TY - JOUR A1 - Phukphatthanachai, Pranee A1 - Panne, Ulrich A1 - Jakubowski, Norbert A1 - Vogl, Jochen T1 - SI-traceable quantification of sulphur in copper metal and its alloys by ICP-IDMS N2 - Previously applied methods for the quantification of sulphur in copper and other pure metals revealed a lack of SI-traceability and additionally showed inconsistent results, when different methods were compared. Therefore, a reference procedure is required which allows SI-traceable values accompanied by a Sound uncertainty budget. In this study a procedure was developed for the quantification of total sulphur in copper at low concentration levels using inductively coupled plasma-isotope dilution mass spectrometry (ICP-IDMS). The major part of the copper matrix was separated by adding ammonia which forms a complex with the copper while releasing the sulphur followed by chromatographic separation using a weak cation resin. After that the sulphur fraction was further purified by chromatographic means using first an anion exchange method and second a chelating resin. The developed procedure shows high performance, especially concerning high efficiency in matrix removal (>99.999%) while keeping the recovery of sulphur above 80%. Procedure blanks are in the order of 3–53 ng resulting in LOD and LOQ values of 0.2 mg g1 and 0.54 mg g1, respectively. The procedure is sufficient to facilitate value assignment of the total sulphur mass fraction in reference materials. Additionally, relative measurement uncertainties were calculated to be below 1% and the measurement results were traceable to the SI. The procedure reported in this study is a new reference procedure for sulphur measurement in copper, being fit for two major purposes, certification of reference materials and assignment of reference values for inter-laboratory comparison. KW - Traceability KW - Measuremment uncertainty KW - Isotope dilution mass spectrometry KW - Reference measurements PY - 2018 DO - https://doi.org/10.1039/c7ja00338b SN - 0267-9477 SN - 1364-5544 VL - 33 IS - 1 SP - 90 EP - 101 PB - Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-43614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tatzel, Michael A1 - Oelze, Marcus A1 - Frick, Daniel A. A1 - Di Rocco, Tommaso A1 - Liesegang, Moritz A1 - Stuff, Maria A1 - Wiedenbeck, Michael T1 - Silicon and oxygen isotope fractionation in a silicified carbonate rock N2 - Silicon isotope fractionation during silicification is poorly understood and impedes our ability to decipher paleoenvironmental conditions from Si isotopes in ancient cherts. To investigate isotope fractionation during silica-for-carbonate replacement we analyzed the microscale Si and O isotope composition in different silica phases in a silicified zebra dolostone as well as their bulk δ18O and Δ’17O compositions. The subsequent replacement of carbonate layers is mimicked by decreasing δ18O and δ30Si. The textural relationship and magnitude of Si and O isotope fractionation is best explained by near-quantitative silica precipitation in an open system with finite Si. A Rayleigh model for silicification suggests positive Ɛ30/28Si during silicification, conforming with predictions for isotope distribution at chemical equilibrium from ab-initio models. Application of the modelled Ɛ30Si-T relationship yields silicification temperatures of approx. 50°C. To reconcile the δ18Ochert composition with these temperatures, the δ18O of the fluid must have been between -2.5 and -4 ‰, compositions for which the quartz phases fall close to the oxygen equilibrium fractionation line in three-isotope space. Diagenetic silica replacement appears to occur in O and Si isotopic equilibrium allowing reconstructions of temperatures of silicification from Si isotopes and derive the δ18O composition of the fluid – a highly desired value needed for accurate reconstructions of the temperature- and δ18O histories of the oceans. KW - Silicon isotopes PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-603430 DO - https://doi.org/10.1016/j.chemgeo.2024.122120 SN - 0009-2541 VL - 658 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-60343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Michail Ioannis, Chronakis A1 - Marcus, von der Au A1 - Meermann, Björn T1 - Single cell-asymmetrical flow field-flow fractionation/ICP-time of flight-mass spectrometry (sc-AF4/ICP-ToF-MS): an efficient alternative for the cleaning and multielemental analysis of individual cells N2 - Asymmetrical Flow Field-Flow Fractionation (AF4), as a cleaning technique, was combined on-line with the multielemental analytical capabilities of an Inductively Coupled Plasma-Time of Flight-Mass Spectrometer (ICP-ToF-MS). In that manner, the heavy ionic matrix effect of untreated cells' samples can be significantly reduced. As a proof of concept, commercial baker's yeast cells were analysed. KW - AF4 KW - Single Cell KW - Cleaning PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576419 DO - https://doi.org/10.1039/d2ja00264g SN - 0267-9477 VL - 37 IS - 12 SP - 2691 EP - 2700 PB - Royal Society of Chemistry AN - OPUS4-57641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von der Au, Marcus A1 - Borovinskaya, O. A1 - Flamigni, L. A1 - Kuhlmeier, K. A1 - Büchel, C. A1 - Meermann, Björn T1 - Single cell-inductively coupled plasma-time of flight-mass spectrometry approach for ecotoxicological testing N2 - Diatoms play a key role in assessing the eco-toxicology of metals and are already part of several national and international guidelines and regulations. Data on metal uptake and its correlation with a natural metal composition of the diatoms are mostly lacking on a cellular basis - mainly due to the lack of a suitable method on both the preparation and detection side. Therefore, within this work a fully automated approach based on the on-line coupling of a high performance liquid chromatograph (HPLC) and an inductively coupled plasma-time of flight-mass spectrometer (ICP-ToF-MS) was applied to analyze single cells of the alga Cyclotella meneghiniana multi-elementally in order to provide a deeper insight into the metal composition and its response to environmental stress. Multi-elemental analysis in single diatoms also enables assessment of combined toxicity of a set of metals. A set of four fingerprint elements, characteristically for diatoms (Mg, P, Si, Fe), were identified and hence the investigation of environmental stress onto the cells was enabled by performing incubation experiments with environmentally relevant toxic elements. It could be shown at moderate environmental stress caused by increasing the metal concentration in the medium (zinc) that the fingerprint element concentrations remained stable and thus the suitability of the selected elements for algae tracing was demonstrated. With regard to further ecotoxicological assessments, a multivariate approach was successfully applied allowing for cell classification upon different incubation concentration levels. This multivariate approach also facilitated an effective identification of three different diatom species (Cyclotella meneghiniana, Thalassiosira weissflogii and Thalassiosira pseudonana). KW - ICP-TOF-MS KW - Ecotoxicological Testing KW - Diatoms PY - 2020 DO - https://doi.org/10.1016/j.algal.2020.101964 VL - 49 SP - 101964 PB - Elsevier B.V. AN - OPUS4-50875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Menero-Valdés, P. A1 - Chronakis, Michail Ioannis A1 - Fernández, B. A1 - Quarles Jr., C. D. A1 - González-Iglesias, H. A1 - Meermann, Björn A1 - Pereiro, R. T1 - Single Cell–ICP–ToF-MS for the Multiplexed Determination of Proteins: Evaluation of the Cellular Stress Response N2 - An automated and straightforward detection and data treatment strategy for the determination of the protein relative concentration in individual human cells by single cell–inductively coupled plasma–time-of-flight mass spectrometry (sc-ICP-ToF-MS) is proposed. Metal nanocluster (NC)-labeled specific antibodies for the target proteins were employed, and ruthenium red (RR) staining, which binds to the cells surface, was used to determine the number of cell events as well as to evaluate the relative volume of the cells. As a proof of concept, the expression of hepcidin, metallothionein-2, and ferroportin employing specific antibodies labeled with IrNCs, PtNCs, and AuNCs, respectively, was investigated by sc-ICP-ToF-MS in human ARPE-19 cells. Taking into account that ARPE-19 cells are spherical in suspension and RR binds to the surface of the cells, the Ru intensity was related to the cell volume (i.e., the cell volume is directly proportional to (Ru intensity)3/2), making it possible to determine not only the mass of the target proteins in each individual cell but also the relative concentration. The proposed approach is of particular interest in comparing cell cultures subjected to different supplementations. ARPE-19 cell cultures under two stress conditions were compared: a hyperglycemic model and an oxidative stress model. The comparison of the control with treated cells shows not only the mass of analyzed species but also the relative changes in the cell volume and concentration of target proteins, clearly allowing the identification of subpopulations under the respective treatment. KW - Peptides and Proteins KW - Immunology KW - Metals PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581630 DO - https://doi.org/10.1021/acs.analchem.3c02558 VL - 95 IS - 35 SP - 13322 EP - 13329 PB - ACS Publications AN - OPUS4-58163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyer, S. A1 - López-Serrano, Ana A1 - Mitze, H. A1 - Jakubowski, Norbert A1 - Schwerdtle, T. T1 - Single-cell analysis by ICP-MS/MS as a fast tool for cellular bioavailability studies of arsenite N2 - Single-cell inductively coupled plasma mass spectrometry (SC-ICP-MS) has become a powerful and fast tool to evaluate the elemental composition at a single-cell level. In this study, the cellular bioavailability of arsenite (incubation of 25 and 50 μM for 0-48 h) has been successfully assessed by SC-ICP-MS/MS for the first time directly after re-suspending the cells in water. This procedure avoids the normally arising cell membrane permeabilization caused by cell fixation methods (e.g. methanol fixation). The reliability and feasibility of this SC-ICP-MS/MS approach with a limit of detection of 0.35 fg per cell was validated by conventional bulk ICP-MS/MS analysis after cell digestion and parallel measurement of sulfur and phosphorus. KW - Single-cell analysis KW - ICP-MS/MS KW - Arsenite PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-441105 DO - https://doi.org/10.1039/c7mt00285h SN - 1756-5901 VL - 10 IS - 1 SP - 73 EP - 76 PB - RSC Publ. CY - Cambridge AN - OPUS4-44110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hendriks, L. A1 - Ramkorun-Schmidt, Benita A1 - Grundlach-Graham, A. A1 - Koch, J. A1 - Grass, R. N. A1 - Jakubowski, Norbert A1 - Günther, D. T1 - Single-particle ICP-MS with online microdroplet calibration: toward matrix independent nanoparticle sizing N2 - Single-particle inductively coupled plasma mass spectrometry (sp-ICP-MS) has become an effective tool for the detection and quantification of inorganic nanoparticles (NPs). While sizing of NPs suspended in water is relatively straightforward by sp-ICP-MS, accurate mass quantification of NPs in complex media, such as consumer products and natural systems still remains a challenge. When NPs are suspended in a complex medium, the matrix may affect the analyte sensitivity and lead to inaccurate NP sizing. Here, we investigate the use of an online microdroplet calibration system to size NPs in a single step. In this setup, microdroplets—which are used as the calibrant to determine elemental sensitivities—and nebulized NP-containing solutions are introduced concurrently into the ICP via a dual-inlet sample introduction system. Because calibrant microdroplets and analyte NPs experience the same plasma conditions, both the microdroplets and the NPs are subjected to the same matrix-related signal enhancement or suppression. In this way, the microdroplet calibration standards are automatically matrix matched with the NP-containing solution. The online microdroplet calibration system is combined with an ICP-TOFMS instrument for simultaneous measurement of multiple elements in microdroplets and NPs. We investigate the ability of online microdroplet calibration to compensate for matrix effects through a series of experiments, in which Ag and Au NPs are measured with variable plasma-sampling positions, varying concentrations of HCl and HNO3, varying concentrations of single element solutions, and high concentrations of a salt matrix, i.e. phosphate buffered saline (PBS). Through these experiments, we demonstrate that the online microdroplet calibration strategy provides a matrix-independent mass quantification of analyte NPs in the presence of several established types of matrix effects, including acid effects, space-charge effects, and ionisation suppression. In results presented here, we focus on the size determination of the NPs. KW - Nanoparticle KW - ICP-MS KW - Calibration PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-477589 DO - https://doi.org/10.1039/c8ja00397a SN - 0267-9477 VL - 34 IS - 4 SP - 716 EP - 728 PB - Royal Society of Chemistry CY - London AN - OPUS4-47758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von der Au, Marcus A1 - Faßbender, Sebastian A1 - Chronakis, Michail A1 - Vogl, Jochen A1 - Meermann, Björn T1 - Size determination of nanoparticles by ICP-ToF-MS using isotope dilution in microdroplets N2 - Within this work, the combination of a microdroplet generator and an ICP-ToF-MS for nanoparticle analysis is presented. For the size determination of platinum nanoparticles an on-line isotope dilution analysis approach was developed. The 194Pt/195Pt isotopic ratio was used for the characterization of the particles, while the 182W/183W isotopic ratio was monitored simultaneously for mass bias correction. The on-line ID-MDG-sp-ICP-ToF-MS approach was deployed for the size determination of three platinum nanoparticle samples (50 nm, 63 nm, 70 nm); for validation, complementary size characterization techniques (sp-ICP-ToF-MS and TEM) were used. The robustness of this technique was evidenced, by using sodium chloride concentrations up to 100 mg L−1 as a matrix component. Our new on-line ID MDG-sp-ICP-ToF-MS approach is a promising tool for the fast and reliable determination of nanoparticles' size in severe matrix concentrations, e.g., environmental samples. KW - ICP-ToF-MS KW - Nanoparticles KW - Isotope Dilution PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552727 DO - https://doi.org/10.1039/D2JA00072E SN - 0267-9477 VL - 37 IS - 6 SP - 1203 EP - 1207 PB - Royal Society of Chemistry AN - OPUS4-55272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Faßbender, Sebastian A1 - von der Au, Marcus A1 - Koenig, Maren A1 - Pelzer, J. A1 - Piechotta, Christian A1 - Vogl, Jochen A1 - Meermann, Björn T1 - Species-specific isotope dilution analysis of monomethylmercury in sediment using GC/ICP-ToF-MS and comparison with ICP-Q-MS and ICP-SF-MS N2 - A recently introduced inductively coupled plasma-time-of-flight-mass spectrometer (ICP-ToF-MS) shows enhanced sensitivity compared to previous developments and superior isotope ratio precision compared to other ToF and commonly used single-collector ICP-MS instruments. Following this fact, an improvement for isotope dilution ICP-MS using the new instrumentation has been reported. This study aimed at investigating whether this improvement also meets the requirements of species-specific isotope dilution using GC/ICP-MS, where short transient signals are recorded. The results of the analysis of monomethylmercury (MMHg) of a sediment reference material show that isotope ratio precision of ICP-MS instruments equipped with quadrupole, sector-field, and time-of-flight mass analyzers is similar within a broad range of peak signal-to-noise ratio when analyzing one isotopic system. The procedural limit of quantification (LOQ) for MMHg, expressed as mass fraction of Hg being present as MMHg, w(Hg)MMHg, was similar as well for all investigated instruments and ranged between 0.003 and 0.016 μg/kg. Due to the simultaneous detection capability, the ICP-ToF-MS might, however, be more favorable when several isotopic systems are analyzed within one measurement. In a case study, the GC/ICP-ToF-MS coupling was applied for analysis of MMHg in sediments of Finow Canal, a historic German canal heavily polluted with mercury. Mass fractions between 0.180 and 41 μg/kg (w(Hg)MMHg) for MMHg, and 0.056 and 126 mg/kg (w(Hg)total) for total mercury were found in sediment samples taken from the canal upstream and downstream of a former chemical plant. KW - Methylmercury KW - Legacy pollution KW - Finow Canal KW - Isotope dilution KW - Mercury speciation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529967 DO - https://doi.org/10.1007/s00216-021-03497-z SN - 1618-2642 VL - 413 IS - 21 SP - 5279 EP - 5289 PB - Springer CY - Berlin AN - OPUS4-52996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bauer, M. A1 - Remmler, D. A1 - Dallmann, A. A1 - Jakubowski, Norbert A1 - Börner, H. G. A1 - Panne, Ulrich A1 - Limberg, C. T1 - Specific Decoration of a Discrete Bismuth Oxido Cluster by Selected Peptides towards the Design of Metal Tags N2 - Metal tags find application in a multitude of biomedical systems and the combination with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) offers an opportunity for multiplexing. To lay the foundation for an increase of the signal intensities in such processes, we herein present a general approach for efficient functionalization of a well-defined metal oxido cluster [Bi6O4(OH)(4)(SO3CF3)(6)(CH3CN)(6)].2 CH3CN (1), which can be realized by selecting 7mer peptide sequences via combinatorial means from large one-bead one-compound peptide libraries. Selective cluster-binding peptide sequences (CBS) for 1 were discriminated from non-binders by treatment with H2S gas to form the reduction product Bi2S3, clearly visible to the naked eye. Interactions were further confirmed by NMR experiments. Extension of a binding peptide with a maleimide linker (Mal) introduces the possibility to covalently attach thiol-bearing moieties such as biological probes and for their analysis the presence of the cluster instead of mononuclear entities should lead to an increase of signal intensities in LA-ICP-MS measurements. To prove this, CBS-Mal was covalently bound onto thiol-presenting glass substrates, which then captured 1 effectively, so that LA-ICP-MS measurements demonstrated drastic signal amplification compared to single lanthanide tags. KW - Peptide library KW - Mass spectrometry KW - Laser ablation KW - Cluster KW - Bioconjugation PY - 2019 DO - https://doi.org/10.1002/chem.201805234 SN - 0947-6539 VL - 25 IS - 3 SP - 759 EP - 763 PB - John Wiley & Sons, Inc. AN - OPUS4-47324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Prohaska, T. A1 - Irrgeher, J. A1 - Benefield, J. A1 - Böhlke, J. K. A1 - Chesson, L. A. A1 - Coplen, T. B. A1 - Ding, T. A1 - Dunn, P. J. H. A1 - Gröning, M. A1 - Holden, N. E. A1 - Meijer, H. A. J. A1 - Moossen, H. A1 - Possolo, A. A1 - Takahashi, Y. A1 - Vogl, Jochen A1 - Walczyk, T. A1 - Wang, J. A1 - Wieser, M. E. A1 - Yoneda, S. A1 - Zhu, X.-K. A1 - Meija, J. T1 - Standard atomic weights of the elements 2021 (IUPAC Technical Report) N2 - Following the reviews of atomic-weight determinations and other cognate data in 2015, 2017, 2019 and 2021, the IUPAC (International Union of Pure and Applied Chemistry) Commission on Isotopic Abundances and Atomic Weights (CIAAW) reports changes of standard atomic weights. The symbol Ar(E) was selected for standard atomic weight of an element to distinguish it from the atomic weight of an element E in a specific substance P, designated Ar(E, P). The CIAAW has changed the values of the standard atomic weights of five elements based on recent determinations of terrestrial isotopic abundances: Ar (argon): from 39.948 ± 0.001 to [39.792, 39.963] Hf (hafnium): from 178.49 ± 0.02 to 178.486 ± 0.006 Ir (iridium): from 192.217 ± 0.003 to 192.217 ± 0.002 Pb (lead): from 207.2 ± 0.1 to [206.14, 207.94] Yb (ytterbium): from 173.054 ± 0.005 to 173.045 ± 0.010 The standard atomic weight of argon and lead have changed to an interval to reflect that the natural variation in isotopic composition exceeds the measurement uncertainty of Ar(Ar) and Ar(Pb) in a specific substance. The standard atomic weights and/or the uncertainties of fourteen elements have been changed based on the Atomic Mass Evaluations 2016 and 2020 accomplished under the auspices of the International Union of Pure and Applied Physics (IUPAP). Ar of Ho, Tb, Tm and Y were changed in 2017 and again updated in 2021: Al (aluminium), 2017: from 26.981 5385 ± 0.000 0007 to 26.981 5384 ± 0.000 0003 Au (gold), 2017: from 196.966 569 ± 0.000 005 to 196.966 570 ± 0.000 004 Co (cobalt), 2017: from 58.933 194 ± 0.000 004 to 58.933 194 ± 0.000 003 F (fluorine), 2021: from 18.998 403 163 ± 0.000 000 006 to 18.998 403 162 ± 0.000 000 005 (Ho (holmium), 2017: from 164.930 33 ± 0.000 02 to 164.930 328 ± 0.000 007) Ho (holmium), 2021: from 164.930 328 ± 0.000 007 to 164.930 329 ± 0.000 005 Mn (manganese), 2017: from 54.938 044 ± 0.000 003 to 54.938 043 ± 0.000 002 Nb (niobium), 2017: from 92.906 37 ± 0.000 02 to 92.906 37 ± 0.000 01 Pa (protactinium), 2017: from 231.035 88 ± 0.000 02 to 231.035 88 ± 0.000 01 Pr (praseodymium), 2017: from 140.907 66 ± 0.000 02 to 140.907 66 ± 0.000 01 Rh (rhodium), 2017: from 102.905 50 ± 0.000 02 to 102.905 49 ± 0.000 02 Sc (scandium), 2021: from 44.955 908 ± 0.000 005 to 44.955 907 ± 0.000 004 (Tb (terbium), 2017: from 158.925 35 ± 0.000 02 to 158.925 354 ± 0.000 008) Tb (terbium), 2021: from 158.925 354 ± 0.000 008 to 158.925 354 ± 0.000 007 (Tm (thulium), 2017: from 168.934 22 ± 0.000 02 to 168.934 218 ± 0.000 006) Tm (thulium), 2021: from 168.934 218 ± 0.000 006 to 168.934 219 ± 0.000 005 (Y (yttrium), 2017: from 88.905 84 ± 0.000 02 to 88.905 84 ± 0.000 01) Y (yttrium), 2021: from 88.905 84 ± 0.000 01 to 88.905 838 ± 0.000 002 KW - Argon KW - Ciaaw.org KW - Hafnium KW - Iridium KW - Lead KW - LSVEC KW - Ytterbium PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548443 DO - https://doi.org/10.1515/pac-2019-0603 SN - 0033-4545 VL - 94 IS - 5 SP - 573 EP - 600 PB - De Gruyter Verlag CY - Berlin AN - OPUS4-54844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zimmermann, T. A1 - von der Au, Marcus A1 - Reese, A. A1 - Klein, O. A1 - Hildebrandt, L. A1 - Pröfrock, D. T1 - Substituting HF by HBF4 – an optimized digestion method for multi-elemental sediment analysis via ICP-MS/MS N2 - Determination of elemental mass fractions in sediments plays a major role in evaluating the environmental status of aquatic ecosystems. Herewith, the optimization of a new total digestion protocol and the subsequent analysis of 48 elements in different sediment reference materials (NIST SRM 2702, GBW 07313, GBW 07311 and JMC-2) based on ICP-MS/MS detection is presented. The developed method applies microwave acid digestion and utilizes HBF4 as fluoride source for silicate decomposition. Similar to established protocols based on HF, HBF4 ensures the dissolution of the silicate matrix, as well as other refractory oxides. As HBF4 is not acutely toxic; no special precautions have to be made and digests can be directly measured via ICP-MS without specific sample inlet systems, evaporation steps or the addition of e.g. H3BO3, in order to mask excess HF. Different acid mixtures with and without HBF4 were evaluated in terms of digestion efficiency based on the trace metal recovery. The optimized protocol (5 mL HNO3, 2 mL HCL, 1 mL HBF4) allows a complete dissolution of the analyzed reference materials, as well as quantitative recoveries for a wide variety of certified analytes. Low recoveries for e.g. Sr, Ba and rare earth elements due to fluoride precipitation of HF-based digestions protocols, can be avoided by the usage of HBF4 instead. Based on the usage of high purity HBF4 all relevant trace, as well as matrix elements can be analyzed with sufficiently low LOQs (0.002 μg L−1 for U up to 6.7 μg L−1 for Al). In total, 34 elements were within a recovery range of 80%–120% for all three analyzed reference materials GBW 07313, GBW 07311 and JMC-2. 14 elements were outside a recovery range of 80%–120% for at least one of the analyzed reference materials. KW - Reference Materials KW - Sediment KW - HF free Digestion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510480 DO - https://doi.org/10.1039/D0AY01049A SP - 1 EP - 10 PB - Royal Society of Chemistry AN - OPUS4-51048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kirilina, E. A1 - Helbling, S. A1 - Morawski, M. A1 - Pine, K. A1 - Reimann, K. A1 - Jankuhn, S. A1 - Dinse, J. A1 - Deistung, A. A1 - Reichenbach, J. R. A1 - Trampel, R. A1 - Geyer, S. A1 - Müller, Larissa A1 - Jakubowski, Norbert A1 - Arendt, T. A1 - Bazin, P.-L. A1 - Weiskopf, N. T1 - Superficial white matter imaging: Contrast mechanisms and whole-brain in vivo mapping N2 - Superficial white matter (SWM) contains the most cortico-cortical white matter connections in the human brain encompassing the short U-shaped association fibers. Despite its importance for brain connectivity, very little is known about SWM in humans, mainly due to the lack of noninvasive imaging methods. Here, we lay the groundwork for systematic in vivo SWM mapping using ultrahigh resolution 7 T magnetic resonance imaging. Using biophysical modeling informed by quantitative ion beam microscopy on postmortem brain tissue, we demonstrate that MR contrast in SWM is driven by iron and can be linked to the microscopic iron distribution. Higher SWM iron concentrations were observed in U-fiber–rich frontal, temporal, and parietal areas, potentially reflecting high fiber density or late myelination in these areas. Our SWM mapping approach provides the foundation for systematic studies of interindividual differences, plasticity, and pathologies of this crucial structure for cortico-cortical connectivity in humans. KW - Magnetic resonance imaging KW - Laser ablation KW - ICP-MS KW - Brain KW - Imaging PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514430 DO - https://doi.org/10.1126/sciadv.aaz9281 SN - 2375-2548 VL - 6 IS - 41 SP - eaaz9281 PB - American Association for the Advancement of Science (Science/AAAS) CY - Washington, DC, USA AN - OPUS4-51443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hachenberger, Y. U. A1 - Rosenkranz, D. A1 - Kriegel, Fabian L. A1 - Krause, B. A1 - Matschaß, René A1 - Reichardt, P. A1 - Tentschert, J. A1 - Laux, P. A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Luch, A. T1 - Tackling Complex Analytical Tasks: An ISO/TS-Based Validation Approach for Hydrodynamic Chromatography Single Particle Inductively Coupled Plasma Mass Spectrometry N2 - Nano-carrier systems such as liposomes have promising biomedical applications. Nevertheless, characterization of these complex samples is a challenging analytical task. In this study a coupled hydrodynamic chromatography-single particle-inductively coupled plasma mass spectrometry (HDC-spICP-MS) approach was validated based on the technical specification (TS) 19590:2017 of the international organization for standardization (ISO). The TS has been adapted to the hyphenated setup. The quality criteria (QC), e.g., linearity of the calibration, transport efficiency, were investigated. Furthermore, a cross calibration of the particle size was performed with values from dynamic light scattering (DLS) and transmission electron microscopy (TEM). Due to an additional Y-piece, an online-calibration routine was implemented. This approach allows the calibration of the ICP-MS during the dead time of the chromatography run, to reduce the required time and enhance the robustness of the results. The optimized method was tested with different gold nanoparticle (Au-NP) mixtures to investigate the characterization properties of HDC separations for samples with increasing complexity. Additionally, the technique was successfully applied to simultaneously determine both the hydrodynamic radius and the Au-NP content in liposomes. With the established hyphenated setup, it was possible to distinguish between different subpopulations with various NP loads and different hydrodynamic diameters inside the liposome carriers. KW - Single particle ICP-MS KW - Nanoparticle characterization KW - Nano-carrier KW - Iposomes KW - Hydrodynamic chromatography (HDC) KW - Validation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506609 DO - https://doi.org/10.3390/ma13061447 VL - 13 IS - 6 SP - 1 EP - 14 CY - Basel, Switzerland AN - OPUS4-50660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rienitz, O. A1 - Pramann, A. A1 - Vogl, Jochen A1 - Lee, K.-S. A1 - Yim, Y.-H. A1 - Malinovskiy, D. A1 - Hill, S. A1 - Dunn, P. A1 - Goenaga-Infante, H. A1 - Ren, T. A1 - Wang, J. A1 - Vocke jr., R. D. A1 - Rabb, S: A. A1 - Narukawa, T. A1 - Yang, L. A1 - Mester, Z. A1 - Meija, J. A1 - Aref'ev, D. G. A1 - Marchin, V. A1 - Sharin, A. G. A1 - Bulanov, A. D. A1 - Potapov, A. M. A1 - Otopkova, P. A. A1 - Kessel, R. T1 - The comparability of the determination of the molar mass of silicon highly enriched in 28Si: results of the CCQM-P160 interlaboratory comparison and additional external measurements N2 - An international comparison study on the accurate determination of the molar mass M(Si) of silicon artificially enriched in 28Si (x(28Si) > 0.9999 mol mol−1) has been completed. The measurements were part of the high level CCQM-P160 pilot study assessing the ability of National Metrology Institutes (NMIs) and Designated Institutes (DIs) to make such measurements at the lowest possible levels of measurement uncertainty and to identify possible difficulties when measuring this kind of sample. This study supports the molar mass measurements critical to disseminating the silicon route to realizing the new definitions for the kilogram and the mole. Measurements were also made by one external research institute and an external company. The different institutes were free to choose their experimental (mass spectrometric) set-ups and equipment, thereby enabling also the comparison of different techniques. The investigated material was a chemically pure, polycrystalline silicon material. The subsequent modified single crystalline secondary product of this material was intended for the production of silicon which was used for two additional spheres in the context of the redetermination of the Avogadro constant NA, required for the revision of the International System of Units (SI) via fundamental constants which came into force from May 2019. The CCQM pilot study was organized by Physikalisch-Technische Bundesanstalt (PTB). Aqueous silicon solutions were shipped to all participating institutions. The data analysis as well as the uncertainty modelling and calculation of the results was predefined. The participants were provided with an uncertainty budget as a GUM Workbench® file as well as a free software license for the duration of the comparison. The agreement of the values of the molar mass (M(Si) = 27.976 942 577 g mol−1) was excellent with ten out of 11 results reported within the range of relative uncertainty of 1 × 10−8 required for the revision of the SI. KW - Absolute isotope ratio KW - Molar mass KW - Avogadro constant KW - Revision of the SI PY - 2020 DO - https://doi.org/10.1088/1681-7575/abbdbf VL - 57 IS - 6 SP - 065028 PB - IOP Science CY - Cambridge AN - OPUS4-51500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meermann, Björn T1 - The future of elemental analytical chemistry – the sixth special issue dedicated to young analytical scientists N2 - Editorial for a special issue KW - Editorial KW - Special issue, young analytical scientists KW - Elemental analysis PY - 2021 DO - https://doi.org/10.1039/d1ja90038b VL - 36 IS - 9 SP - 1794 EP - 1796 PB - RSC AN - OPUS4-53086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sargent, M A1 - Goenaga-Infante, H A1 - Inagaki, K A1 - Ma, L A1 - Meija, J A1 - Pramann, A A1 - Rienitz, O A1 - Sturgeon, R A1 - Vogl, Jochen A1 - Wang, J A1 - Yang, L T1 - The role of ICP-MS in inorganic chemical metrology N2 - ICP-MS has played a key role in inorganic chemical metrology for 25 years, from the 1993 CIPM feasibility study which led to establishment of the CCQM. Since that time, the Inorganic Analysis Working Group of the CCQM has organised 56 international comparisons involving measurements by ICP-MS and, in a recent comparison, 16 different national institutes submitted their results using the technique. Metrological applications of ICP-MS currently address an enormous range of measurements using a wide variety of instrumentation, calibration strategies and methodologies. This review provides an overview of the ICP-MS field with an emphasis on developments which are of particular relevance to chemical metrology. Examples from CCQM comparisons and the services available from the participants are used to illustrate how the capability and scope of ICP-MS methods have expanded far beyond the expectations of 1993. This is due in part to the research and development Programmes of the national institutes which participate in the CCQM. They have played a key role in advancing new instrumentation and applications for elemental analysis, isotope dilution mass spectrometry, determination of isotopic ratio or composition, and speciation of organometallic compounds. These developments are continuing today, as demonstrated by work in new fields such as heteroatom quantitation of proteins, characterisation and counting of nanoparticles using spICP-MS, and LA-ICP-MS analysis of solid materials. KW - CCQM KW - Metrology KW - Interlaboratory comparison KW - ICP-MS KW - Mass spectrometry KW - Hyphenated KW - Isotope ratio PY - 2019 DO - https://doi.org/10.1088/1681-7575/ab0eac VL - 56 IS - 3 SP - 034005 PB - IOP Publishing AN - OPUS4-47929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Coplen, T. B. A1 - Holden, N. E. A1 - Ding, T. A1 - Meijer, H. A. J. A1 - Vogl, Jochen A1 - Zhu, X. T1 - The Table of Standard Atomic Weights—An exercise in consensus N2 - The present Table of Standard Atomic Weights (TSAW) of the elements is perhaps one of the most familiar data sets in science. Unlike most parameters in physical science whose values and uncertainties are evaluated using the “Guide to the Expression of Uncertainty in Measurement” (GUM), the majority of standard atomic weight values and their uncertainties are consensus values, not GUM-evaluated values. The Commission on Isotopic Abundances and Atomic Weights of the International Union of Pure and Applied Chemistry (IUPAC) regularly evaluates the literature for new isotopic-abundance measurements that can lead to revised standard atomic-weight values, Ar(E) for element E. The Commission strives to provide utmost clarity in products it disseminates, namely the TSAW and the Table of Isotopic Compositions of the Elements (TICE). In 2016, the Commission recognized that a guideline recommending the expression of uncertainty listed in parentheses following the standard atomic-weight value, for example, Ar(Se) = 78.971(8), did not agree with the GUM, which suggests that this parenthetic notation be reserved to express standard uncertainty, not the expanded uncertainty used in the TSAW and TICE. In 2017, to eliminate this noncompliance with the GUM, a new format was adopted in which the uncertainty value is specified by the “±” symbol, for example, Ar(Se) = 78.971 ± 0.008. To clarify the definition of uncertainty, a new footnote has been added to the TSAW. This footnote emphasizes that an atomic-weight uncertainty is a consensus (decisional) uncertainty. Not only has the Commission shielded users of the TSAW and TICE from unreliable measurements that appear in the literature as a result of unduly small uncertainties, but the aim of IUPAC has been fulfilled by which any scientist, taking any natural sample from commerce or research, can expect the sample atomic weight to lie within Ar(E) ± its uncertainty almost all of the time. KW - Atomic weight KW - Standard atomic weight KW - Uncertainty PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551299 DO - https://doi.org/10.1002/rcm.8864 SN - 1097-0231 VL - 36 IS - 15 SP - 1 EP - 15 PB - Wiley AN - OPUS4-55129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen T1 - The triple-isotope calibration approach: a universal and standard-free calibration approach for obtaining absolute isotope ratios of multi-isotopic elements N2 - The theory of a new calibration approach for obtaining absolute isotope ratios of multi-isotopic elements without the use of any standard has been developed. The calibration approach basically uses the difference in the instrumental isotope fractionation of two different types of mass spectrometers, leading to two different fractionation lines in a three-isotope diagram. When measuring the same sample with both mass spectrometers, the different fractionation lines have one point in common: this is the ‘true’ logarithmized isotope ratio pair of the sample. Thus, the intersection of both fractionation lines provides us with the absolute isotope ratios of the sample. This theory has been tested in practice by measuring Cd and of Pb isotope ratios in the certified reference materials BAM-I012 and NIST SRM981 by thermal ionization mass spectrometry and by inductively coupled plasma mass spectrometry while varying the ionization conditions for both mass spectrometers. With this experiment, the theory could be verified, and absolute isotope ratios were obtained, which were metrologically compatible with the certified isotope ratios. The so-obtained absolute isotope ratios are biased by − 0.5% in average, which should be improved with further developments of the method. This calibration approach is universal, as it can be applied to all elements with three or more isotopes and it is not limited to the type of mass spectrometers applied; it can be applied as well to secondary ion mass spectrometry or others. Additionally, this approach provides information on the fractionation process itself via the triple-isotope fractionation exponent θ. KW - Triple isotope fractionation KW - Absolute isotope ratio KW - Mass spectrometry KW - Calibration KW - Uncertainty PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516364 DO - https://doi.org/10.1007/s00216-020-03050-4 VL - 413 IS - 3 SP - 821 EP - 826 PB - Springer Verlag AN - OPUS4-51636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pramann, A. A1 - Vogl, Jochen A1 - Rienitz, O. T1 - The Uncertainty Paradox: Molar Mass of Enriched Versus Natural Silicon Used in the XRCD Method N2 - The X-ray crystal density method uses silicon spheres highly enriched in 28Si as a primary method for the dissemination of the SI base unit kilogram yielding smallest possible uncertainties associated with the mass m within a few parts in 10-8. This study compares different available and newly developed analytical methods and their results for the determination of the molar mass M of silicon highly enriched in 28Si (Me) and of silicon (Mx) with an almost natural isotopic distribution. While for Me relative uncertainties urel(Me) in the lower 10-9 range are obtained routinely, it was not possible to fall below a value of urel(Mx) < 4 x 10-6 in the case of natural silicon, which is approximately three orders of magnitude larger. The application of the state-of the-art isotope ratio mass spectrometry accompanied with sophisticated thoroughly investigated methods suggests an intrinsic cause for the large uncertainty associated with the molar mass of natural silicon compared to the enriched material. KW - silicon KW - Molar mass KW - Isotope ratios KW - SI KW - Kilogram KW - Mole KW - XRCD method PY - 2020 DO - https://doi.org/10.1007/s12647-020-00408-y VL - 35 SP - 499 EP - 510 PB - Springer Verlag AN - OPUS4-51637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Alfeld, M. A1 - Eckhardt, H.-S. A1 - Kraft, J. A1 - Maiwald, Michael A1 - Meermann, Björn A1 - Merz, K. A1 - Prikler, S. A1 - Richert, J. A1 - Steiner, G. A1 - von Tümpling, W. T1 - Trendbericht Analytische Chemie N2 - Zusätzlich zu Methodenentwicklung, Miniaturisierung und Kopplungsverfahren zeigen sich die Hyperspektroskopie zusammen mit Imaging‐Verfahren, der Einzelmolekülnachweis und der Einsatz von 3‐D‐Druckern als neue Schwerpunkte. Hinzu kommen künstliche Intelligenz bei Sensoren, Bildgebungsverfahren und Prozesssteuerung sowie die Vernetzung von Analyse‐ und Laborgeräten. Trends und Forschungsthemen aus der analytischen Chemie, zusammengestellt von elf Autoren, koordiniert von Günter Gauglitz. KW - Multielementanalytik KW - Multimodale Analytik KW - Kristallolgraphie KW - Prozessanalytik KW - Prozessindustrie KW - Industrielle Analytik KW - Chemometrik KW - Chemometrie PY - 2020 DO - https://doi.org/10.1002/nadc.20204095786 SN - 1868-0054 VL - 68 IS - 4 SP - 52 EP - 60 PB - Wiley CY - Weinheim AN - OPUS4-50609 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tatzel, Michael A1 - Vogl, Jochen A1 - Rosner, M. A1 - Henehan, M. J. A1 - Tütken, T. T1 - Triple Isotope Fractionation Exponents of Elements Measured by MC-ICP-MS - An Example of Mg N2 - In most chemical reactions, stable isotopes are fractionated in a mass-dependent manner, yielding correlated isotope ratios in elements with three or more stable isotopes. The proportionality between isotope ratios is set by the triple isotope fractionation exponent θ that can be determined precisely for, e.g., sulfur and oxygen by IRMS, but not for metal(loid) elements due to the lower precision of MC-ICP-MS analysis and smaller isotopic variations. Here, using Mg as a test case, we compute a complete metrologically robust uncertainty budget for apparent θ values and, with reference to this, present a new measurement Approach that reduces uncertainty on θ values by 30%. This approach, namely, direct educt-product bracketing (sample−sample bracketing), allows apparent θ values of metal(loid) isotopes to be determined precisely enough to distinguish slopes in three-isotope space. For the example of Mg, we assess appropriate quality Control standards for interference-to-signal ratios and Report apparent θ values of carbonate−seawater pairs. We determined apparent θ values for marine biogenic carbonates, where the foraminifera Globorotalia menardii yields 0.514 ± 0.005 (2 SD), the coral Porites, 0.515 ± 0.006 (2 SD), and two specimens of the giant clam Tridacna gigas, 0.508 ± 0.007 (2 SD) and 0.509 ± 0.006 (2 SD), documenting differences in the uptake pathway of Mg among marine calcifiers. The capability to measure apparent θ values more precisely adds a new dimension to metal(loid) δ values, with the potential to allow us to resolve different modes of fractionation in industrial and natural processes. KW - Isotope fractionation KW - Delta value KW - Biogenic carbonates KW - Calcification KW - Magnesium isotope ratios KW - Measurement uncertainty KW - Sample-sample bracketing PY - 2019 DO - https://doi.org/10.1021/acs.analchem.9b02699 VL - 91 IS - 22 SP - 14314 EP - 14322 PB - ACS Publications AN - OPUS4-49818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rosenkranz, D. A1 - Kriegel, F. L. A1 - Mavrakis, E. A1 - Pergantis, S. A. A1 - Reichardt, P. A1 - Tentschert, J. A1 - Jakubowski, N. A1 - Laux, P. A1 - Panne, Ulrich A1 - Luch, A. T1 - Versatile dual-inlet sample introduction system for multi-mode single particle inductively coupled plasma mass spectrometry N2 - Metal-containing nanoparticles (NP) can be characterized with inductively coupled plasma mass spectrometers (ICP-MS) in terms of their size and number concentration by using the single-particle mode of the instrument (spICP-MS). The accuracy of measurement depends on the setup, operational conditions of the instrument and specific parameters that are set by the user. The transport efficiency of the ICP-MS is crucial for the quantification of the NP and usually requires a reference material with homogenous size distribution and a known particle number concentration. Currently, NP reference materials are available for only a few metals and in limited sizes. If particles are characterized without a reference standard, the results of both size and particle number may be biased. Therefore, a dual-inlet Setup for characterizing nanoparticles with spICP-MS was developed to overcome this problem. This setup is based on a conventional introduction system consisting of a pneumatic nebulizer (PN) for nanoparticle solutions and a microdroplet Generator (μDG) for ionic calibration solutions. A new and flexible interface was developed to facilitate the coupling of μDG, PN and the ICP-MS system. The interface consists of available laboratory components and allows for the calibration, nanoparticle (NP) characterization and cleaning of the arrangement, while the ICP-MS instrument is still running. Three independent analysis modes are available for determining particle size and number concentration. Each mode is based on a different calibration principle. While mode I (counting) and mode III (μDG) are known from the literature, mode II (sensitivity), is used to determine the transport efficiency by inorganic ionic Standard solutions only. It is independent of NP reference materials. The μDG based inlet system described here guarantees superior analyte sensitivities and, therefore, lower detection limits (LOD). The size dependent LODs achieved are less than 15 nm for all NP (Au, Ag, CeO2) investigated. KW - Spectrometer KW - Reference KW - Calibration PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536121 DO - https://doi.org/10.3791/61653 SN - 1940-087X IS - 163 SP - 1 EP - 19 PB - MyJoVE Corporation CY - Cambridge, MA, USA AN - OPUS4-53612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kader, A. A1 - Brangsch, J. A1 - Reimann, C. A1 - Kaufmann, Jan Ole A1 - Mangarova, D. B. A1 - Moeckel, J. A1 - Adams, L. C. A1 - Zhao, J. A1 - Saatz, Jessica A1 - Traub, Heike A1 - Buchholz, R. A1 - Karst, U. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Visualization and Quantification of the Extracellular Matrix in Prostate Cancer Using an Elastin Specific Molecular Probe N2 - One of the most commonly diagnosed cancers in men is prostate cancer (PCa). Understanding tumor progression can help diagnose and treat the disease at an early stage. Components of the extracellular matrix (ECM) play a key role in the development and progression of PCa. Elastin is an essential component of the ECM and constantly changes during tumor development. This article visualizes and quantifies elastin in magnetic resonance imaging (MRI) using a small molecule probe. Results were correlated with histological examinations. Using an elastin-specific molecular probe, we were able to make predictions about the cellular structure in relation to elastin and thus draw conclusions about the size of the tumor, with smaller tumors having a higher elastin content than larger tumors. Human prostate cancer (PCa) is a type of malignancy and one of the most frequently diagnosed cancers in men. Elastin is an important component of the extracellular matrix and is involved in the structure and organization of prostate tissue. The present study examined prostate cancer in a xenograft mouse model using an elastin-specific molecular probe for magnetic resonance molecular imaging. Two different tumor sizes (500 mm3 and 1000 mm3) were compared and analyzed by MRI in vivo and histologically and analytically ex vivo. The T1-weighted sequence was used in a clinical 3-T scanner to calculate the relative contrast enhancement before and after probe administration. Our results show that the use of an elastin-specific probe enables better discrimination between tumors and surrounding healthy tissue. Furthermore, specific binding of the probe to elastin fibers was confirmed by histological examination and laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS). Smaller tumors showed significantly higher signal intensity (p > 0.001), which correlates with the higher proportion of elastin fibers in the histological evaluation than in larger tumors. A strong correlation was seen between relative enhancement (RE) and Elastica–van Gieson staining (R2 = 0.88). RE was related to inductively coupled plasma–mass spectrometry data for Gd and showed a correlation (R2 = 0.78). Thus, molecular MRI could become a novel quantitative tool for the early evaluation and detection of PCa. KW - Magnetic resonance imaging KW - MRI KW - Molecular imaging KW - Cancer KW - LA-ICP-MS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538410 DO - https://doi.org/10.3390/biology10111217 VL - 10 IS - 11 SP - 1 EP - 14 PB - MDPI CY - Basel AN - OPUS4-53841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Golusda, L. A1 - Kühl, A. A. A1 - Lehmann, M. A1 - Dahlke, K. A1 - Mueller, S. A1 - Boehm-Sturm, P. A1 - Saatz, Jessica A1 - Traub, Heike A1 - Schnorr, J. A1 - Freise, C. A1 - Taupitz, M. A1 - Biskup, K. A1 - Blanchard, V. A1 - Klein, O. A1 - Sack, I. A1 - Siegmund, B. A1 - Paclik, D. T1 - Visualization of inflammation in experimental colitis by magnetic resonance imaging using very small superparamagnetic iron oxide particles N2 - Inflammatory bowel diseases (IBD) comprise mainly ulcerative colitis (UC) and Crohn´s disease (CD). Both forms present with a chronic inflammation of the (gastro) intestinal tract, which induces excessive changes in the composition of the associated extracellular matrix (ECM). In UC, the inflammation is limited to the colon, whereas it can occur throughout the entire gastrointestinal tract in CD. Tools for early diagnosis of IBD are still very limited and highly invasive and measures for standardized evaluation of structural changes are scarce. To investigate an efficient non-invasive way of diagnosing intestinal inflammation and early changes of the ECM, very small superparamagnetic iron oxide nanoparticles (VSOPs) in magnetic resonance imaging (MRI) were applied in two mouse models of experimental colitis: the dextran sulfate sodium (DSS)-induced colitis and the transfer model of colitis. For further validation of ECM changes and inflammation, tissue sections were analyzed by immunohistochemistry. For in depth ex-vivo investigation of VSOPs localization within the tissue, Europium-doped VSOPs served to visualize the contrast agent by imaging mass cytometry (IMC). VSOPs accumulation in the inflamed colon wall of DSS-induced colitis mice was visualized in T2* weighted MRI scans. Components of the ECM, especially the hyaluronic acid content, were found to influence VSOPs binding. Using IMC, colocalization of VSOPs with macrophages and endothelial cells in colon tissue was shown. In contrast to the DSS model, colonic inflammation could not be visualized with VSOP-enhanced MRI in transfer colitis. VSOPs present a potential contrast agent for contrast-enhanced MRI to detect intestinal inflammation in mice at an early stage and in a less invasive manner depending on hyaluronic acid content. KW - Inflammation KW - Imaging KW - Immunohistochemistry KW - MRI KW - Nanoparticle KW - Extracellular matrix KW - Laser ablation KW - ICP-MS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555395 DO - https://doi.org/10.3389/fphys.2022.862212 SN - 1664-042X VL - 13 IS - July 2022 SP - 1 EP - 15 PB - Frontiers Research Foundation CY - Lausanne AN - OPUS4-55539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Lippitz, Andreas A1 - Hodoroaba, Vasile-Dan A1 - Schmid, Thomas A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Zirconium permanent modifiers for graphite furnaces used in absorption spectrometry: understanding their structure and mechanism of action N2 - The mechanism of action of zirconium permanent modifiers on graphite surfaces was investigated in order to understand its influence on the analytical signal in atomic and molecular absorption spectrometry (AAS/MAS). For this, the molecule formation of CaF was studied, which is used for the indirect analytical determination of fluorine in high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS). The kinetics of this reaction was established by monitoring its molecular spectrum at different atomisation temperatures. An Arrhenius plot showed a pseudo-first order reaction with respect to fluorine (n = 1). An intermediate state was isolated, and its structure was elucidated by spectroscopic methods: scanning electron microscopy with energy dispersive X-ray spectroscopy (SEMEDX), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XANES and EXAFS), and Raman microspectroscopy. We propose here a mechanism, where ZrO2 acts as a heterogeneous catalyst: after a pyrolytic step, an intermediate state of ZrO(OCaF) is activated, and at higher temperatures, CaF(g) is released from the zirconium-coated graphite surface. No evidence of the formation of zirconium carbide was found. Consequently, as the CaF formation is catalysed by a heterogeneous catalyst, surface modifications with ZrO2 nanoparticles and ZrO xerogels were investigated in order to increase the surface area. Their influence was evaluated in the molecule formation of CaF, CaCl, CaBr, and CaI. Graphite furnace modification with zirconium oxide nanoparticles proves to be the best choice for fluorine analysis with a signal enhancement of more than eleven times with respect a non-coated graphite furnace. However, the influence of zirconium modifications in the analytical signals of Cl, and I is lower than the F signals or even negative in case of the Br. Understanding zirconium modifiers as heterogeneous catalysts offers a new perspective to AAS and MAS, and reveals the potential of surface analytical methods for development of improved permanent modifiers and graphite furnace coatings. KW - Zirconium KW - HR-CS-MAS KW - Graphite furnace KW - Nanoparticles KW - Xerogel KW - Calcium monofluoride KW - Absorption spectrometry PY - 2018 UR - https://pubs.rsc.org/en/content/articlelanding/2018/ja/c8ja00190a DO - https://doi.org/10.1039/C8JA00190A SN - 0267-9477 VL - 33 IS - 12 SP - 2034 EP - 2042 PB - Royal Society of Chemistry AN - OPUS4-46775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -