. Chem. (2018) 410: 3349–3360 [3] Kern et al., Anal. Bioanal. Chem. (2019) 411: 3037–3046 [4] Bornemann et al., Ind. Eng. Chem. Res. (2019), 58: 19562−19570 T2 - EUROPACT - European Conference on Process Analytics and Control Technology CY - Online meeting DA - 15.11.2021 KW - Process analytical technology KW - NMR spectroscopy KW - Additive manufacturing KW - Computational fluid dynamics PY - 2021 AN - OPUS4-53804 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -