TY - JOUR A1 - Miropoltsev, M. A1 - Wegner, Karl David A1 - Häusler, I. A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute T1 - Influence of Hydrophilic Thiol Ligands of Varying Denticity on the Luminescence Properties and Colloidal Stability of Quaternary Semiconductor Nanocrystals N2 - Binary photoluminescent semiconductor nanocrystals (quantum dots, QDs) are one of the best studied fluorescent nanomaterials, and their unique optoelectronic properties paved the road to many applications in (bio)nanophotonics, optoelectronics, and photovoltaics. However, concerns related to their toxic constituents like cadmium or lead and the emerging interest in greener chemistry synthesis approaches hamper their future applicability. Interesting alternatives for some applications like biosensing or bioimaging are heavy-metal-free ternary QDs like AgInS2 (AIS), CuInS2 (CIS), and quaternary QDs such as AIS-ZnS (ZAIS). In this context, we explored the effect of ligand denticity on the organic-to-aqueous phase transfer of oleylamine-stabilized ZAIS QDs with the hydrophilic ligands mercaptopropionic acid (MPA), dihydrolipoic acid (DHLA), and 3-mercapto-2,2-bis(mercaptomethyl)propanoic acid (3MPA), bearing mono-, bi-, and trialkyl thiol groups. Spectroscopic studies of the resulting water-dispersible ZAIS QDs revealed a considerable influence of ligand denticity and ligand-to-QD ratio on the spectral position and width (FWHM; full width at half-maximum) of the photoluminescence (PL) bands, the PL quantum yields (PL QY), and the PL decay kinetics. Thiol capping and phase transfer resulted in a loss in PL by at least a factor of 2. The ligand-induced PL quenching observed particularly for ligands bearing two or three thiol groups was attributed to the facilitated formation of surface-bound disulfides. The best colloidal stability under high dilution conditions was observed for 3MPA. KW - Quantum dots KW - Ligand exchange KW - Lifetime analysis KW - Thiols PY - 2022 DO - https://doi.org/10.1021/acs.jpcc.2c05342 SN - 1932-7447 VL - 126 IS - 47 SP - 20101 EP - 20113 PB - ACS Publications AN - OPUS4-56707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Frenzel, Florian A1 - Weigert, Florian A1 - Andresen, Elina A1 - Grauel, Bettina A1 - Wegner, Karl David T1 - Semiconductor (SCNC) & Upconversion Nanocrystals (UCNC) – Optical Properties, Applications & Challenges N2 - Inorganic nanocrystals with linear and nonlinear luminescence in the ultraviolet, visible, near infrared and shortwave infrared like semiconductor quantum dots and spectrally shifting lanthanide-based nanophosphors have meanwhile found applications in the life and material sciences ranging from optical reporters for bioimaging and sensing over security barcodes to solid state lighting and photovoltaics. These nanomaterials commonly have increasingly sophisticated core/shell particle architectures with shells of different chemical composition and thickness to minimize radiationless deactivation at the particle surface that is usually the main energy loss mechanism [1]. For lanthanide-based spectral shifters, particularly for very small nanoparticles, also surface coatings are needed which protect near-surface lanthanide ions from luminescence quenching by high energy vibrators like O-H groups and prevent the disintegration of these nanoparticles under high dilution conditions. [2,3,4]. The identification of optimum particle structures requires quantitative spectroscopic studies focusing on the key performance parameter photoluminescence quantum yield [5,6], ideally flanked by single particle studies to assess spectroscopic inhomogeneities on a particle-to-particle level for typical preparation methods [7], Moreover, in the case of upconversion nanoparticles with a multi-photonic and hence, excitation power density (P)-dependent luminescence, quantitative luminescence studies over a broad P range are required to identify particle architectures that are best suited for applications in fluorescence assays up to fluorescence microscopy. Here, we present methods to quantify the photoluminescence of these different types of emitters in the vis/NIR/SWIR and as function of Pand demonstrate the importance of such measurements for a profound mechanistic understanding of the nonradiative deactivation pathways in semiconductor and upconversion nanocrystals of different size and particle architecture in different environments. T2 - 27th Annual Meeting of the Slovenian Chemical Society CY - Portoroz-Portorose, Slovenia DA - 21.09.2021 KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Surface chemistry KW - Single particle KW - Brightness KW - NIR KW - Synthesis KW - Semiconductur KW - Quantum dot KW - Nanocrystal KW - SWIR PY - 2021 AN - OPUS4-53723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Le Guevel, X. A1 - Wegner, Karl David A1 - Würth, Christian A1 - Baulin, V. A. A1 - Musnier, B. A1 - Josserand, V. A1 - Resch-Genger, Ute A1 - Koll, J-C T1 - Tailoring the SWIR emission of gold nanoclusters by surface ligand rigidification and their application in 3D bioimaging N2 - The influence of solvent polarity and surface ligand rigidification on the SWIR emission profile of gold nanoclusters with an anistropic surface was investigated. A strong enhancement of the SWIR emission band at 1200 nm was observed when measuring in different local environments: in solution, in polymer composites, and in solids. SWIR in vivo imaging of mice assisted by deep learning after intravenous administration of these gold nanoclusters provides high definition pseudo-3D views of vascular blood vessels. KW - Nano KW - Nanomaterial KW - Metal cluster KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - NIR KW - SWIR KW - Ligand KW - Gold KW - Mechanism KW - Charge transfer KW - Enhancement strategy KW - Imaging KW - Application KW - Contrast agent PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543582 DO - https://doi.org/10.1039/D1CC06737K VL - 58 IS - 18 SP - 2967 EP - 2970 PB - RSC AN - OPUS4-54358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dhamo, Lorena A1 - Wegner, Karl David A1 - Würth, Christian A1 - Häusler, I. A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute T1 - Assessing the influence of microwave-assisted synthesis parameters and stabilizing ligands on the optical properties of AIS/ZnS quantum dots N2 - Luminescent semiconductor quantum dots (QDs) are frequently used in the life and material sciences as reporter for bioimaging studies and as active components in devices such as displays, light-emitting diodes, solar cells, and sensors. Increasing concerns regarding the use of toxic elements like cadmium and lead, and hazardous organic solvents during QD synthesis have meanwhile triggered the search for heavy-metal free QDs using green chemistry syntheses methods. Interesting candidates are ternary AgInS2 (AIS) QDs that exhibit broad photoluminescence (PL) bands, large effective Stokes shifts, high PL quantum yields (PL QYs), and long PL lifetimes, which are particularly beneficial for applications such as bioimaging, white light-emitting diodes, and solar concentrators. In addition, these nanomaterials can be prepared in high quality with a microwave-assisted (MW) synthesis in aqueous solution. The homogeneous heat diffusion and instant temperature rise of the MW synthesis enables a better control of QD nucleation and growth and thus increases the batch-to-batch reproducibility. In this study, we systematically explored the MW synthesis of AIS/ZnS QDs by varying parameters such as the order of reagent addition, precursor concentration, and type of stabilizing thiol ligand, and assessed their influence on the optical properties of the resulting AIS/ZnS QDs. Under optimized synthesis conditions, water-soluble AIS/ZnS QDs with a PL QY of 65% and excellent colloidal and long-term stability could be reproducible prepared. KW - Quantum dots KW - Microwave-assisted synthesis KW - AgInS KW - Aqueous synthesis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567091 DO - https://doi.org/10.1038/s41598-022-25498-3 SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 11 PB - Nature Publishing Group CY - London AN - OPUS4-56709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geißler, Daniel A1 - Wegner, Karl David A1 - Fischer, C. A1 - Resch-Genger, Ute T1 - Exploring Simple Particle-Based Signal Amplification Strategies in a Heterogeneous Sandwich Immunoassay with Optical Detection N2 - Heterogeneous sandwich immunoassays are widely used for biomarker detection in bioanalysis and medical diagnostics. The high analyte sensitivity of the current “gold standard” enzyme-linked immunosorbent assay (ELISA) originates from the signal-generating enzymatic amplification step, yielding a high number of optically detectable reporter molecules. For future point-of-care testing (POCT) and point-of-need applications, there is an increasing interest in more simple detection strategies that circumvent time-consuming and temperature-dependent enzymatic reactions. A common concept to aim for detection limits comparable to those of enzymatic amplification reactions is the usage of polymer nanoparticles (NP) stained with a large number of chromophores. We explored different simple NP-based signal amplification strategies for heterogeneous sandwich immunoassays that rely on an extraction-triggered release step of different types of optically detectable reporters. Therefore, streptavidinfunctionalized polystyrene particles (PSP) are utilized as carriers for (i) the fluorescent dye coumarin 153 (C153) and (ii) hemin (hem) molecules catalyzing the luminol reaction enabling chemiluminescence (CL) detection. Additionally, (iii) NP labeling with hemin-based microperoxidase MP11 was assessed. For each amplification approach, the PSP was first systematically optimized regarding size, loading concentration, and surface chemistry. Then, for an immunoassay for the inflammation marker C- eactive protein (CRP), the analyte sensitivity achievable with optimized PSP ystems was compared with the established ELISA concept for photometric and CL detection. Careful optimization led to a limit of detection (LOD) of 0.1 ng/mL for MP11-labeled PSP and CL detection, performing similarly well to a photometric ELISA (0.13 ng/mL), which demonstrates the huge potential of our novel assay concept. KW - Nanoparticle KW - Fluorescence KW - Immunoassay KW - Quality assurance KW - Antibody KW - Polymer KW - Dye KW - Signal enhancement KW - CRP KW - Biosensing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597853 DO - https://doi.org/10.1021/acs.analchem.3c03691 SN - 1520-6882 VL - 96 IS - 13 SP - 5078 EP - 5085 PB - American Chemical Society CY - Columbus, Ohio AN - OPUS4-59785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Musnier, B. A1 - Wegner, Karl David A1 - Comby-Zerbino, C. A1 - Trouillet, V. A1 - Jourdan, M. A1 - Häusler, I. A1 - Antoine, R. A1 - Coll, J.-L. A1 - Resch-Genger, Ute A1 - Le Guevel, X. T1 - High photoluminescence of shortwave infrared-emitting anisotropic surface charged gold nanoclusters N2 - Incorporating anisotropic surface charges on atomically precise gold nanoclusters (Au NCs) led to a strong absorption in the nearinfrared region and could enable the formation of self-assembled Au NCs xhibiting an intense absorption band at ∼1000 nm. This surface modification showed a striking enhancement of the photoluminescence in the Shortwave Infrared (SWIR) region with a quantum yield as high as 6.1% in water. KW - Gold nanoclusters KW - SWIR photoluminescence KW - Self-assembly PY - 2019 DO - https://doi.org/10.1039/C9NR04120F VL - 11 IS - 25 SP - 12092 EP - 12096 PB - Royal Society of Chemistry AN - OPUS4-48305 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohammad, W. A1 - Wegner, Karl David A1 - Comby-Zerbino, C. A1 - Trouillet, V. A1 - Ogayer, M. P. A1 - Coll, J.-L. A1 - Marin, R. A1 - Jaque Garcia, D. A1 - Resch-Genger, Ute A1 - Antoine, R. A1 - Le Guevel, X. T1 - Enhanced brightness of ultra-small gold nanoparticles in the second biological window through thiol ligand shell control N2 - Gold-based nanoparticles below 2 nm in size are promising as luminescent probes for in vivo bioimaging, owing to their brightness and rapid renal clearance. However, their use as contrast agents in the near-infrared II (NIR-II, 1000–1700 nm) range remains challenging due to their low photoluminescence (PL) quantum yield. To address this, PL enhancement can be achieved by either rigidifying the ligand-shell structure or increasing the size of the ligand shell. In this study, we synthesized ultra-small gold nanoparticles stabilized by co-ligands, namely monothiol and short dithiol molecules. By precisely controlling the amount of reducing agent used during particle preparation, we successfully modulated the physicochemical properties of the co-ligand shell, including its size, composition, and structure. Consequently, we achieved a remarkable 60-fold increase in the absorption cross-section at 990 nm while maintaining the small size of the 1.5-nm metal core. The analytical and optical characterization of our thiol-capped gold nanoparticles indicates that the ligand shell size is governed by the quantity of the reducing agent, which, in turn, impacts the balance between radiative and non-radiative processes, thereby influencing the PL quantum yield. KW - Gold nanocluster KW - NIR-II fluorescence KW - SWIR KW - Nanomaterial design KW - Calibrated fluorescence measurements PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588117 DO - https://doi.org/10.1039/D3TC03021K SN - 2050-7526 VL - 11 IS - 42 SP - 14714 EP - 14724 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goryacheva, O. A. A1 - Wegner, Karl David A1 - Sobolev, A. M. A1 - Häusler, I. A1 - Gaponik, N. A1 - Gorycheva, I. Y. A1 - Resch-Genger, Ute T1 - Influence of particle architecture on the photoluminescence properties of silica‑coated CdSe core/shell quantum dots N2 - Light-emitting nanoparticles like semiconductor nanocrystals (termed quantum dots, QDs) are promising candidates for biosensing and bioimaging applications based on their bright and stable photoluminescent properties. As high-quality QDs are often synthesized in organic solvents, strategies needed to be developed to render them water-dispersible without affecting their optical properties and prevent changes in postmodification steps like the biofunctionalization with antibodies or DNA. Despite a large number of studies on suitable surface modification procedures, the preparation of water-soluble QDs for nanobiotechnology applications still presents a challenge. To highlight the advantages of surface silanization, we systematically explored the influence of the core/multishell architecture of CdSe/CdS/ZnS QDs and the silanization conditions on the optical properties of the resulting silanized QDs. Our results show that the optical properties of silica-coated CdSe/CdS/ZnS QDs are best preserved in the presence of a thick CdS (6 monolayers (ML)) intermediate shell, providing a high photoluminescence quantum yield (PL QY), and a relatively thick ZnS (4.5 ML) external shell, effectively shielding the QDs from the chemical changes during silica coating. In addition to the QD core/shell architecture, other critical parameters of the silica-coating process, that can have an influence on the optical properties of the QD, include the choice of the surfactant and its concentration used for silica coating. The highest PL QY of about 46% was obtained by a microemulsion silica-coating procedure with the surfactant Brij L4, making these water-dispersible QDs to wellsuited optical reporters in future applications like fluorescence immunoassays, biomedicine, and bioimaging. KW - Nano KW - Nanomaterial KW - Particle KW - Semiconductor KW - Quantum do KW - Photoluminescence KW - Photophysics KW - Lifetime KW - Sensor KW - Mechanism KW - Surface KW - Shell KW - Silica KW - Silanization KW - Synthesis PY - 2022 DO - https://doi.org/10.1007/s00216-022-04005-7 SP - 1 EP - 13 PB - Springer AN - OPUS4-54546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bertorelle, F. A1 - Wegner, Karl David A1 - Berkulic, M. P. A1 - Fakhouri, H. A1 - Comby-Zerbino, C. A1 - Sagar, A. A1 - Bernadó, P. A1 - Resch-Genger, Ute A1 - Bonacic-Koutecký, V. A1 - Le Guével, X. A1 - Antoine, R. T1 - Tailoring the NIR-II Photoluminescence of Single Thiolated Au25 Nanoclusters by Selective Binding to Proteins N2 - Atomically precise gold nanoclusters are a fascinating class of nanomaterials that exhibit molecule-like properties and have outstanding photoluminescence (PL). Their ultrasmall size, molecular chemistry, and biocompatibility make them extremely appealing for selective biomolecule labeling in investigations of biological mechanisms at the cellular and anatomical levels. In this work, we report a simple route to incorporate a preformed Au25 nanocluster into a model bovine serum albumin (BSA) protein. A new approach combining small-angle X-ray scattering and molecular modeling provides a clear localization of a single Au25 within the protein to a cysteine residue on the gold nanocluster surface. Attaching Au25 to BSA strikingly modifies the PL properties with enhancement and a redshift in the second near-infrared (NIR-II) window. This study paves the way to conrol the design of selective sensitive probes in biomolecules through a ligand-based strategy to enable the optical detection of biomolecules in a cellular environment by live imaging. KW - Fluorescence KW - Aggregation KW - Signal enhancement KW - Cluster KW - Nano KW - Metal KW - NIRII KW - SWIR KW - Sensor KW - Quantum yield KW - Lifetime KW - Photophysics KW - Synthesis KW - Protein KW - Imaging KW - Bioimaging KW - Ligand KW - Gold PY - 2022 DO - https://doi.org/10.1002/chem.202200570 SN - 1521-3765 VL - 28 IS - 39 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-55077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Frenzel, Florian A1 - Grauel, Bettina A1 - Weigert, Florian A1 - Wegner, Karl David T1 - Nanocrystals with Luminescence in the vis, NIR and SWIR – Photophysics and Applications N2 - Luminescent nanocrystals like core/shell semiconductor quantum dots and lanthanide doped nanophosphors as well as gold nanoclusters with emission in the visible (vis) and particularly in the near infrared (NIR) and short wavelength infrared (SWIR) region have been increasingly used as reporters in the life sciences and for bioimaging studies in the last years. This has led to sophisticated core-shell particle architectures of different chemical composition utilizing semiconductor quantum dots and lanthanide-based nanocrystals and initiated the design of gold nanoclusters with different ligands. In addition, this led to an increasing number of quantitative spectroscopic studies focusing on the key performance parameter photoluminescence quantum yield to identify optimum particle structures. In the following, an overview of different classes of nanocrystalline emitters and their photophysics is provided and examples for the absolute characterization of the photoluminescence properties of these different vis/NIR/SWIR emitters are shown including excitation power density-dependent studies on the ensemble and single particle level. Also, the impact of such measurements on a profound mechanistic understanding of the underlying nonradiative deactivation pathways is highlighted as required for reporter design. T2 - MIMIT 2019 CY - Peking, People's Republic of China DA - 18.10.2019 KW - Fluorescence KW - Quantum yield KW - Integrating sphere spectroscopy KW - Dye KW - Nanocrystal KW - NIR KW - SWIR KW - Quantum dot KW - Lanthanide nanoparticle KW - Old nanocrystal KW - Imaging KW - Lifetime KW - Nanoparticle PY - 2019 AN - OPUS4-49361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wegner, Karl David A1 - Resch-Genger, Ute T1 - The 2023 Nobel Prize in Chemistry: Quantum dots N2 - The 2023 Nobel Prize in Chemistry was awarded to Aleksey I. Ekimov (prize share 1/3), Louis E. Brus (prize share 1/3), and Moungi G. Bawendi (prize share 1/3) for groundbreaking inventions in the field of nanotechnology, i.e., for the discovery and synthesis of semiconductor nanocrystals, also termed quantum dots, that exhibit size-dependent physicochemical properties enabled by quantum size effects. This feature article summarizes the main milestones of the discoveries and developments of quantum dots that paved the road to their versatile applications in solid-state lighting, display technology, energy conversion, medical diagnostics, bioimaging, and image-guided surgery. KW - Quantum dots KW - Semiconductor nanocrystals KW - Luminescence KW - Quantitative spectroscopy KW - Quantum yield KW - Advanced nanomaterials KW - Quality assurance KW - Energy transfer PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597843 DO - https://doi.org/10.1007/s00216-024-05225-9 VL - 2024 SP - 1 EP - 11 PB - Springer CY - Cham AN - OPUS4-59784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Wegner, Karl David A1 - Kalot, G. A1 - Busser, B. A1 - Pliquett, J. A1 - Köster, U. A1 - Koll, J. C. A1 - Denat, F. A1 - Bodio, E. A1 - Goze, C. A1 - Sacey, L. T1 - NIR aza-BODIPY: a new vector for boron neutron capture therapy (BNCT) N2 - Boron neutron capture therapy (BNCT) relies on the activation of 10B by thermal neutrons, which results in small highly energetic particle emission inducing cancer cells damage. However, in order to overcome the limits of the currently used BNCT agents, it is necessary to design new systems, which can specifically accumulate and deliver a sufficient amount of 10B in tumors. In this study, we designed a 10B-BSH-containing aza-BODIPY (aza-SWIR-BSH). It enabled the efficient vectorization of clinically used 10B-BSH to the tumor, resulting in higher therapeutic activity than the 10B-BSH alone. T2 - EMIM 2021 CY - Göttingen, Germany DA - 24.08.2021 KW - Flourescence KW - Optical probe KW - Dye KW - Photophysics KW - Quantum yield KW - Mechanism KW - NIR KW - SWIR KW - Imaging KW - Method KW - Quality assurance KW - BODIPY KW - Boron Neutron Capture Therapy (BNCT) KW - Medicine KW - Life sciences PY - 2021 AN - OPUS4-53731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Soares, J. X. A1 - Wegner, Karl David A1 - Ribeiro, D. S. M. A1 - Melo, A. A1 - Häusler, I. A1 - Santos, J. L. M. A1 - Resch-Genger, Ute T1 - Rationally designed synthesis of bright AgInS2/ZnS quantum dots with emission control N2 - In the blossoming field of Cd-free semiconductor quantum dots (QDs), ternary I–III–VI QDs have received increasing attention due to the ease of the environmentally friendly synthesis of high-quality materials in water, their high photoluminescence (PL) Quantum yields (QYs) in the red and near infrared (NIR) region, and their inherently low toxicity. Moreover, their oxygen-insensitive long PL lifetimes of up to several hundreds of nanoseconds close a gap for applications exploiting the compound-specific parameter PL lifetime. To overcome the lack of reproducible synthetic methodologies and to enable a design-based control of their PL properties, we assessed and modelled the synthesis of high-quality MPA-capped AgInS2/ZnS (AIS/ZnS) QDs. Systematically refined Parameters included reaction time, temperature, Ag:In ratio, S:In ratio, Zn:In ratio, MPA:In ratio, and pH using a design-of-experiment approach. Guidance for the optimization was provided by mathematical models developed for the application-relevant PL parameters, maximum PL wavelength, QY, and PL lifetime as well as the elemental composition in terms of Ag:In:Zn ratio. With these experimental data-based models, MPA:In and Ag:In ratios and pH values were identified as the most important synthesis parameters for PL Control and an insight into the connection of these parameters could be gained. Subsequently, the experimental conditions to synthetize QDs with tunable emission and high QY were predicted. The excellent agreement between the predicted and experimentally found PL features confirmed the reliability of our methodology for the rational design of high quality AIS/ZnS QDs with defined PL features. This approach can be straightforwardly extended to other ternary and quaternary QDs and to doped QDs. KW - Modelling KW - Nanoparticle KW - AIS KW - Semiconductor quantum dot KW - Design of experiment KW - Photoluminescence KW - Quantum yield KW - Surface chemistry KW - Synthesis KW - Lifetime PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510075 DO - https://doi.org/10.1007/s12274-020-2876-8 VL - 13 IS - 9 SP - 2438 EP - 2450 PB - Springer AN - OPUS4-51007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Billimoria, K. A1 - Diaz Fernandez, Y. A. A1 - Andresen, Elina A1 - Sorzabal-Bellido, I. A1 - Huelga-Suarez, G. A1 - Bartczak, D. A1 - Ortiz de Solórzano, C. A1 - Resch-Genger, Ute A1 - Goenaga Infante, H. T1 - The potential of bioprinting for preparation of nanoparticle-based calibration standards for LA-ICP-ToF-MS quantitative imaging N2 - This paper discusses the feasibility of a novel strategy based on the combination of bioprinting nano-doping technology and laser ablation-inductively coupled plasma time-of-flight mass spectrometry analysis for the preparation and characterization of gelatin- based multi-element calibration standards suitable for quantitative imaging. To achieve this, lanthanide up-conversion nanoparticles were added to a gelatin matrix to produce the bioprinted calibration standards. The features of this bioprinting approach were com- pared with manual cryosectioning standard preparation, in terms of throughput, between batch repeatability and elemental signal homogeneity at 5 μm spatial resolution. By using bioprinting, the between batch variability for three independent standards of the same concentration of 89 Y (range 0–600 mg/kg) was reduced to 5% compared to up to 27% for cryosectioning. On this basis, the relative standard deviation ( RSD ) obtained between three independent calibration slopes measured within 1 day also reduced from 16% (using cryosectioning ) to 5% (using bioprinting), supporting the use of a single standard preparation replicate for each of the concentrations to achieve good calibration performance using bioprinting. This helped reduce the analysis time by approximately 3-fold. With cryosectioning each standard was prepared and sectioned individually, whereas using bio-printing it was possible to have up to six different standards printed simultaneously, reducing the preparation time from approximately 2 h to under 20 min (by approxi- mately 6-fold). The bio-printed calibration standards were found stable for a period of 2 months when stored at ambient temperature and in the dark. KW - Environmental analysis KW - LA-ICP-MS KW - Lanthanide KW - Tag KW - Fluorescence KW - Nanoparticles KW - Reference material KW - Quality assurance KW - 3D-printing KW - Synthesis KW - Production KW - Multimodal PY - 2022 DO - https://doi.org/10.1093/mtomcs/mfac088 SN - 1756-591X VL - 14 IS - 12 SP - 1 EP - 9 PB - Oxford University Press CY - Oxford AN - OPUS4-57018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Andresen, Elina A1 - Würth, Christian A1 - Weigert, Florian A1 - Frenzel, Florian T1 - Functional Luminophores – From Photophysics to Standardized Luminescence Measurements N2 - Inorganic nanocrystals with linear and nonlinear luminescence in the ultraviolet, visible, near infrared and short-wave infrared like semiconductor quantum dots and spectrally shifting lanthanide-based nanophosphors have meanwhile found applications in the life and material sciences ranging from optical reporters for bioimaging and sensing over security barcodes to solid state lighting and photovoltaics. These nanomaterials commonly have increasingly sophisticated core/shell particle architectures with shells of different chemical composition and thickness to minimize radiationless deactivation at the particle surface that is usually the main energy loss mechanism [1]. For lanthanide-based spectral shifters, particularly for very small nanoparticles, also surface coatings are needed which protect near-surface lanthanide ions from luminescence quenching by high energy vibrators like O-H groups and prevent the disintegration of these nanoparticles under high dilution conditions. [2,3,4]. The identification of optimum particle structures requires quantitative spectroscopic studies focusing on the key performance parameter photoluminescence quantum yield [5,6], ideally flanked by single particle studies to assess spectroscopic inhomogeneities on a particle-to-particle level for typical preparation methods [7,8], Moreover, in the case of upconversion nanoparticles with a multi-photonic and hence, excitation power density (P)-dependent luminescence, quantitative luminescence studies over a broad P range are required to identify particle architectures that are best suited for applications in fluorescence assays up to fluorescence microscopy. Here, we present methods to quantify the photoluminescence of these different types of emitters in the vis/NIR/SWIR and as function of P and demonstrate the importance of such measurements for a profound mechanistic understanding of the nonradiative deactivation pathways in semiconductor and upconversion nanocrystals of different size and particle architecture in different environments. T2 - Eingeladener Vortrag Uni Erlangen CY - Erlangen, Germany DA - 18.01.2023 KW - Semiconductor quantum dot KW - Upconversion nanocrystal KW - Luminescence KW - Quantitative spectroscopy KW - Photophysics KW - Quality assurance KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Standard KW - Reference material KW - Surface analysis KW - Quantification PY - 2023 AN - OPUS4-57011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Tavernaro, Isabella A1 - Nirmalananthan-Budau, Nithiya T1 - New project on the quantification of functional groups (FGS) on nanomaterials N2 - The surface chemistry of nanomaterials controls their interaction with the environment and biological species and their fate and is hence also relevant for their potential toxicity. This has meanwhile led to an increasing interest in validated and preferably standardized methods for the determination and quantification of surface functionalities on nanomaterials and initiated different standardization projects within ISO/TC 229 and IEC/TC 113 as well as interlaboratory comparisons (ILCs) of different analytical methods for the quantification of surface coatings by OECD. Here we present the results of a first ILC on the quantification of the amount of amino functionalities on differently sized inorganic nanoparticles done by division Biophotonics and the National Research Council of Canada (NRC) and the PWI 19257 on the Characterization and Quantification of Surface Functional Groups and Coatings on Nanoobjects approved by ISO/TC 229 (WG2) in fall 2022 that will result in a VAMAS study on this topic organized by division Biophotonics. Key words: nanoparticles, surface analysis, surface functional groups, quantification, optical assay, qNMR, VAMAS, standardization, ICL, quality assurance, reference material. T2 - Eingeladener Vortrag Universität Erlangen CY - Erlangen, Germany DA - 18.01.2023 KW - Quality assurance KW - Nano KW - Particle KW - Standard KW - Reference material KW - Surface analysis KW - Quantification KW - Interlaboratory comparison KW - Standardization KW - VAMAS PY - 2023 AN - OPUS4-57044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Applications of photoluminescence lifetime measurements in the life and material sciences N2 - Bioanalytical, diagnostic, and security applications require the fast and sensitive determination of a steadily increasing number of analytes or events in parallel in a broad variety of detection formats and increased sensitivities. This – flanked by recent technical advancements and the availability of simple to use, commercial time-resolved photoluminescence measuring devices at reasonable costs - calls for the exploitation of the species- and environment-specific photoluminescence parameter luminescence lifetime. In this context, time-resolved photoluminescence measurements of different classes of molecular and nanocrystalline emitter and luminescent particles in different time windows are presented and examples for applications such as lifetime multiplexing and barcoding in conjunction with fluorescence lifetime imaging microscopy (FLIM) and flow cytometry are given. T2 - Eingeladener Vortrag bei dem Workshop von Picoquant „Time-resolved fluorescence“ CY - Berlin, Germany DA - 17.11.2022 KW - Dye KW - Quantum dot KW - Upconversion nanocrystal KW - Luminescence KW - Quantitative spectroscopy KW - Photophysics KW - Quality assurance KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Standard KW - Reference material PY - 2022 AN - OPUS4-57048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Nirmalananthan-Budau, Nithiya A1 - Tavernaro, Isabella A1 - Kläber, Christoph A1 - Kunst, Alexandra T1 - Design, characterization, and application of fluorescent sensor particles N2 - pH and oxygen are amongst the most important and frequently measured analytes in the life and material sciences, indicating, e.g., diseases and corrosion processes. This includes the optical monitoring of pH in living cells for studying cellular internalization pathways, such as phagocytosis, endocytosis, and receptor ligand internalization with the aid of molecular and nanoscale fluorescent sensors. Nanoparticle (NP)-based sensors, that are labeled or stained with a multitude of sensor dyes, have several advantages as compare to conventional molecular probes like enhanced brightness, i.e., amplified signals, ease of designing ratiometric systems by combining analyte sensitive and inert reference dyes, and increased photostability. Moreover, this can enable the use of hydrophobic dyes in aqueous environments. Versatile templates and carriers for the fabrication of nanosensors by the staining and/or labelling with different fluorophores and sensor molecules or surface functionalized NP like silica (SiO2-NP) and polystyrene (PS-NP) particles provide. Here we present the design of a versatile platform of color emissive nanosensors and stimuli-responsive microparticles for the measurement of pH, oxygen, and other targets utilizing both types of matrices and sets of spectrally distinguishable sensor and reference dyes and their characterization and demonstrate the applicability of representative sensor particle for cellular studies. T2 - Vortrag bei dem Projekttreffen MicraGen CY - Copenhagen, Denmark DA - 18.08.2022 KW - Dye KW - Luminescence KW - Quantitative spectroscopy KW - Photophysics KW - Quality assurance KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Standard KW - Integrating sphere spectroscopy KW - Sensor KW - pH KW - Oxygen KW - Microfluidics KW - Cancer KW - Cell KW - Life sciences PY - 2022 AN - OPUS4-57049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, R. A1 - Zhenlong, F. A1 - Yang, J. A1 - Ansari, A. A1 - Ou, Jun A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Retracted article: Effect of Ca2+ doping on the upconversion luminescence properties of NaYF4:Yb3+/Tm3+ nanoparticles and study of its temperature measurement performance N2 - A solvothermal method was used to prepare a series of Yb3+/Tm3+/Ca2+ co-doped NaYF4 nanoparticles with different Ca2+ contents. Strong upconversion blue fluorescence could be observed under 980 nm laser excitation of the samples. The effect of different Ca2+ contents on the luminescence intensity was investigated, and it was found that the UV-vis upconversion luminescence increased and then decreased with an increasing Ca2+ concentration during the increase of the Ca2+ content from 0 mol% to 25 mol%, reaching the strongest fluorescence at 15 mol%, which was up to about 28 times stronger than that without Ca2+ doping. Furthermore, the mechanism was investigated, and it was found that the doping of Ca2+ disrupted the symmetry of the crystal field, resulting in a significant enhancement of the overall fluorescence. Applied to fluorescence intensity ratio thermometry, the absolute and relative sensitivities are as high as 0.0418 K−1 and 2.31% K−1, respectively, with a minimum temperature resolution of 0.0129 K. KW - Sensor KW - Temperature KW - Lanthanide KW - Luminescence KW - Nanoparticles KW - Upconversion KW - Advanced materials PY - 2022 DO - https://doi.org/10.1039/D2CE00562J SN - 1466-8033 VL - 24 IS - 27 SP - 4887 EP - 4898 PB - Royal Society of Chemistry CY - London AN - OPUS4-56952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholtz, Lena A1 - Tavernaro, Isabella A1 - Eckert, J. G. A1 - Lutowski, M. A1 - Geißler, D. A1 - Hertwig, A. A1 - Hidde, G. A1 - Bigall, N. C. A1 - Resch-Genger, Ute T1 - Influence of nanoparticle encapsulation and encoding on the surface chemistry of polymer carrier beads N2 - Surface-functionalized polymer beads encoded with molecular luminophores and nanocrystalline emitters such as semiconductor nanocrystals, often referred to as quantum dots (QDs), or magnetic nanoparticles are broadly used in the life sciences as reporters and carrier beads. Many of these applications require a profound knowledge of the chemical nature and total number of their surface functional groups (FGs), that control bead charge, colloidal stability, hydrophobicity, and the interaction with the environment and biological systems. For bioanalytical applications, also the number of groups accessible for the subsequent functionalization with, e.g., biomolecules or targeting ligands is relevant. In this study, we explore the influence of QD encoding on the amount of carboxylic acid (COOH) surface FGs of 2 μm polystyrene microparticles (PSMPs). This is done for frequently employed oleic acid and oleylamine stabilized, luminescent core/shell CdSe QDs and two commonly used encoding procedures. This included QD addition during bead formation by a thermally induced polymerization reaction and a post synthetic swelling procedure. The accessible number of COOH groups on the surface of QD-encoded and pristine beads was quantified by two colorimetric assays, utilizing differently sized reporters and electrostatic and covalent interactions. The results were compared to the total number of FGs obtained by a conductometric titration and Fourier transform infrared spectroscopy (FTIR). In addition, a comparison of the impact of QD and dye encoding on the bead surface chemistry was performed. Our results demonstrate the influence of QD encoding and the QD-encoding strategy on the number of surface FG that is ascribed to an interaction of the QDs with the carboxylic acid groups on the bead surface. These findings are of considerable relevance for applications of nanoparticle-encoded beads and safe-by-design concepts for nanomaterials. KW - Optical spectroscopy KW - Particle KW - Optical assay KW - IR spectroscopy; conductometry KW - Fluorescence KW - Quantum yield KW - Quality assurance KW - Nano KW - Synthesis KW - Surface chemistry KW - Quantification KW - Method PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581502 DO - https://doi.org/10.1038/s41598-023-38518-7 SN - 2045-2322 VL - 13 IS - 1 SP - 1 EP - 15 PB - Springer Nature AN - OPUS4-58150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, J. A1 - Güttler, Arne A1 - Schneider, T. A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Fluorescence Quantum Yield Standards for the UV/Visible/NIR: Development, Traceable Characterization, and Certification N2 - The rational design of next generation molecular and nanoscale reporters and the comparison of different emitter classes require the determination of the fluorometric key performance parameter fluorescence quantum yield (Φf), i.e., the number of emitted photons per number of absorbed photons. Main prerequisites for reliable Φf measurements, which are for transparent luminophore solutions commonly done relative to a reference, i.e., a fluorescence quantum yield standard of known Φf, are reliable and validated instrument calibration procedures to consider wavelength-, polarization-, and time-dependent instrument specific signal contributions, and sufficiently well characterized fluorescence quantum yield standards. As the standard’s Φf value directly contributes to the calculation of the sample’s Φf, its accuracy presents one of the main sources of uncertainty of relative Φf measurements. To close this gap, we developed a first set of 12 fluorescence quantum yield standards, which absorb and emit in the wavelength region of 330−1000 nm and absolutely determined their Φf values with two independently calibrated integrating sphere setups. Criteria for standard selection and the configuration of these novel fluorescence reference materials are given, and the certification procedure is presented including homogeneity and stability studies and the calculation of complete uncertainty budgets for the certified Φf values. The ultimate goal is to provide the community of fluorescence users with available reference materials as a basis for an improved comparability and reliability of quantum yield data since the measurement of this spectroscopic key property is an essential part of the characterization of any new emitter. KW - Optical spectroscopy KW - Traceability KW - Reference product KW - Dye KW - Fluorescence KW - Quantum yield KW - Reference material KW - Reference data KW - Certification KW - Quality assurance PY - 2023 DO - https://doi.org/10.1021/acs.analchem.2c05530 VL - 95 SP - 5671 EP - 5677 PB - American Chemical Society AN - OPUS4-58151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Forschung in einer Bundesoberbehörde wie der BAM N2 - Die Bundesanstalt für Materialforschung und -prüfung (BAM) ist eine forschende Bundesoberbehörde und Einrichtung der Ressortforschung der Bundesrepublik Deutschland. Unter ihrer Leitlinie „Sicherheit in Technik und Chemie“ ist sie zuständig für die öffentliche technische Sicherheit und für metrologische Aufgaben in der Chemie. Das Aufgabenspektrum der BAM, das sich an aktuellen Fragestellungen aus Wissenschaft, Wirtschaft, Politik und Normung orientiert, bietet sehr viele interessante Tätigkeitsfelder für Naturwissenschaftler*Innen und Ingenieur*Innen. T2 - WIFO Leipzig 2023 CY - Leipzig, Germany DA - 05.09.2023 KW - Quality assurance KW - Optical spectroscopy KW - Certification KW - Reference product KW - Integrating sphere spectroscopy KW - Fluorescence KW - Quantum yield KW - Reference material KW - Reference data KW - Traceability KW - Nano KW - Particle KW - Analytical chemistry KW - Sensor KW - Safety PY - 2023 AN - OPUS4-58397 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Potopnyk, M. A1 - Mech-Piskorz, J. A1 - Angulo, G. A1 - Ceborska, M. A1 - Luboradzki, R. A1 - Andresen, Elina A1 - Gajek, A. A1 - Wisniewska, A. A1 - Resch-Genger, Ute T1 - Aggregation/Crystallization-Induced Emission in Naphthyridine-Based Carbazolyl-Modified Donor-Acceptor Boron Dyes Tunable by Fluorine Atoms N2 - Four donor-acceptor boron difluoride complexes based on the carbazole electron donor and the [1,3,5,2]oxadiazaborinino[3,4-a][1,8]naphthyridine acceptor were designed, synthesized, and systematically spectroscopically investigated in solutions, in the solid states, and dye-doped polymer films. The dyes exhibit an intense blue to red solid-state emission with photoluminescence quantum yields of up to 56% in pure dye samples and 86% in poly(methyl methacrylate) films. All boron complexes show aggregation-induced emission and reversible mechanofluorochromism. The optical properties of these dyes and their solid state luminescence can be tuned by substitution pattern, i.e., the substituents at the naphthyridine unit. Exchange of CH3- for CF3-groups does not only increase the intramolecular charge transfer character, but also provides a crystallization-induced emission enhancement. KW - Spectroscopy KW - Dye KW - Luminescence KW - Sensor KW - Fluorescence KW - Quantum yield KW - Lifetime KW - Quality assurance KW - Synthesis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597426 DO - https://doi.org/10.1002/chem.202400004 SN - 0947-6539 SP - 1 EP - 12 PB - Wiley VHC-Verlag AN - OPUS4-59742 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Labrador-Paez, Lucia, L. A1 - Kankare, J. A1 - Hyppanen, I. A1 - Soukka, T. A1 - Andresen, Elina A1 - Resch-Genger, Ute A1 - Widengren, J A1 - Liu, H. T1 - Frequency-Domain Method for Characterization of Upconversion Luminescence Kinetics N2 - The frequency-domain (FD) method provides an alternative to the commonly used time-domain (TD) approach in characterizing the luminescence kinetics of luminophores, with its own strengths, e.g., the capability to decouple multiple lifetime components with higher reliability and accuracy. While extensively explored for characterizing luminophores with down-shifted emission, this method has not been investigated for studying nonlinear luminescent materials such as lanthanide-doped upconversion nanoparticles (UCNPs), featuring more complicated kinetics. In this work, employing a simplified rate-equation model representing a standard two-photon energy-transfer upconversion process, we thoroughly analyzed the response of the luminescence of UCNPs in the FD method. We found that the FD method can potentially obtain from a single experiment the effective decay rates of three critical energy states of the sensitizer/activator ions involved in the upconversion process. The validity of the FD method is demonstrated by experimental data, agreeing reasonably well with the results obtained by TD methods. KW - Quality assurance KW - Luminescence KW - Method KW - Quantitative spectroscopy KW - Nano KW - Particle KW - Lifetime KW - Method development PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597435 DO - https://doi.org/10.1021/acs.jpclett.3c00269 SP - 3436 EP - 3444 AN - OPUS4-59743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Petrov, Eugene A1 - Würth, Christian A1 - Richter, Maria A1 - Resch-Genger, Ute T1 - Fluorescence Standards from BAM - Dye Solutions and Polymer systems N2 - For fluorescence microscopy, there is an increasing need for suitable calibration tools and reference materials for microscope calibration, the determination of performance parameters, and the regular control and validation of instrument performance. This is addressed in the BmWk-financed project FluMikal (WIPANO program) by two research groups from academia and two companies, that is coordinated by BAM. Here we present different approaches to liquid and solid fluorescence standards for the determination of the wavelength-dependent spectral sensitivity of fluorescence microscopes and ideas concerning the choice of suitable fluorescence lifetime standard for increasingly utilized fluorescence lifetime imaging (FLIM). T2 - FluMiKal Projectmeeting CY - Munich, Germany DA - 27.11.2023 KW - Reference material KW - Reference product KW - Fluorescence microscopy KW - Quality assurance KW - Instrument performance validation KW - Lifetime standard PY - 2023 AN - OPUS4-59120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Design and Quantitative Characterization of Functional Molecular Chromophores and Nanomaterials with UV/vis/NIR/IR Emission – An Overview of Research Activities in Division Biophotonics N2 - In the focus of division Biophotonics are the design, preparation, analytical and spectroscopic characterization, and application of molecular and nanoscale functional materials, particularly materials with a photoluminescence in the visible, near infrared (NIR) and short-wave infrared (SWIR). This includes optical reporters for bioimaging and sensing, security and authentication barcodes, and materials for solid state lighting, energy conversion, and photovoltaics. For the identification of optimum particle structures quantitative spectroscopic studies are performed under application-relevant conditions, focusing on the key performance parameter photoluminescence quantum yield. In addition, simple, cost-efficient, and standardizable strategies for quantifying functional groups on the surface of nano- and microparticles are developed, here with a focus on optical assays and electrochemical titration methods, cross-validated by more advanced methods such as quantitative NMR. In addition, reference materials and reference products are developed for optical methods, particularly luminescence techniques, and for analytical methods utilized for the characterization of nanomaterials. T2 - Projekttreffen Nile-Chrome 2.0 CY - Mainz, Germany DA - 11.12.2023 KW - Fluorescence KW - Quantum yield KW - Optical spectroscopy KW - Reference material KW - Reference data KW - Quality assurance KW - Dye KW - Reference product KW - NIR KW - SWIR KW - Nano KW - Particle KW - Silica KW - Polymer KW - Surface group analysis KW - Sensor molecules PY - 2023 AN - OPUS4-59123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Scholtz, Lena A1 - Resch-Genger, Ute T1 - Behind the Paper - Dual color pH probes made from silica and polystyrene nanoparticles and their performance in cell studies N2 - In this contribution we highlight the importance of comparison for scientific research while developing a new, functional pH sensor system, and the valuable insights this can provide. KW - Dye KW - Optical Spectroscopy KW - pH probe KW - Silica and Polystyrene Particles KW - Nano KW - Surface groups KW - Safe-by-Design KW - Cell studies KW - Sensors KW - Particle Synthesis KW - Fluorescence PY - 2023 UR - https://communities.springernature.com/posts/dual-color-ph-probes-made-from-silica-and-polystyrene-nanoparticles-and-their-performance-in-cell-studies SP - 1 EP - 2 PB - Springer Nature CY - London AN - OPUS4-59150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Project Status report IEC TS 62607-3-1 ED2 N2 - Project Status report IEC TS 62607-3-1 ED2 reklative and absolute quantum yield determinations T2 - IEC TC 113 Plenary Meeting CY - Online meeting DA - 17.04.2023 KW - Quantum yield KW - Standardization KW - Nanomaterials KW - Nanomanufacturing KW - IEC PY - 2023 AN - OPUS4-57477 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Cui A1 - Ebel, Kenny A1 - Heinze, Katja A1 - Resch-Genger, Ute A1 - Bald, Ilko T1 - Quantum Yield of DNA Strand Breaks under Photoexcitation of a Molecular Ruby N2 - Photodynamic therapy (PDT) used for treating cancer relies on the generation of highly reactive oxygen species, for example, singlet oxygen 1O2, by light-induced excitation of a photosensitizer (PS) in the presence of molecular oxygen, inducing DNA damage in close proximity of the PS. Although many precious metal complexes have been explored as PS for PDT and received clinical approval, only recently, the potential of photoactive complexes of nonnoble metals as PS has been discovered. Using the DNA origami technology that can absolutely quantify DNA strand break cross sections, we assessed the potential of the luminescent transition metal complex [Cr(ddpd)2]3+ (ddpd=N,N’-dimethyl-N,N’-dipyridine-2-ylpyridine-2,6-diamine) to damage DNA in an air-saturated aqueous environment upon UV/Vis illumination. The quantum yield for strand breakage, that is, the ratio of DNA strand breaks to the number of absorbed photons, was determined to 1–4%, indicating efficient transformation of photons into DNA strand breaks by [Cr(ddpd)2]3+. KW - Fluorescence KW - Synthesis KW - Production KW - Optical spectroscopy KW - Ligand KW - Photophysics KW - Cr(III) KW - Mechanism KW - NIR KW - PDT KW - Singlet oxygen KW - DNA KW - Origami KW - Quantum yield PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573631 DO - https://doi.org/10.1002/chem.202203719 SP - 1 EP - 7 AN - OPUS4-57363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Andresen, Elena A1 - Würth, Christian A1 - Weigert, Florian A1 - Frenzel, Florian T1 - Luminescent Nanoparticles – Photophysics, Mechanistic Studies, and Applications N2 - Inorganic nanocrystals with linear and nonlinear luminescence in the ultraviolet, visible, near infrared and short-wave infrared like semiconductor quantum dots and spectrally shifting lanthanide-based nanophosphors have meanwhile found many applications in the life and material sciences. This includes optical reporters for bioimaging and sensing, security and authentication barcodes, solid state lighting, converter materials, and photovoltaics. The identification of optimum particle structures requires quantitative spectroscopic studies under application-relevant conditions, focusing on the key performance parameter photoluminescence quantum yield, ideally flanked by single particle studies to assess spectroscopic inhomogeneities on a particle-to-particle level for typical preparation methods. In this context, methods to quantify the photoluminescence of these different nanoscale emitters are shown and utilized as a basis for a profound mechanistic understanding of the nonradiative deactivation pathways in semiconductor and upconversion nanocrystals of different size and particle architecture in different environments. Exemplary for the application potential of such nanomaterials, in addition, the design of optical sensors from different nanomaterials and functional organic dyes is briefly summarized. T2 - CRC 1411 Symposium CY - Nürnberg, Germany DA - 20.03.2023 KW - Semiconductor quantum dot KW - Upconversion nanocrystal KW - Luminescence KW - Quantitative spectroscopy KW - Photophysics PY - 2023 AN - OPUS4-57364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Behnke, Thomas A1 - Gienger, J. A1 - Resch-Genger, Ute T1 - Efficiency scale for scatteringluminescent particles linkedto fundamental and measurablespectroscopic properties N2 - Comparing the performance of molecular and nanoscale luminophores and luminescent microand nanoparticles and estimating achievable signal amplitudes and limits of detection requires a standardizable intensity scale. This initiated the development of the relative MESF (number of molecules of equivalent soluble fluorochromes) and ERF (equivalent reference fluorophores) scales for flow cytometry and fluorescence microscopy. Both intensity scales rely on fluorescence intensity values assigned to fluorescent calibration beads by an intensity comparison to spectrally closely matching fluorophore solutions of known concentration using a spectrofluorometer. Alternatively, the luminophore or bead brightness (B) can be determined that equals the product of the absorption cross section (σa) at the excitation wavelength (σa(λex)) and the photoluminescence quantum yield (Φpl). Thereby, an absolute scale based on fundamental and measurable spectroscopic properties can be realized which is independent of particle size, material, and luminophore staining or labeling density and considers the sensitivity of the optical properties of luminophores to their environment. Aiming for establishing such a brightness scale for light-scattering dispersions of luminescent particles with sizes exceeding a few ten nanometers, we demonstrate how the brightness of quasi-monodisperse 25 nm, 100 nm, and 1 μm sized polystyrene particles (PSP), loaded with two different dyes in varying concentrations, can be obtained with a single custom-designed integrating sphere setup that enables the absolute determination of Φpl and transmittance and diffuse reflectance measurements. The resulting Φpl, σa(λex), imaginary parts of the refractive index, and calculated B values of these samples are given in dependence of the number of incorporated dye molecule per particle. Finally, a unitless luminescence efficiency (LE) is defined allowing for the direct comparison of luminescence efficiencies of particles with different sizes. KW - Brightness KW - Quantum yield KW - Cross section KW - Lluminescence PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573680 DO - https://doi.org/10.1038/s41598-023-32933-6 VL - 13 IS - 1 SP - 14 PB - Nature AN - OPUS4-57368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - López-Iglesias, C. A1 - Markovina, A. A1 - Nirmalananthan-Budau, N. A1 - Resch-Genger, Ute A1 - Klinger, D. T1 - Optically monitoring the microenvironment of a hydrophobic cargo in amphiphilic nanogels: influence of network composition on loading and release N2 - Amphiphilic nanogels (ANGs) are promising carriers for hydrophobic cargos such as drugs, dyes, and catalysts. Loading content and release kinetics of these compounds are controlled by type and number of hydrophobic groups in the amphiphilic copolymer network. Thus, understanding the interactions between cargo and colloidal carrier is mandatory for a tailor-made and cargo-specific ANG design. To systematically explore the influence of the network composition on these interactions, we prepared a set of ANGs of different amphiphilicity and loaded these ANGs with varying concentrations of the solvatochromic dye Nile Red (NR). Here, NR acts as a hydrophobic model cargo to optically probe the polarity of its microenvironment. Analysis of the NR emission spectra as well as measurements of the fluorescence quantum yields and decay kinetics revealed a decrease in the polarity of the NR microenvironment with increasing hydrophobicity of the hydrophobic groups in the ANG network and dye–dye interactions at higher loading concentrations. At low NR concentrations, the hydrophobic cargo NR is encapsulated in the hydrophobic domains. Increasing NR concentrations resulted in probe molecules located in a more hydrophilic environment, i.e., at the nanodomain border, and favored dye–dye interactions and NR aggregation. These results correlate well with release experiments, indicating first NR release from more hydrophilic network locations. Overall, our findings demonstrate the importance to understand carrier–drug interactions for efficient loading and controlled release profiles in amphiphilic nanogels. KW - Particle KW - Energy transfer KW - Limit of detection KW - Polymer KW - Luminescence KW - Quantitative spectroscopy KW - Nano KW - Quantum yield KW - Lifetime KW - Quality assurance KW - Dye KW - Probe KW - Sensor KW - Nile Red PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601603 DO - https://doi.org/10.1039/d4nr00051j SN - 2040-3364 IS - 16 SP - 9525 EP - 9535 PB - The Royal Society of Chemistry AN - OPUS4-60160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, Jutta A1 - Ramírez, A. A1 - Crasselt, C. A1 - Schmidt, W. A1 - Resch-Genger, Ute T1 - Utilizing optical spectroscopy and 2',7'-difluorofluorescein to characterize the early stages of cement hydration N2 - The increasingly sophisticated nature of modern, more environmentally friendly cementitious binders requires a better understanding and control particularly of the complex, dynamic processes involved in the early phase of cement hydration. In-situ monitoring of properties of a constantly changing system over a defined period of time calls for simple, sensitive, fast, and preferably also non-invasive methods like optical spectroscopy KW - Flourescence KW - Optical probe KW - Sensor KW - Dye KW - Flourescin KW - Photophysics KW - PH KW - Quantum yield KW - Quality assurance KW - Mechanism KW - Cement KW - Concrete KW - Building material KW - Hydration KW - Process monitoring PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537176 DO - https://doi.org/10.1088/2050-6120/ac2da0 SN - 2050-6120 VL - 10 IS - 1 SP - 2 EP - 13 PB - IOP Science AN - OPUS4-53717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ramirez Caro, Alejandra A1 - Pauli, Jutta A1 - Mota, Berta A1 - Simon, Sebastian A1 - Schmidt, Wolfram A1 - Resch-Genger, Ute T1 - C⁠3A passivation with gypsum and hemihydrate monitored by optical spectroscopy N2 - Tricalcium aluminate (C⁠3A) is found with less than 10% wt. of the total composition; however, during hydration, C⁠3A plays an important role in the early hydration of cement in the presence of gypsum as a set retarder. The aim of this investigation is to assess the suitability of optical spectroscopy and a dye-based optical probe to monitor early hydration of C⁠3A in the presence of gypsum and hemihydrate. Optical evaluation was performed using steady-state fluorescence and diffuses reflectance spectroscopy (UV-VisDR). Phase characterization during hydration was done with in-situ X-ray diffraction. UV-VisDR with a cyanine dye probe was used to monitor the formation of metastable phases and was employed together with fluorescence spectroscopy, to follow the Aggregation and disaggregation of the dye during hydration. In conclusion, for the first time, a cyanine dye was identified as a feasible and stable probe to monitor C⁠3A hydration changes in the presence of calcium sulfate. KW - Dye KW - Photoluminescence KW - Fluorescence KW - Reflection spectroscopy KW - Cement KW - Hydration KW - Method development PY - 2020 DO - https://doi.org/10.1016/j.cemconres.2020.106082 VL - 133 SP - 106082 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-50952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Meermann, Björn A1 - Koch, Matthias A1 - Weller, Michael G. T1 - Editorial: Analytical methods and applications in materials and life sciences N2 - Current trends in materials and life sciences are flanked by the need to push detection limits to single molecules or single cells, enable the characterization of increasingly complex matrices or sophisticated nanostructures, speed up the time of analysis, reduce instrument complexity and costs, and improve the reliability of data. This requires suitable analytical tools such as spectroscopic, separation and imaging techniques, mass spectrometry, and hyphenated techniques as well as sensors and their adaptation to application-specific challenges in the environmental, food, consumer product, health sector, nanotechnology, and bioanalysis. Increasing concerns about health threatening known or emerging pollutants in drinking water, consumer products, and food and about the safety of nanomaterials led to a new awareness of the importance of analytical sciences. Another important driver in this direction is the increasing demand by legislation, particularly in view of the 17 sustainable development goals by the United Nations addressing clean energy, industry, and innovation, sustainable cities, clean water, and responsible consumption and production. In this respect, also the development of analytical methods that enable the characterization of material flows in production processes and support recycling concepts of precious raw materials becomes more and more relevant. In the future, this will provide the basis for greener production in the chemical industry utilizing recycled or sustainable starting materials. This makes analytical chemistry an essential player in terms of the circular economy helping to increase the sustainability of production processes. In the life sciences sector, products based on proteins, such as therapeutic and diagnostic antibodies, increase in importance. These increasingly biotechnologically produced functional biomolecules pose a high level of complexity of matrix and structural features that can be met only by highly advanced methods for separation, characterization, and detection. In addition, metrological traceability and target definition are still significant challenges for the future, particularly in the life sciences. However, innovative reference materials as required for the health and food sector and the characterization of advanced materials can only be developed when suitable analytical protocols are available. The so-called reproducibility crisis in sciences underlines the importance of improved measures of quality control for all kinds of measurements and material characterization. This calls for thorough method validation concepts, suitable reference materials, and regular interlaboratory comparisons of measurements as well as better training of scientists in analytical sciences. The important contribution of analytical sciences to these developments is highlighted by a broad collection of research papers, trend articles, and critical reviews from these different application fields. Special emphasis is dedicated to often-overlooked quality assurance and reference materials. T2 - 150 years BAM: Science with impact CY - Berlin, Germany DA - 01.01.2021 KW - Analysis KW - Life sciences KW - Analytical sciences KW - Quality assurance KW - Reference material KW - Fluorescence KW - Nanoparticle KW - Sensor KW - Material sciences KW - Pollutant KW - Environment KW - Method KW - Limit of detection KW - 150th anniversary KW - ABC KW - BAM KW - Collection KW - Editorial KW - Special issue KW - Bundesanstalt für Materialforschung und -prüfung KW - Jahrestag PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550720 DO - https://doi.org/10.1007/s00216-022-04082-8 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - Topical collection: Analytical methods and applications in the materials and life sciences SP - 4267 EP - 4268 PB - Springer CY - Berlin AN - OPUS4-55072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Zengchao A1 - Nirmalananthan-Budau, Nithiya A1 - Resch-Genger, Ute A1 - Panne, Ulrich A1 - Weidner, Steffen T1 - Separation of polystyrene nanoparticles bearing different carboxyl group densities and functional groups quantification with capillary electrophoresis and asymmetrical flow field flow fractionation N2 - Two sets of polystyrene nanoparticles (PSNPs) with comparable core sizes but different carboxyl group densities were made and separated using asymmetric flow field flow fractionation (AF4), capillary electrophoresis (CE), and the off-line hyphenation of both methods. Our results revealed the significant potential of two-dimensional off-line AF4-CE hyphenation to improve the separation and demonstrated for the first time, the applicability of CE to determine the functional group density of nanoparticles (NPs). Compared to the result acquired with conductometric titration, the result obtained with synthesized 100 nm sized PSNPs revealed only a slight deviation of 1.7%. Commercial 100 nm sized PSNPs yielded a deviation of 4.6 %. For 60 nm sized PSNPs, a larger deviation of 10.6 % between both methods was observed, which is attributed to the lower separation resolution. KW - Nanoparticle KW - A4F KW - Capillary electrophoresis KW - Carboxyl group PY - 2020 DO - https://doi.org/10.1016/j.chroma.2020.461392 VL - 1626 SP - 461392 PB - Elsevier B.V. AN - OPUS4-51080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Krietsch, Arne A1 - Rühle, Bastian A1 - Bresch, Harald T1 - Perspective of BAM on Advanced Materials N2 - A brief perspective of BAM on advanced materials is presented including examples for nanomaterials and other systems presenting advanced materials with special emphasis on characterization methods used in different division of BAM for the determination of functional or safety parameters of such materials. In this respect, also ongoing activities of the capacity building project nanoplatform of BAM aiming at the development of nanometer-sized reference materials are briefly summarized. T2 - BfR Workshop zu Advanced Materials CY - Online meeting DA - 04.11.2020 KW - Quality assurance KW - Risk assessment KW - Safety KW - Core/shell particle KW - Characterization KW - Measurement uncertainty KW - Method KW - Nano particle PY - 2020 AN - OPUS4-51620 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radnik, Jörg A1 - Knigge, Xenia A1 - Andresen, Elina A1 - Resch-Genger, Ute A1 - Cant, D.J.H. A1 - Shard, A.G. A1 - Clifford, C.A. T1 - Composition, thickness, and homogeneity of the coating of core–shell nanoparticles—possibilities, limits, and challenges of X-ray photoelectron spectroscopy N2 - Core–shell nanoparticles have attracted much attention in recent years due to their unique properties and their increasing importance in many technological and consumer products. However, the chemistry of nanoparticles is still rarely investigated in comparison to their size and morphology. In this review, the possibilities, limits, and challenges of X-ray photoelectron spectroscopy (XPS) for obtaining more insights into the composition, thickness, and homogeneity of nanoparticle coatings are discussed with four examples: CdSe/CdS quantum dots with a thick coating and a small core; NaYF4-based upconverting nanoparticles with a large Yb-doped core and a thin Er-doped coating; and two types of polymer nanoparticles with a poly(tetrafluoroethylene) core with either a poly(methyl methacrylate) or polystyrene coating. Different approaches for calculating the thickness of the coating are presented, like a simple numerical modelling or a more complex simulation of the photoelectron peaks. Additionally, modelling of the XPS background for the investigation of coating is discussed. Furthermore, the new possibilities to measure with varying excitation energies or with hard-energy X-ray sources (hard-energy X-ray photoelectron spectroscopy) are described. A discussion about the sources of uncertainty for the determination of the thickness of the coating completes this review. KW - X-ray spectroscopy KW - Nanoparticles KW - Spectroscopy / Instrumentation KW - Spectroscopy / Theory PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548305 DO - https://doi.org/10.1007/s00216-022-04057-9 VL - 414 IS - 15 SP - 4331 EP - 4345 PB - SpringerNature AN - OPUS4-54830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Keller, Lisa-Marie A1 - Scholz, Lena A1 - Weigert, Florian A1 - Radnik, Jörg A1 - Rühle, Bastian A1 - Bresch, Harald T1 - Nanocarriers – Challenges Imposed by Material Characterization N2 - A brief perspective of BAM on nanocarriers is presented including examples with special emphasis on the characterization of such materials and underlying challenges. In this respect, also ongoing activities at BAM on different types of core/shell nanomaterials and related systems are briefly summarized. T2 - Kolloquium BfR CY - Online meeting DA - 18.03.2021 KW - Nanomaterial KW - Nanocarrier KW - Size KW - Surface chemistry KW - Release kinetics KW - Chemical composition KW - Core/shell nanoparticle KW - Quantum dot KW - Spectroscopy KW - Fluorescence PY - 2021 AN - OPUS4-52412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abram, Sarah-Luise A1 - Mrkwitschka, Paul A1 - Thünemann, Andreas A1 - Radnik, Jörg A1 - Häusler, I. A1 - Bresch, Harald A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute T1 - Iron Oxide Nanocubes as a New Certified Reference Material for Nanoparticle Size Measurements N2 - The rational design and increasing industrial use of nanomaterials require a reliable characterization of their physicochemical key properties like size, size distribution, shape, and surface chemistry. This calls for nanoscale reference materials (nanoRMs) for the validation and standardization of commonly used characterization methods closely matching real-world nonspherical nano-objects. This encouraged us to develop a nonspherical nanoRM of very small size consisting of 8 nm iron oxide nanocubes (BAM-N012) to complement spherical gold, silica, and polymer nanoRMs. In the following, the development and production of this nanoRM are highlighted including the characterization by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) as complementary methods for size and shape parameters, homogeneity and stability studies, and calculation of a complete uncertainty budget of the size features. The determination of the nanocubes’ edge length by TEM and SAXS allows a method comparison. In addition, SAXS measurements can also provide the mean particle number density and the mass concentration. The certified size parameters, area equivalent circular diameter and square edge length, determined by TEM with a relative expanded uncertainty below 9%, are metrologically traceable to a natural constant for length, the very precisely known (111) lattice spacing of silicon. Cubic BAM-N012 qualifies as a certified nanoRM for estimating the precision and trueness, validation, and quality assurance of particle size and shape measurements with electron microscopy and SAXS as well as other sizing methods suitable for nanomaterials. The production of this new iron oxide nanocube RM presents an important achievement for the nanomaterial community, nanomaterial manufacturers, and regulators. KW - Certification KW - SAXS KW - Homogeneity KW - Nano KW - Particle KW - Iron oxide KW - Quality assurance KW - Reference material KW - Size KW - Electron microscopy KW - Stability KW - Shape PY - 2023 DO - https://doi.org/10.1021/acs.analchem.3c00749 SN - 0003-2700 VL - 95 IS - 33 SP - 12223 EP - 12231 PB - American Chemical Society CY - Columbus, Ohio AN - OPUS4-58176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - López de Ipina, J.-M. A1 - Arevalillo, A. A1 - Martín, A. A1 - Caillard, B. A1 - Marcoulaki, E. A1 - Aguerre- Charol, O. A1 - van Duuren-Stuurman, B. A1 - Hodoroaba, Vasile-Dan A1 - Viitanen, A.-K. A1 - Witters, H. A1 - Vercauteren, S. A1 - Persson, K. A1 - Bard, D. A1 - Evans, G. A1 - Jensen, K.A. A1 - Himly, M. A1 - Scalbi, S. A1 - Papin, A. A1 - Le Bihan, O. A1 - Kanerva, T. A1 - Tirez, K. A1 - Frijns, E. A1 - Niga, P. A1 - Eleftheriadis, K. A1 - Travlos, A. A1 - Geppert, M. A1 - Himly, M. A1 - Radnik, Jörg A1 - Kuchenbecker, Petra A1 - Resch-Genger, Ute A1 - Fraboulet, I. A1 - Bressot, C. A1 - Rissler, J. A1 - Gaucher, R. A1 - Binotto, G. A1 - Krietsch, Arne A1 - Braun, A. A1 - Abenet, S. A1 - Catalan, J. A1 - Verstraelen, S. A1 - Manier, N. A1 - Manzo, S. A1 - Fransman, S. A1 - Queron, J. A1 - Charpentier, D. A1 - Taxell, D. A1 - Säämänen, A. A1 - Brignon, J.-M. A1 - Jovanovic, A. A1 - Bisson, M A1 - Neofytou, P. T1 - EC4Safenano - Catalogue of Services N2 - The publicly available document encapsulates the first version of the Catalogue of Services of the future EC4Safenano Centre (CoS 2019). The CoS 2019 is structured in 12 Service Categories and 27 Service Topics, for each of the 12 categories considered. This architecture configures a 12 x 27 matrix that allows ordering the potential EC4Safenano offer in 324 types of services/groups of services. Each type of service/group of services is described, in a simple and friendly way, by means of a specific service sheet: the EC4Safenano - Service Data Sheet (EC4-SDS). These EC4-SDSs allow structuring and summarizing the information of each service, providing the customer with a concise view of characteristics of the service and also the contact details with the service provider. The CoS 2019 deploys a map of services consisting of a set of 100 EC4-SDSs, covering 7 of the 12 Service Categories and 17 of the 27 Service Topics. The harmonization of services is visualized as a future necessary step in EC4Safenano, in order to strengthen the offer and provide added value to customers with a growing offer of harmonized services in future versions of the CoS. The information contained in this document is structured in 3 main sections, as follows: • Catalogue structure. This section describes in short the main characteristics of the CoS 2019. • Catalogue content. This section represents the core part of the document and encapsulates the set of 100 SDSs displaying the offer proposed by the CoS 2019. • Online Catalogue. This section describes the resources implemented by EC4Safenano to facilitate the on-line consultation of the CoS 2019 by customers and other interested parties. KW - Nano-safety KW - Analytical services KW - Nanomaterials KW - Catalogue of services KW - EC4SafeNano KW - European Centre PY - 2021 UR - https://ec4safenano.eu-vri.eu/Public/Guidance SP - 1 EP - 72 PB - EU-VRi – European Virtual Institute for Integrated Risk Management CY - Stuttgart, Germany AN - OPUS4-52943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weigert, Florian A1 - Müller, A. A1 - Häusler, I. A1 - Geißler, Daniel A1 - Skroblin, D. A1 - Unger, Wolfgang A1 - Radnik, Jörg A1 - Resch-Genger, Ute T1 - Combining HR‑TEM and XPS to elucidate the core–shell structure of ultrabright CdSe/CdS semiconductor quantum dots N2 - Controlling thickness and tightness of surface passivation shells is crucial for many applications of core–shell nanoparticles (NP). Usually, to determine shell thickness, core and core/shell particle are measured individually requiring the availability of both nanoobjects. This is often not fulfilled for functional nanomaterials such as many photoluminescent semiconductor quantum dots (QD) used for bioimaging, solid state lighting, and display technologies as the core does not show the applicationrelevant functionality like a high photoluminescence (PL) quantum yield, calling for a whole nanoobject approach. By combining high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS), a novel whole nanoobject approach is developed representatively for an ultrabright oleic acid-stabilized, thick shell CdSe/CdS QD with a PL quantum yield close to unity. The size of this spectroscopically assessed QD, is in the range of the information depth of usual laboratory XPS. Information on particle size and monodispersity were validated with dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) and compared to data derived from optical measurements. In addition to demonstrating the potential of this novel whole nanoobject approach for determining architectures of small nanoparticles, the presented results also highlight challenges faced by different sizing and structural analysis methods and method-inherent uncertainties. KW - Photoluminescence KW - Single particle KW - Microscopy KW - Particle architecture KW - Thickness KW - SAXS KW - Shell KW - XPS KW - TEM KW - Semiconductor KW - Quantum dot KW - Photophysics KW - Quantum yield PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517911 DO - https://doi.org/10.1038/s41598-020-77530-z VL - 10 IS - 1 SP - 20712 PB - Springer Nature AN - OPUS4-51791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Giovannozzi, A. A1 - Rossi, A. A1 - Kovac, J. A1 - Ekar, J. A1 - Goenaga-Infante, H. A1 - Clarkson, C. A1 - Clifford, C. A1 - Cant, D. A1 - Minelli, C. A1 - Reithofer, M. A1 - Lindner, G. A1 - Venzago, C. A1 - Bohmer, N. A1 - Drexler, C.-P. A1 - Schedler, U. A1 - Thiele, T. A1 - Lechart, F. A1 - Kästner, B. A1 - Sjövall, P. A1 - Johnston, L. A1 - Tan, Gunnar A1 - Radnik, Jörg T1 - Standardised Measurements of Surface Functionalities on Nanoparticles N2 - Engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely fabricated for industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, opto-electronics, and information storage which improve the quality of life and European prosperity. NP function, performance, interaction with biological species, and environmental fate are largely determined by their surface functionalities. Standardized repeatable surface characterization methods are therefore vital for quality control of NPs, and to meet increasing concerns regarding their safety. Therefore, industry, regulatory agencies, and policymakers need validated traceable measurement methods and reference materials. This calls for fit-for-purpose, validated, and standardized methods, and reference data and materials on the surface chemistry of engineered NPs. Here, we present a concept for the development of such standardized measurement protocols utilizing method cross-validation and interlaboratory comparisons (ILCs) with emphasis on both advanced measurement methods such as quantitative Nuclear Magnetic Resonance (qNMR), X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS) and cost-efficient, non-surface specific methods like optical assays and electrochemical titration methods. T2 - European Partnership on Metrology 2023 Review Conference CY - Amsterdam, Netherlands DA - 07.11.2023 KW - Surface chemistry KW - Quality assurance KW - Traceability PY - 2023 AN - OPUS4-59142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auxillos, J. A1 - Crouigneau, R. A1 - Li, Y.-F. A1 - Dai, Y. A1 - Stigliani, A. A1 - Tavernaro, Isabella A1 - Resch-Genger, Ute A1 - Sandelin, A. A1 - Marie, R. A1 - Pedersen, S. F. T1 - Spatially resolved analysis of microenvironmental gradient impact on cancer cell phenotypes N2 - Despite the physiological and pathophysiological significance of microenvironmental gradients, e.g., for diseases such as cancer, tools for generating such gradients and analyzing their impact are lacking. Here, we present an integrated microfluidic-based workflow that mimics extracellular pH gradients characteristic of solid tumors while enabling high-resolution live imaging of, e.g., cell motility and chemotaxis, and preserving the capacity to capture the spatial transcriptome. Our microfluidic device generates a pH gradient that can be rapidly controlled to mimic spatiotemporal microenvironmental changes over cancer cells embedded in a 3D matrix. The device can be reopened allowing immunofluorescence analysis of selected phenotypes, as well as the transfer of cells and matrix to a Visium slide for spatially resolved analysis of transcriptional changes across the pH gradient. This workflow is easily adaptable to other gradients and multiple cell types and can therefore prove invaluable for integrated analysis of roles of microenvironmental gradients in biology. KW - Bioimaging KW - Fluorescence KW - Cell KW - Cancer KW - Method KW - Microfluids KW - Model KW - Calibration KW - Sensor KW - Ph KW - Probe KW - Workflow PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604631 DO - https://doi.org/10.1126/sciadv.adn3448 VL - 19 IS - 18 SP - 1 EP - 17 AN - OPUS4-60463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Fiedler, Saskia A1 - Frenzel, Florian A1 - Tavernaro, Isabella A1 - Würth, Christian A1 - Grüne, M. A1 - Schweizer, S. A1 - Engel, A. T1 - Absolute Determination of Photoluminescence Quantum Yields of Scattering LED Converter Materials – How to Get it Right N2 - Optical measurements of scattering luminescent materials dispersed in liquid and solid matrices and luminescent powders play an important role in fundamental research and industry. Typical examples are luminescent nano- and microparticles and phosphors of different composition in different matrices or incorporated into ceramics with applications in energy conversion, solid-state lighting, medical diagnostics, and security barcoding. The key parameter for the performance of these materials is the photoluminescence quantum yield QY, i.e., the number of emitted photons per number of absorbed photons. QY of transparent luminophore solutions can be determined relatively to a fluorescence quantum yield standard of known QY. Such standards are meanwhile available as certified reference materials.[1] The determination of QY of scattering liquid and solid samples like dispersions of luminescent nanoparticles, solid phosphors, and optoceramics requires, however, absolute measurements with an integrating sphere setup. Although the importance of reliable absolute QY measurements has been recognized, no interlaboratory comparisons (ILCs) on measurement uncertainties and the identification of typical sources of uncertainty have been yet reported. Also, no scattering reference materials with known QY are available. We present here the results of a first ILC of 3 laboratories from academia and industry performed to identify and quantify sources of uncertainty of absolute QY measurements of scattering samples. Thereby, two types of commercial stand-alone integrating sphere setups with different illumination and detection geometries were utilized for measuring QY of transparent and scattering dye solutions and solid phosphors. As representative and industrially relevant solid and scattering samples, YAG:Ce optoceramics of varying surface roughness were chosen, applied, e.g., as converter materials for blue light emitting diodes. Special emphasis was dedicated to the influence of the measurement geometry, the optical properties of the blank, utilized to determine the number of photons of the incident excitation light absorbed by the sample, and the sample-specific surface roughness. While matching QY values could be obtained for transparent dye solutions and scattering dispersions, here using a blank with scattering properties closely matching those of the sample, QY measurements of optoceramic samples with different blanks revealed substantial differences, with the blank's optical properties accounting for measurement uncertainties of more than 20 %. Based upon the ILC results, we recommend non-absorbing blank materials with a high reflectivity (>95 %) such as a 2 mm-thick PTFE target placed on the sample holder which reveals a near-Lambertian light scattering behavior, yielding a homogeneous light distribution within the integrating sphere. T2 - e-MRS 2024 CY - Strasbourg, France DA - 27.05.2024 KW - Luminescence KW - Quantitative spectroscopy KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Quality assurance KW - Phosphor KW - Converter marterial KW - Fluorescence KW - Interlaboratory KW - Comparison KW - Method KW - Uncertainty KW - Reference material PY - 2024 AN - OPUS4-60490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Tavernaro, Isabella A1 - Radnik, Jörg A1 - Kunc, F. A1 - Brinkmann, A. A1 - Lopinski, G. A1 - Johnston, L. J. T1 - Characterization and quantification of functional groups and coatings on nanoobjects an overview N2 - Characterization of Nanoparticles – Questions to Ask, Functional Nanoparticles (NPs) – Organic, Inorganic, and Hybrid Nanoparticles Nanomaterial Characterization Standardization – Addressing Remaining Gaps Surface FGs Particle Surface Chemistry - Why is it Important? Particle Surface Chemistry - A Key Driver for Performance, Applications, and Safety Aspects Method Development for Quantifying FGs and Ligands on Particle Surfaces FG Quantification – Method Choice & Criteria Relevant for Data Interpretation Quantifying the Amount of Total and Accessible FGs on Aminated Silica Nanoparticles (SiO2-NH2) Comparing the Total and Accessible –NH2 Content on Aminated Silica NPs of Different Size Characterization of Nanoparticles Standardization Standardized Measurements of Surface FGs on Nanoparticles EMP Project SMURFnano EMP Project SMURFnano Work Packages & Goals Certified Reference Materials from BAM T2 - e-MRS 2024 (Spring Meeting of the European Materials Research Society, Altech Symposium) CY - Strasbourg, France DA - 27.05.2024 KW - Luminescence KW - Nano KW - Particle KW - Quantum yield KW - Quality assurance KW - Interlaboratory comparison KW - Method KW - Uncertainty KW - Reference material KW - Surface analysis KW - Optical assay KW - NMR KW - Silica KW - Ligand PY - 2024 AN - OPUS4-60495 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, J. A1 - Tarábek, J. A1 - Kulkarni, R. A1 - Wang, Cui A1 - Dračínský, M. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Resch-Genger, Ute A1 - Bojdys, M. J. T1 - A π-conjugated, covalent phosphinine framework N2 - Structural modularity of polymer frameworks is a key advantage of covalent organic polymers, however, only C, N, O, Si and S have found their way into their building blocks so far. Here, we expand the toolbox available to polymer and materials chemists by one additional nonmetal, phosphorus. Starting with a building block that contains a λ⁵‐phosphinine (C₅P) moiety, we evaluate a number of polymerisation protocols, finally obtaining a π‐conjugated, covalent phosphinine‐based framework (CPF‐1) via Suzuki‐Miyaura coupling. CPF‐1 is a weakly porous polymer glass (72.4 m2 g‐1 N2 BET at 77 K) with green fluorescence (λmax 546 nm) and extremely high thermal stability. The polymer catalyzes hydrogen evolution from water under UV and visible light irradiation without the need for additional co‐catalyst at a rate of 33.3 μmol h‐¹ g‐¹. Our results demonstrate for the first time the incorporation of the phosphinine motif into a complex polymer framework. Phosphinine‐based frameworks show promising electronic and optical properties that might spark future interest in their applications in light‐emitting devices and heterogeneous catalysis. KW - Phosphinine KW - Fully aromatic frameworks KW - Suzuki-Miyaura coupling KW - Polymers KW - Fluorescence KW - Small-angle scattering PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-485330 DO - https://doi.org/10.1002/chem.201900281 SP - 2 EP - 10 PB - Wiley VCH-Verlag CY - Weinheim AN - OPUS4-48533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholtz, Lena A1 - Eckert, J. G. A1 - Graf, Rebecca T. A1 - Kunst, A. A1 - Wegner, Karl David A1 - Bigall, N. C. A1 - Resch-Genger, Ute T1 - Correlating semiconductor nanoparticle architecture and applicability for the controlled encoding of luminescent polymer microparticles N2 - Luminophore stained micro- and nanobeads made from organic polymers like polystyrene (PS) are broadly used in the life and material sciences as luminescent reporters, for bead-based assays, sensor arrays, printable barcodes, security inks, and the calibration of fluorescence microscopes and flow cytometers. Initially mostly prepared with organic dyes, meanwhile luminescent core/shell nanoparticles (NPs) like spherical semiconductor quantum dots (QDs) are increasingly employed for bead encoding. This is related to their narrower emission spectra, tuneability of emission color, broad wavelength excitability, and better photostability. However, correlations between particle architecture, morphology, and photoluminescence (PL) of the luminescent nanocrystals used for encoding and the optical properties of the NP-stained beads have been rarely explored. This encouraged us to perform a screening study on the incorporation of different types of luminescent core/shell semiconductor nanocrystals into polymer microparticles (PMPs) by a radical-induced polymerization reaction. Nanocrystals explored include CdSe/CdS QDs of varying CdS shell thickness, a CdSe/ZnS core/shell QD, CdSe/CdS quantum rods (QRs), and CdSe/CdS nanoplatelets (NPLs). Thereby, we focused on the applicability of these NPs for the polymerization synthesis approach used and quantified the preservation of the initial NP luminescence. The spectroscopic characterization of the resulting PMPs revealed the successful staining of the PMPs with luminescent CdSe/CdS QDs and CdSe/CdS NPLs. In contrast, usage of CdSe/CdS QRs and CdSe QDs with a ZnS shell did not yield luminescent PMPs. The results of this study provide new insights into structure–property relationships between NP stained PMPs and the initial luminescent NPs applied for staining and underline the importance of such studies for the performance optimization of NP-stained beads. KW - Quantitative spectroscopy KW - Energy transfer KW - Synthesis KW - Surface chemistry KW - Semiconductor quantum dot KW - Luminescence KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Quality assurance KW - Polymer particle KW - Quantum rod KW - Nanoplatelet PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602206 DO - https://doi.org/10.1038/s41598-024-62591-1 VL - 14 SP - 1 EP - 16 AN - OPUS4-60220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reiber, T. A1 - Hübner, Oskar A1 - Dose, C. A1 - Yushchenko, D. A. A1 - Resch-Genger, Ute T1 - Fluorophore multimerization on a PEG backbone as a concept for signal amplification and lifetime modulation N2 - Fluorescent labels have strongly contributed to many advancements in bioanalysis, molecular biology, molecular imaging, and medical diagnostics. Despite a large toolbox of molecular and nanoscale fluorophores to choose from, there is still a need for brighter labels, e.g., for flow cytometry and fluorescence microscopy, that are preferably of molecular nature. This requires versatile concepts for fluorophore multimerization, which involves the shielding of dyes from other chromophores and possible quenchers in their neighborhood. In addition, to increase the number of readout parameters for fluorescence microscopy and eventually also flow cytometry, control and tuning of the labels’ fluorescence lifetimes is desired. Searching for bright multi-chromophoric or multimeric labels, we developed PEGylated dyes bearing functional groups for their bioconjugation and explored their spectroscopic properties and photostability in comparison to those of the respective monomeric dyes for two exemplarily chosen fluorophores excitable at 488 nm. Subsequently, these dyes were conjugated with anti-CD4 and anti-CD8 immunoglobulins to obtain fluorescent conjugates suitable for the labeling of cells and beads. Finally, the suitability of these novel labels for fluorescence lifetime imaging and target discrimination based upon lifetime measurements was assessed. Based upon the results of our spectroscopic studies including measurements of fluorescence quantum yields (QY) and fluorescence decay kinetics we could demonstrate the absence of significant dye-dye interactions and self-quenching in these multimeric labels. Moreover, in a first fluorescence lifetime imaging (FLIM) study, we could show the future potential of this multimerization concept for lifetime discrimination and multiplexing. KW - Imaging KW - Quantum yield KW - Quality assurance KW - Antibody KW - Conjugate KW - Cell KW - FLIM KW - PEG KW - Flow cytometry KW - Lifetime KW - Energy transfer KW - Quantitative spectroscopy KW - Nano KW - Particle KW - Fluorescence KW - Dye KW - Amplification KW - Microscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602197 DO - https://doi.org/10.1038/s41598-024-62548-4 VL - 14 IS - 1 SP - 1 EP - 11 AN - OPUS4-60219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -