TY - CONF A1 - Maiwald, Michael A1 - Kern, Simon A1 - Bornemann-Pfeiffer, Martin A1 - Guhl, Svetlana A1 - Wander, Lukas A1 - Meyer, Klas A1 - Paul, Andrea T1 - How online NMR spectroscopy accelerates chemical process development and manufacturing – From automated spectral analysis to integrated NMR micro reactors N2 - Accelerating chemical process development and manufacturing along with quick adaption to changing customer needs means consequent transformation of former batch to continuous (modular) manufacturing processes. These are justified by an improved process control through smaller volumes, better heat transfer, and faster dynamics of the examined reaction systems. As an example, for such modular process units we present the design and validation of an integrated nuclear magnetic resonance (NMR) micro mixer tailor‐made for a desired chemical reaction based on computational modelling. The micro mixer represents an integrated modular production unit as an example for the most important class of continuous reactors. The quantitative online NMR sensor represents a smart process analytical field device providing rapid and non‐invasive chemical composition information without need for calibration. We describe the custom design through computational fluid dynamics (CFD) for the demands of the NMR sensor as well as for the given reaction conditions. The system was validated with an esterification reaction as an example for a chemical reaction process. Systems utilizing such an online NMR analyser benefits through short development and set‐up times based on “modular” spectral models. Such models can simply be built upon pure component NMR spectra within minutes to a few hours (i.e., assignment of the NMR signals to the components) instead of tedious DoE calibrations runs. We present a range of approaches for the automated spectra analysis moving from statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modelling and Quantum Mechanical calculations). The approach was validated for typical industrial reactions, such as hydrogenations or lithiations. This work wants to show the benefit of NMR spectroscopy as online analytical technique in industrial applications for improving process understanding and efficiency. Especially development and set‐up times based on “modular” data analysis models will enable new production concepts, which are currently discussed with respect to digitization of process industry. PANIC is the ideal forum for such discussions in the application of NMR spectroscopy and its data analysis to the everyday problems in process industry. T2 - Practical Applicatiions of NMR in Industry Conference (PANIC) 2019 CY - Hilton Head Island, USA DA - 04.03.2019 KW - Process Analytical Technology KW - Reaction Monitoring KW - Online NMR Spectroscopy KW - Micro Reactor KW - Data Analysis KW - PANIC PY - 2019 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-47488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Abbandonato, Gerardo A1 - Resch-Genger, Ute T1 - Determination of Photoluminescence Quantum Yields of Semiconductor Quantum Dots with Fluorescence Correlation Spectroscopy N2 - There is an increasing interest in bridging the gap between the photoluminescence (PL) properties of nanomaterials like semiconductor nanocrystals (QDs) commonly assessed in ensemble studies and the PL features of single QDs for life sciences applications such as bioimaging studies or use in microfluidic assays. The fluorescence quantum yield (ΦF) is a key performance parameter for all molecular and nanoscale emitters, increasingly employed in nanoscience, nanotechnology, and medical diagnostics. ΦF determines not only the signal size together with the reporter´s molar extinction coefficient, yet it is particularly relevant for nanocrystals like QDs with coordinatively bound surface ligands and size- and surface chemistry-dependent PL characteristics. The importance of ΦF measurements at ultralow concentration encouraged us to explore the potential of fluorescence correlation spectroscopy (FCS) for the relative determination of ΦF of ligand-stabilized CdTe nanocrystals in comparison to molecular dyes with closely matching spectral properties and known ΦF. We describe a FCS-based method for the relative determination of ΦF of dispersed QDs at ultralow concentrations, and procedures to overcome QD-inherent challenges like complex and power-dependent blinking behavior as well as ligand- and QD-specific aggregation. We could demonstrate the potential of this approach by comparison with steady state ensemble measurements. T2 - BIOS SPIE 2019 CY - San Francisco, CA, USA DA - 02.02.2019 KW - Quantum yield KW - Quantum dots KW - FCM PY - 2019 AN - OPUS4-47427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - EvstigneevT, Roman V. A1 - Parfenov, Peter S. A1 - Dubavik, Aliaksei A1 - Cherevkov, Sergei A A1 - Fedorov, Anatoly V A1 - Martynenko, Irina V. A1 - Resch-Genger, Ute A1 - Ushakova, Elena V. A1 - Baranov, Alexander V. T1 - Time-resolved FRET in AgInS2/ZnS-CdSe/ZnS quantum dot systems N2 - The fast and accurate detection of disease-related biomarkers and potentially harmful analytes in different matrices is one of the main challenges in the life sciences. In order to achieve high signal-to-background ratios with frequently used photoluminescence techniques, luminescent reporters are required that are either excitable in the first diagnostic window or reveal luminescence lifetimes exceeding that of autofluorescent matrix components. Here, we demonstrate a reporter concept relying on broad band emissive ternary quantum dots (QDs) with luminescence lifetimes of a few hundred nanoseconds utilized for prolongating the lifetimes of organic or inorganic emitters with lifetimes in the order of a very few 10 ns or less through fluorescence resonant energy transfer. Using spectrally resolved and time-resolved measurements of the system optical response we demonstrate the potential of lifetime multiplexing with such systems exemplarily for AgInS2/ZnS and CdSe/ZnS QDs. KW - Nano KW - Nanomaterial KW - Ternary quantum dots KW - AIS KW - Semiconductor nanocrystal KW - Photoluminescence KW - Mechanism KW - Quantum yield KW - Photophysics KW - Energy transfer KW - Lifetime KW - Time-gated emission PY - 2019 DO - https://doi.org/10.1088/1361-6528/ab0136 SN - 0957-4484 SN - 1361-6528 VL - 30 IS - 19 SP - 195501, 1 EP - 7 PB - IOP Publishing Ltd AN - OPUS4-47434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yadav, Anur A1 - Iost, R. M. A1 - Neubert, T. J. A1 - Baylan, S. A1 - Schmid, Thomas A1 - Balasubramanian, Kannan T1 - Selective electrochemical functionalization of the graphene edge N2 - We present a versatile and simple method using electrochemistry for the exclusive functionalization of the edge of a graphene monolayer with metal nanoparticles or polymeric amino groups. The attachment of metal nanoparticles allows us to exploit surface-enhanced Raman scattering to characterize the chemistry of both the pristine and the functionalized graphene edge. For the pristine patterned graphene edge, we observe the typical edge-related modes, while for the functionalized graphene edge we identify the chemical structure of the functional layer by vibrational fingerprinting. The ability to obtain single selectively functionalized graphene edges routinely on an insulating substrate opens an avenue for exploring the effect of edge chemistry on graphene properties systematically. KW - Graphene KW - Nanoparticles KW - Nanosciences KW - Surface-enhanced Raman scattering KW - Atomic force microscopy PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-474357 DO - https://doi.org/10.1039/C8SC04083D SN - 2041-6520 VL - 10 IS - 3 SP - 936 EP - 942 PB - Royal Society of Chemistry AN - OPUS4-47435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lemke, Nora A1 - El-Khatib, Ahmed A1 - Theuring, F. A1 - Vogl, Jochen A1 - Jakubowksi, Norbert T1 - Protein quantification of an Alzheimer’s biomarker via isotope dilution inductively coupled plasma mass spectrometry N2 - Neurodegenerative diseases are one of the major problems for our ageing society. Alzheimer’s disease (AD) as the most common neurodegenerative disorder affects over 46.8 million people worldwide and the number will increase as the population ages. The diagnosis of AD is challenging and only half of the patients are identified yet and often only in late stages. One reason is that existing assays for identification and quantification of AD biomarkers lack accuracy and are poorly comparable. This study is part of the EU project “ReMiND” aiming to develop accurate, reliable and traceable methods for the detection and quantification of known and suspected AD biomarkers. Our target is the tau protein, as brain load and distribution of tau is highly correlated with the clinical progression of AD. We intend to develop a measurement method for the accurate quantification of tau by means of inductively coupled plasma mass spectrometry (ICP-MS). ICP-MS is a powerful method for the matrix independent quantitative analysis of target elements. Developed for the use in inorganic trace analysis, ICP-MS is nowadays emerging as a valuable tool for bioanalytical questions. Especially the use of ICP-MS for quantitative proteomics by measuring heteroatoms is highly promising, considering that established quantification methods like organic mass spectrometry depend on the existence of matched protein and peptide standards or labelling of the target protein. In this work, we applied isotope dilution analysis (IDA) using ICP-MS to quantify proteins of known stoichiometry via their sulphur content. Sulphur is present in two amino acids, cysteine and methionine, and hence is omnipresent in nearly all proteins. A NIST standard bovine serum albumin (BSA) was quantified using sulfur IDA to optimize sample preparation and method parameters. Our goal is to employ the developed method in a proof of concept study for the quantification of the AD biomarker tau extracted from brains of a mouse model for AD. T2 - 26. ICPMS-Anwendertreffen CY - Berlin, Germany DA - 03.09.2018 KW - ICP-MS KW - Isotope dilution KW - Protein analysis PY - 2018 AN - OPUS4-46585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mekonnen, Tessema Fenta A1 - Panne, Ulrich A1 - Koch, Matthias T1 - New photodegradation products of the fungicide fluopyram: Structural elucidation and mechanism identification N2 - Identifying the fate of agrochemicals is important to understand their potential risk for living organisms. We report here new photodegradation products (PPs) of the fungicide fluopyram. The PPs were produced by irradiating a fluopyram standard in 0.1% acetonitrile aqueous media by a 150-W medium pressure Hg-lamp that emits wavelengths between 200–280 nm. The structural elucidation of PPs was achieved by combining the retention time, isotopic pattern, targeted fragmentation, and accurate mass measurements using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and high resolution-MS (HRMS). In addition to previously known PPs, seven new PPs of fluopyram were identified in this work: mainly dihydroxyl and hydroxylimide fluopyram as well as mono, di, and trihydroxyl lactam. Additionally, two PPs were found to be formed by rearrangement after the loss of H2C=CH2. Hence, the results of the work contribute to extending the current knowledge regarding the photoinduced fate of agrochemicals, and fluopyram in particular. KW - Photodegradation KW - Transformation products KW - LC-MS/MS KW - HRMS KW - Fungicide PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-466347 DO - https://doi.org/10.3390/molecules23112940 SN - 1420-3049 VL - 23 IS - 11 SP - 2940, 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-46634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Recknagel, Sebastian A1 - Hoffmann, V. A1 - Weiher, N. A1 - Brixius, Th. A1 - Schlothmann, B.-J. T1 - A new set of zinc based calibration samples for GD-OES N2 - The analysis of Zinc layers on Iron sheets is one of the most essential application of Glow Discharge - Optical Emission Spectrometry (GD-OES). Since the year 2000 for this application calibration of GD-OES instruments mostly included the set of the six calibration samples CZ 2009-CZ 2014 from CKD. These CRMs are no longer available. Furthermore, in this application the analysis of Al and Mg became essential. To overcome this lack of calibration materials, the working group VDEh FA II.47 decided to organize the production and characterization of a new set of certified reference materials. T2 - BERM CY - Berlin, Germany DA - 23.09.2018 KW - GD-OES KW - CRM KW - Zinc PY - 2018 AN - OPUS4-46718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Recknagel, Sebastian A1 - Hoffmann, V. A1 - Weiher, N. A1 - Brixius, Th. A1 - Schlothmann, B.-J. T1 - A new set of zinc based calibration samples for GD-OES N2 - The analysis of Zinc layers on Iron sheets is one of the most essential application of Glow Discharge - Optical Emission Spectrometry (GD-OES). Since the year 2000 for this application calibration of GD-OES instruments mostly included the set of the six calibration samples CZ 2009-CZ 2014 from CKD. These CRMs are no longer available. Furthermore, in this application the analysis of Al and Mg became essential. To overcome this lack of calibration materials, the working group VDEh FA II.47 decided to organize the production and characterization of a new set of certified reference materials. T2 - 4th International Glow Discharge Spectroscopy Symposium CY - Berlin, Germany DA - 15.04.2018 KW - GD-OES KW - CRM KW - Zinc PY - 2018 AN - OPUS4-46719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schrezenmeier, E. A1 - Hoffmann, F. A1 - Jaeger, C. A1 - Schrezenmeier, J. A1 - Lisec, Jan A1 - Glander, P. A1 - Algharably, E. A1 - Kreutz, R. A1 - Budde, K. A1 - Duerr, M. A1 - Halleck, F. T1 - Pharmacokinetics of Daclatasvir, Sofosbuvir and GS-331007 in a Prospective Cohort of HCV positive Kidney Transplant Recipients N2 - Limited data exist on the pharmacokinetic profile of novel direct acting antivirals in kidney transplant recipients. Daclatasvir is primarily eliminated via the biliary route and sofosbuvir via the renal route; here we report the pharmacokinetic profile of combined treatment with these compounds in a prospective study of hepatitis C virus positive kidney transplant recipients (EudraCT: 2014-004551-32). In this study plasma samples of 16 HCV positive kidney transplant recipients receiving daclatasvir and sofosbuvir were collected at 4 time points at day 1, 7, 14, 21, 56, and 84 after start of treatment. Inclusion criteria were stable graft function and an estimated GFR (eGFR) > 30mL/min/1.73m. Daclatasvir, sofosbuvir and GS-331007 (inactive metabolite of sofosbuvir) plasma concentrations were determined using ultra-performance liquid chromatography quadrupole time of flight mass spectrometry. All patients showed a rapid virological response with HCV RNA below the detection limit 21 days after the start of therapy (medium time to viral clearance). No difference of the areas under the concentration-time curve (AUC) of daclatsavir, sofosbuvir and GS-331007 was observed between patients with an eGFR below or ≥ 60mL/min. For GS-331007, no relevant changes of trough levels were observed over time. Mean GS-331007 trough levels were 339.5±174.9 ng/mL in patients with an eGFR ≥ 60mL/min and 404.3±226 ng/mL in patients with an eGFR < 60mL/min at day 7 (p=0.52). At day 84, GS-331007 trough levels were 357.8±200.8 ng/mL and 404.2±70.2 ng/mL in patients with an eGFR ≥ 60 mL/min and in patients with an eGFR < 60 mL/min, respectively (p=0.51). The accumulation ratios of renally eliminated GS-331007 for AUC and Cmax did not significantly differ between the two eGFR groups at day 7. An impaired eGFR (30-60 mL/min) does not lead to a dose accumulation of daclatasvir, sofosbuvir and GS-331007. This study provides the rationale for future studies investigating the pharmacokinetic profile of sofosbuvir based HCV treatment in kidney transplant recipients with an eGFR < 30 mL/min. KW - Mass-Spectrometry PY - 2018 DO - https://doi.org/10.1097/FTD.0000000000000567 SN - 0163-4356 VL - 41 IS - 1 SP - 53 EP - 58 PB - Wolters Kluwer AN - OPUS4-46647 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kotthoff, Lisa A1 - Keller, Julia A1 - Lörchner, Dominique A1 - Mekonnen, Tessema F. A1 - Koch, Matthias T1 - Transformation products of organic contaminants and residues - Overview of current simulation methods N2 - The formation of transformation products (TPs) from contaminants and residues is becoming an increasing focus of scientific community. All organic compounds can form different TPs, thus demonstrating the complexity and interdisciplinarity of this topic. The properties of TPs could stand in relation to the unchanged substance or be more harmful and persistent. To get important information about the generated TPs, methods are needed to simulate natural and manmade transformation processes. Current tools are based on metabolism studies, photochemical methods, electrochemical methods, and Fenton's reagent. Finally, most transformation processes are based on redox reactions. This review aims to compare these methods for structurally different compounds. The groups of pesticides, pharmaceuticals, brominated flame retardants, and mycotoxins were selected as important residues/contaminants relating to their worldwide occurrence and impact to health, food, and environmental safety issues. Thus, there is an increasing need for investigation of transformation processes and identification of TPs by fast and reliable methods. KW - Transformation product KW - Electrochemistry KW - Photochemistry KW - Fenton’s reagent PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-474108 DO - https://doi.org/10.3390/molecules24040753 SN - 1420-3049 VL - 24 IS - 4 SP - 753, 1 EP - 23 PB - MDPI CY - Basel AN - OPUS4-47410 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -