TY - CONF A1 - Niederleithinger, Ernst A1 - Abraham, Odile A1 - Larose, Eric T1 - A review on ultrasonic monitoring of concrete: coda wave interferometry and beyond T2 - Proceeding of QNDE 2019 N2 - The propagation of ultrasonic waves in concrete is affected by its micro- and macro-structure, geometry and properties as well as external influences as stress, temperature or moisture. In addition, age and degradation have a strong influence. Therefore, Ultrasound has been used to monitor concrete samples and structures since decades. However, early applications using conventional techniques as time-of flight or changes in amplitudes have been limited to detect changes in a late stage close to serviceability or ultimate load states. Around 2000, several new, more sensitive techniques adopted from geophysics or other field of material sciences have been introduced to research in ultrasonic monitoring of concrete. The most discussed methodologies are coda wave interferometry, a technique which allows to detect very subtle changes from repeated ultrasonic measurements. Nonlinear acoustic techniques help to identify e. g. cracks even in an inhomogeneous background. Both techniques can be combined. This paper reviews methods and results achieved so far on the laboratory scale and with full scale models the directions for future research and application is given as well. T2 - QNDE 2019 CY - Portland, OR, USA DA - 14.07.2019 KW - Ultrasound KW - Coda wave interferometry KW - Concrete KW - Nonlinear KW - Monitoring PY - 2019 SP - Paper 1234 AN - OPUS4-48686 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Abraham, O. A1 - Larose, E. T1 - A review on ultrasonic monitoring of concrete: coda wave interferometry and beyond N2 - The propagation of ultrasonic waves in concrete is affected by its micro- and macro-structure, geometry and properties as well as external influences as stress, temperature or moisture. In addition, age and degradation have a strong influence. Therefore, Ultrasound has been used to monitor concrete samples and structures since decades. However, early applications using conventional techniques as time-of flight or changes in amplitudes have been limited to detect changes in a late stage close to serviceability or ultimate load states. Around 2000, several new, more sensitive techniques adopted from geophysics or other field of material sciences have been introduced to research in ultrasonic monitoring of concrete. The most discussed methodologies are coda wave interferometry, a technique which allows to detect very subtle changes from repeated ultrasonic measurements. Nonlinear acoustic techniques help to identify e. g. cracks even in an inhomogeneous background. Both techniques can be combined. This paper reviews methods and results achieved so far on the laboratory scale and with full scale models the directions for future research and application is given as well. T2 - QNDE 2019 CY - Portland, OR, USA DA - 14.07.2019 KW - Ultrasound KW - Coda wave interferometry KW - Concrete KW - Nonlinear KW - Monitoring PY - 2019 AN - OPUS4-48688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bassil, A. A1 - Wang, Xin A1 - Chapeleau, X. A1 - Niederleithinger, Ernst A1 - Abraham, O. A1 - Leduc, D. T1 - Distributed fiber optics sensing and coda wave interferometry techniques for damage monitoring in concrete structures JF - Sensors N2 - The assessment of Coda Wave Interferometry (CWI) and Distributed Fiber Optics Sensing (DFOS) techniques for the detection of damages in a laboratory size reinforced concrete beam is presented in this paper. The sensitivity of these two novel techniques to micro cracks is discussed and compared to standard traditional sensors. Moreover, the capacity of a DFOS technique to localize cracks and quantify crack openings is also assessed. The results show that the implementation of CWI and DFOS techniques allow the detection of early subtle changes in reinforced concrete structures until crack formation. With their ability to quantify the crack opening, following early detection and localization, DFOS techniques can achieve more effective monitoring of reinforced concrete structures. Contrary to discrete sensors, CWI and DFOS techniques cover larger areas and thus provide more efficient infrastructures asset management and maintenance operations throughout the lifetime of the structure. KW - Distributed fiber optic sensors KW - Coda wave interferometry KW - Reinforced concrete KW - Cracks KW - Damage detection KW - Structural health monitoring PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-472549 DO - https://doi.org/10.3390/s19020356 SN - 1424-8220 VL - 19 IS - 2 SP - 356, 1 EP - 15 PB - MDPI AN - OPUS4-47254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -