TY - JOUR A1 - Solovyev, N. A1 - El-Khatib, Ahmed A1 - Costas-Rodrigues, M. A1 - Schwab, K. A1 - Griffin, E. A1 - Raab, A. A1 - Platt, B. A1 - Theuring, F. A1 - Vogl, Jochen A1 - Vanhaecke, F. T1 - Cu, Fe and Zn isotope ratios in murine Alzheimer's disease models suggest specific signatures of amyloidogenesis and tauopathy N2 - Alzheimer’s disease (AD) is characterized by accumulation of tau and amyloid-beta in the brain, and recent evidence suggests a correlation between associated protein aggregates and trace elements, such as copper, iron and zinc. In AD, distorted brain redox homeostasis and complexation by amyloid-beta and hyperphosphorylated tau May alter the isotopic composition of essential mineral elements. Therefore, high-precision isotopic analysis may reveal changes in the homeostasis of these elements. We used inductively coupled plasma-mass spectrometry (ICP-MS)-based techniques to determine the total Cu, Fe and Zn contents in the brain, as well as their isotopic compositions in both mouse brain and serum. Results for male transgenic tau (Line 66, L66) and amyloid/presenilin (5xFAD) mice were compared to those for the corresponding age- and gendermatched wild-type control mice (WT). Our data show that L66 brains showed significantly higher Fe levels than the corresponding WT. Significantly less Cu, but more Zn was found in 5xFAD brains. We observed significantly lighter isotopic compositions of Fe (enrichment in the lighter isotopes) in the brain, and in serum of L66 mice compared to WT. For 5xFAD mice, Zn exhibited a trend towards a lighter isotopic composition in brain and a heavier isotopic composition in serum compared to WT. Neither mouse model yielded differences in the isotopic composition of Cu. Our findings indicate significant pathology-specific alterations of Fe and Zn brain homeostasis in mouse models of AD. The associated changes in isotopic composition May serve as a marker for proteinopathies Underlying AD and other types of dementia. KW - Alzheimer’s disease KW - Tau KW - Amyloid-beta KW - Copper KW - Iron KW - Zinc KW - Multi-collector inductively coupled plasma-mass spectrometry (ICP-MS) KW - Brain KW - Serum KW - Isotopic analysis KW - Total element determination PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520214 DO - https://doi.org/10.1016/j.jbc.2021.100292 VL - 296 SP - 100292 PB - Elsevier Inc. CY - Amsterdam AN - OPUS4-52021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Rosner, M. A1 - Kasemann, S. A. A1 - Kraft, R. A1 - Meixner, A. A1 - Noordmann, J. A1 - Rabb, S. A1 - Rienitz, O. A1 - Schuessler, J. A. A1 - Tatzel, Michael A1 - Vocke, R. D. T1 - Intercalibration of Mg isotope delta scales and realisation of SI traceability for Mg isotope amount ratios and isotope delta values N2 - The continuous improvement of analytical procedures using multi-collector technologies in ICP-mass spectrometry has led to an increased demand for isotope standards with improved homogeneity and reduced measurement uncertainty. For magnesium, this has led to a variety of available standards with different quality levels ranging from artefact standards to isotope reference materials certified for absolute isotope ratios. This required an intercalibration of all standards and reference materials, which we present in this interlaboratory comparison study. The materials Cambridge1, DSM3, ERMAE143, ERM-AE144, ERM-AE145, IRMM-009 and NIST SRM 980 were cross-calibrated with expanded measurement uncertainties (95% confidence level) of less than 0.030‰ for the δ25/24Mg values and less than 0.037‰ for the δ26/24Mg values. Thus, comparability of all magnesium isotope delta (δ) measurements based on these standards and reference materials is established. Further, ERM-AE143 anchors all magnesium δ-scales to absolute isotope ratios and therefore establishes SI traceability, here traceability to the SI base unit mole. This applies especially to the DSM3 scale, which is proposed to be maintained. With ERM-AE144 and ERM-AE145, which are product and educt of a sublimation-condensation process, for the first time a set of isotope reference materials is available with a published value for the apparent triple isotope fractionation exponent θapp, the fractionation relationship ln α(25/24Mg)/ln α(26/24Mg). KW - Delta scale KW - Traceability KW - Scale anchor KW - Absolute isotope ratio KW - Comparability KW - Triple isotope fractionation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511557 DO - https://doi.org/10.1111/ggr.12327 SN - 1751-908X VL - 44 IS - 3 SP - 439 EP - 457 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-51155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Faßbender, Sebastian A1 - von der Au, Marcus A1 - Koenig, Maren A1 - Pelzer, J. A1 - Piechotta, Christian A1 - Vogl, Jochen A1 - Meermann, Björn T1 - Species-specific isotope dilution analysis of monomethylmercury in sediment using GC/ICP-ToF-MS and comparison with ICP-Q-MS and ICP-SF-MS N2 - A recently introduced inductively coupled plasma-time-of-flight-mass spectrometer (ICP-ToF-MS) shows enhanced sensitivity compared to previous developments and superior isotope ratio precision compared to other ToF and commonly used single-collector ICP-MS instruments. Following this fact, an improvement for isotope dilution ICP-MS using the new instrumentation has been reported. This study aimed at investigating whether this improvement also meets the requirements of species-specific isotope dilution using GC/ICP-MS, where short transient signals are recorded. The results of the analysis of monomethylmercury (MMHg) of a sediment reference material show that isotope ratio precision of ICP-MS instruments equipped with quadrupole, sector-field, and time-of-flight mass analyzers is similar within a broad range of peak signal-to-noise ratio when analyzing one isotopic system. The procedural limit of quantification (LOQ) for MMHg, expressed as mass fraction of Hg being present as MMHg, w(Hg)MMHg, was similar as well for all investigated instruments and ranged between 0.003 and 0.016 μg/kg. Due to the simultaneous detection capability, the ICP-ToF-MS might, however, be more favorable when several isotopic systems are analyzed within one measurement. In a case study, the GC/ICP-ToF-MS coupling was applied for analysis of MMHg in sediments of Finow Canal, a historic German canal heavily polluted with mercury. Mass fractions between 0.180 and 41 μg/kg (w(Hg)MMHg) for MMHg, and 0.056 and 126 mg/kg (w(Hg)total) for total mercury were found in sediment samples taken from the canal upstream and downstream of a former chemical plant. KW - Methylmercury KW - Legacy pollution KW - Finow Canal KW - Isotope dilution KW - Mercury speciation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529967 DO - https://doi.org/10.1007/s00216-021-03497-z SN - 1618-2642 VL - 413 IS - 21 SP - 5279 EP - 5289 PB - Springer CY - Berlin AN - OPUS4-52996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brauckmann, C. A1 - Pramann, A. A1 - Rienitz, O. A1 - Schulze, A. A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen T1 - Combining Isotope Dilution and Standard Addition—Elemental Analysis in Complex Samples N2 - A new method combining isotope dilution mass spectrometry (IDMS) and standard addition has been developed to determine the mass fractions w of different elements in complex matrices: (a) silicon in aqueous tetramethylammonium hydroxide (TMAH), (b) sulfur in biodiesel fuel, and (c) iron bound to transferrin in human serum. All measurements were carried out using inductively coupled plasma mass spectrometry (ICP–MS). The method requires the gravimetric preparation of several blends (bi)—each consisting of roughly the same masses (mx,i) of the sample solution (x) and my,i of a spike solution (y) plus different masses (mz,i) of a reference solution (z). Only these masses and the isotope ratios (Rb,i) in the blends and reference and spike solutions have to be measured. The derivation of the underlying equations based on linear regression is presented and compared to a related concept reported by Pagliano and Meija. The uncertainties achievable, e.g., in the case of the Si blank in extremely pure TMAH of urel (w(Si)) = 90% (linear regression method, this work) and urel (w(Si)) = 150% (the method reported by Pagliano and Meija) seem to suggest better applicability of the new method in practical use due to the higher robustness of regression analysis. KW - Isotope dilution mass spectrometry KW - tandard addition KW - ICP-MS KW - lank characterization KW - Silicon KW - Sulfur KW - Transferrin KW - Tetramethylammonium hydroxide KW - Biodiesel fuel KW - Human serum PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-526376 DO - https://doi.org/10.3390/molecules26092649 VL - 26 IS - 9 SP - 2649 PB - MDPI CY - Basel AN - OPUS4-52637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen T1 - The triple-isotope calibration approach: a universal and standard-free calibration approach for obtaining absolute isotope ratios of multi-isotopic elements N2 - The theory of a new calibration approach for obtaining absolute isotope ratios of multi-isotopic elements without the use of any standard has been developed. The calibration approach basically uses the difference in the instrumental isotope fractionation of two different types of mass spectrometers, leading to two different fractionation lines in a three-isotope diagram. When measuring the same sample with both mass spectrometers, the different fractionation lines have one point in common: this is the ‘true’ logarithmized isotope ratio pair of the sample. Thus, the intersection of both fractionation lines provides us with the absolute isotope ratios of the sample. This theory has been tested in practice by measuring Cd and of Pb isotope ratios in the certified reference materials BAM-I012 and NIST SRM981 by thermal ionization mass spectrometry and by inductively coupled plasma mass spectrometry while varying the ionization conditions for both mass spectrometers. With this experiment, the theory could be verified, and absolute isotope ratios were obtained, which were metrologically compatible with the certified isotope ratios. The so-obtained absolute isotope ratios are biased by − 0.5% in average, which should be improved with further developments of the method. This calibration approach is universal, as it can be applied to all elements with three or more isotopes and it is not limited to the type of mass spectrometers applied; it can be applied as well to secondary ion mass spectrometry or others. Additionally, this approach provides information on the fractionation process itself via the triple-isotope fractionation exponent θ. KW - Triple isotope fractionation KW - Absolute isotope ratio KW - Mass spectrometry KW - Calibration KW - Uncertainty PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516364 DO - https://doi.org/10.1007/s00216-020-03050-4 VL - 413 IS - 3 SP - 821 EP - 826 PB - Springer Verlag AN - OPUS4-51636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Prohaska, T. A1 - Irrgeher, J. A1 - Benefield, J. A1 - Böhlke, J. K. A1 - Chesson, L. A. A1 - Coplen, T. B. A1 - Ding, T. A1 - Dunn, P. J. H. A1 - Gröning, M. A1 - Holden, N. E. A1 - Meijer, H. A. J. A1 - Moossen, H. A1 - Possolo, A. A1 - Takahashi, Y. A1 - Vogl, Jochen A1 - Walczyk, T. A1 - Wang, J. A1 - Wieser, M. E. A1 - Yoneda, S. A1 - Zhu, X.-K. A1 - Meija, J. T1 - Standard atomic weights of the elements 2021 (IUPAC Technical Report) N2 - Following the reviews of atomic-weight determinations and other cognate data in 2015, 2017, 2019 and 2021, the IUPAC (International Union of Pure and Applied Chemistry) Commission on Isotopic Abundances and Atomic Weights (CIAAW) reports changes of standard atomic weights. The symbol Ar(E) was selected for standard atomic weight of an element to distinguish it from the atomic weight of an element E in a specific substance P, designated Ar(E, P). The CIAAW has changed the values of the standard atomic weights of five elements based on recent determinations of terrestrial isotopic abundances: Ar (argon): from 39.948 ± 0.001 to [39.792, 39.963] Hf (hafnium): from 178.49 ± 0.02 to 178.486 ± 0.006 Ir (iridium): from 192.217 ± 0.003 to 192.217 ± 0.002 Pb (lead): from 207.2 ± 0.1 to [206.14, 207.94] Yb (ytterbium): from 173.054 ± 0.005 to 173.045 ± 0.010 The standard atomic weight of argon and lead have changed to an interval to reflect that the natural variation in isotopic composition exceeds the measurement uncertainty of Ar(Ar) and Ar(Pb) in a specific substance. The standard atomic weights and/or the uncertainties of fourteen elements have been changed based on the Atomic Mass Evaluations 2016 and 2020 accomplished under the auspices of the International Union of Pure and Applied Physics (IUPAP). Ar of Ho, Tb, Tm and Y were changed in 2017 and again updated in 2021: Al (aluminium), 2017: from 26.981 5385 ± 0.000 0007 to 26.981 5384 ± 0.000 0003 Au (gold), 2017: from 196.966 569 ± 0.000 005 to 196.966 570 ± 0.000 004 Co (cobalt), 2017: from 58.933 194 ± 0.000 004 to 58.933 194 ± 0.000 003 F (fluorine), 2021: from 18.998 403 163 ± 0.000 000 006 to 18.998 403 162 ± 0.000 000 005 (Ho (holmium), 2017: from 164.930 33 ± 0.000 02 to 164.930 328 ± 0.000 007) Ho (holmium), 2021: from 164.930 328 ± 0.000 007 to 164.930 329 ± 0.000 005 Mn (manganese), 2017: from 54.938 044 ± 0.000 003 to 54.938 043 ± 0.000 002 Nb (niobium), 2017: from 92.906 37 ± 0.000 02 to 92.906 37 ± 0.000 01 Pa (protactinium), 2017: from 231.035 88 ± 0.000 02 to 231.035 88 ± 0.000 01 Pr (praseodymium), 2017: from 140.907 66 ± 0.000 02 to 140.907 66 ± 0.000 01 Rh (rhodium), 2017: from 102.905 50 ± 0.000 02 to 102.905 49 ± 0.000 02 Sc (scandium), 2021: from 44.955 908 ± 0.000 005 to 44.955 907 ± 0.000 004 (Tb (terbium), 2017: from 158.925 35 ± 0.000 02 to 158.925 354 ± 0.000 008) Tb (terbium), 2021: from 158.925 354 ± 0.000 008 to 158.925 354 ± 0.000 007 (Tm (thulium), 2017: from 168.934 22 ± 0.000 02 to 168.934 218 ± 0.000 006) Tm (thulium), 2021: from 168.934 218 ± 0.000 006 to 168.934 219 ± 0.000 005 (Y (yttrium), 2017: from 88.905 84 ± 0.000 02 to 88.905 84 ± 0.000 01) Y (yttrium), 2021: from 88.905 84 ± 0.000 01 to 88.905 838 ± 0.000 002 KW - Argon KW - Ciaaw.org KW - Hafnium KW - Iridium KW - Lead KW - LSVEC KW - Ytterbium PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548443 DO - https://doi.org/10.1515/pac-2019-0603 SN - 0033-4545 VL - 94 IS - 5 SP - 573 EP - 600 PB - De Gruyter Verlag CY - Berlin AN - OPUS4-54844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Coplen, T. B. A1 - Holden, N. E. A1 - Ding, T. A1 - Meijer, H. A. J. A1 - Vogl, Jochen A1 - Zhu, X. T1 - The Table of Standard Atomic Weights—An exercise in consensus N2 - The present Table of Standard Atomic Weights (TSAW) of the elements is perhaps one of the most familiar data sets in science. Unlike most parameters in physical science whose values and uncertainties are evaluated using the “Guide to the Expression of Uncertainty in Measurement” (GUM), the majority of standard atomic weight values and their uncertainties are consensus values, not GUM-evaluated values. The Commission on Isotopic Abundances and Atomic Weights of the International Union of Pure and Applied Chemistry (IUPAC) regularly evaluates the literature for new isotopic-abundance measurements that can lead to revised standard atomic-weight values, Ar(E) for element E. The Commission strives to provide utmost clarity in products it disseminates, namely the TSAW and the Table of Isotopic Compositions of the Elements (TICE). In 2016, the Commission recognized that a guideline recommending the expression of uncertainty listed in parentheses following the standard atomic-weight value, for example, Ar(Se) = 78.971(8), did not agree with the GUM, which suggests that this parenthetic notation be reserved to express standard uncertainty, not the expanded uncertainty used in the TSAW and TICE. In 2017, to eliminate this noncompliance with the GUM, a new format was adopted in which the uncertainty value is specified by the “±” symbol, for example, Ar(Se) = 78.971 ± 0.008. To clarify the definition of uncertainty, a new footnote has been added to the TSAW. This footnote emphasizes that an atomic-weight uncertainty is a consensus (decisional) uncertainty. Not only has the Commission shielded users of the TSAW and TICE from unreliable measurements that appear in the literature as a result of unduly small uncertainties, but the aim of IUPAC has been fulfilled by which any scientist, taking any natural sample from commerce or research, can expect the sample atomic weight to lie within Ar(E) ± its uncertainty almost all of the time. KW - Atomic weight KW - Standard atomic weight KW - Uncertainty PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551299 DO - https://doi.org/10.1002/rcm.8864 SN - 1097-0231 VL - 36 IS - 15 SP - 1 EP - 15 PB - Wiley AN - OPUS4-55129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Rienitz, O. A1 - Pramann, A. A1 - Flierl, L. T1 - Scale Conversion and Uncertainty Calculations in Isotope Delta Measurements N2 - Isotope ratio applications are on the increase and a major part of which are delta measurements, because they are easier to perform than the determination of absolute isotope ratios while offering lower measurement uncertainties. Delta measurements use artefact-based scales and therefore scale conversions are required due to the lack of the scale defining standards. Such scale conversions often form the basis for comparing data being generated in numerous projects andtherefore need to be as accurate as possible. In practice, users are tempted to apply linear approximations, which are not sufficiently exact, because delta values are defined by nonlinear relationships. The bias of such approximations often is beyond typical measurement uncertainties and its extent can hardly be predicted. Therefore, exact calculations are advised. Here, the exact equations and the bias of the approximations are presented, and calculations are illustrated by real-world examples. Measurement uncertainty is indispensable in this context and therefore, its calculation is described as well for determining delta values but also for scale conversions. Approaches for obtaining a single delta measurement and for repeated measurements are presented. For the latter case, a new approach for calculating the measurement uncertainty is presented, which considers covariances between the isotope ratios. KW - Delta isotope standard KW - Delta scale KW - In-house calibration solution KW - Isotope ratios KW - Isotope reference material KW - Measurement uncertainty KW - Scale conversion PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557254 DO - https://doi.org/10.1111/ggr.12450 SN - 1639-4488 VL - 46 IS - 4 SP - 773 EP - 787 PB - Wiley AN - OPUS4-55725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tukhmetova, Dariya A1 - Lisec, Jan A1 - Vogl, Jochen A1 - Meermann, Björn T1 - Data processing made easy: standalone tool for automated calculation of isotope ratio from transient signals – IsoCor N2 - Despite numerous advantages offered by hyphenation of chromatography and electrokinetic separation methods with multicollector (MC) ICP-MS for isotope analysis, the main limitation of such systems is the decrease in precision and increase in uncertainty due to generation of short transient signals. To minimize this limitation, most authors compare several isotope ratio calculation methods and establish a multi-step data processing routine based on the precision and accuracy of the methods. However, to the best of our knowledge, there is no universal data processing tool available that incorporates all important steps of the treatment of the transient signals. Thus, we introduce a data processing application (App) IsoCor that facilitates automatic calculation of isotope ratios from transient signals and eases selection of the most suitable method. The IsoCor App performs baseline subtraction, peak detection, mass bias correction, isotope ratio calculation and delta calculation. The feasibility and reliability of the App was proven by reproducing the results from isotope analysis of three elements (neodymium, mercury and sulfur) measured on-line via hyphenated systems. The IsoCor App provides trackability of the results to ensure quality control of the analysis. KW - Isotope ratio KW - Transient signal KW - MC-ICP-MS KW - Data processing KW - App PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559068 DO - https://doi.org/10.1039/D2JA00208F VL - 37 IS - 11 SP - 2401 EP - 2409 PB - Royal Society of Chemistry AN - OPUS4-55906 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Yim, Y.-H. A1 - Lee, K.-S. A1 - Goenaga-Infante, H A1 - Malinovskiy, D. A1 - Hill, S. A1 - Ren, T. A1 - Wang, J. A1 - Vocke, R. D. A1 - Murphy, K. E. A1 - Nonose, N. A1 - Rienitz, O. A1 - Noordmann, J. T1 - Certification of ERM-EB400, the first matrix reference material for lead isotope amount ratios, and ERM-AE142, a lead solution providing a lead isotopic composition at the edge of natural variation N2 - Lead isotope amount ratios are commonly used in diverse fields such as archaeometry, geochemistry and forensic science. Currently, five reference materials with certified lead isotope amount ratios are available, namely NIST SRM 981, 982 and 983, GBW-04442 and NMIJ 3681-a. Only NIST SRM 981 and NMIJ 3681-a have approximately natural isotopic compositions, and NIST SRM 981 is predominantly used for correcting mass discrimination/mass fractionation in the applied mass spectrometric procedures. Consequently, there is no other certified reference material available to be used for validation and/or quality control of the analytical procedures applied to lead isotope amount ratio measurements. To fill this gap, two new reference materials have been produced and certified for their lead isotope amount ratios. For both certified reference materials, complete uncertainty budgets have been calculated and SI traceability has been established. This provides the users with independent means for validating and verifying their analytical procedures and for conducting quality control measures. ERM-EB400 is a bronze material with a nominal lead mass fraction of 45 mg kg-1 and certified lead isotope amount ratios of n(206Pb)/n(204Pb) = 18.072(17) mol mol-1, n(207Pb)/n(204Pb) = 15.578(18) mol mol-1 and n(208Pb)/n(204Pb) = 38.075(46) mol mol-1 with the associated expanded uncertainties (k = 2) given in brackets. ERM-AE142 is a high-purity solution of lead in 2% nitric acid with a nominal mass fraction of 100 mg kg-1 and certified Pb isotope amount ratios of n(206Pb)/n(204Pb) = 21.114(17) mol mol-1, n(207Pb)/n(204Pb) = 15.944(17) mol mol-1 and n(208Pb)/n(204Pb) = 39.850(44) mol mol-1 with the associated expanded uncertainties (k = 2) given in brackets. Both materials are specifically designed to fall within the natural lead isotopic variation and to assist users with the validation and verification of their analytical procedures. Note that while one of these reference materials requires the chemical separation of Pb from its matrix (ERM-EB400), the other does not (ERM-AE142). As additional information, δ208/206PbNIST SRM981 values are provided for both materials. For ERM-AE142, a delta value of δ208/206PbNIST SRM981 = -28.21(30) ‰ was obtained, and for ERM-EB400, a delta value of δ208/206PbNIST SRM981 = -129.47(38) ‰ was obtained, with the associated expanded uncertainties (k = 2) given in brackets. KW - Lead isotope variations KW - Radiogenic isotopes KW - Isotope reference material KW - Metrology in chemistry KW - Measurement uncertainty PY - 2019 DO - https://doi.org/10.1111/ggr.12253 SN - 1751-908X SN - 1639-4488 VL - 43 IS - 1 SP - 23 EP - 37 PB - John Wiley & Sons AN - OPUS4-47383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -