TY - CONF A1 - Kulow, Anicó A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Radtke, Martin A1 - Riesemeier, Heinrich A1 - Streli, C. T1 - Time- and lateral-resolved X-ray absorption fine structure spectroscopy N2 - We developed a setup for time- and lateral-resolved X-ray absorption fine structure (XAFS) spectroscopy. A dispersive element is placed behind the sample to investigate. The broadband incoming beam transmits the sample, is then dispersed and finally collected by a position sensitive detector. This allows the recording of a whole X-ray absorption near edge structure (XANES) or extended X-ray absorption fine structure (EXAFS) spectrum in a single shot. The dispersive element is a Si(111) crystal, bent by means of a so called wafer bender, developed in house. Our setup is very flexible, easy to adjust and allows a time resolution down to one second which can be used to follow chemical reactions with dynamics on this time scale. T2 - SXR2019 CY - Berlin, Germany DA - 16.09.2019 KW - Spectroscopy KW - X-ray KW - Absorption KW - Synchrotron PY - 2019 AN - OPUS4-49045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - De Samber, B. A1 - Scharf, Oliver A1 - Buzanich, Günter A1 - Garrevoet, J. A1 - Tack, P. A1 - Radtke, Martin A1 - Riesemeier, Heinrich A1 - Reinholz, Uwe A1 - Evens, R. A1 - De Schamphelaere, K. A1 - Falkenberg, G. A1 - Janssen, C. A1 - Vincze, L. T1 - Three-dimensional X-ray fluorescence imaging modes for biological specimens using a full-field energy dispersive CCD camera N2 - Besides conventional scanning X-ray fluorescence imaging at synchrotron sources, full-field X-ray fluorescence (FF-XRF) imaging techniques that do not implicitly require spatial scanning of the sample have become available. FF-XRF has become achievable thanks to the development of a new type of energy dispersive CCD-based 2D detector, also referred to as a 'color X-ray camera (CXC)' or 'SLcam'. We report on different imaging schemes for biological samples using FF-XRF imaging: (a) 2D 'zoom' imaging with pinhole optics using the 'camera obscura' principle; (b) 2D 'fixed magnification' imaging using magnifying polycapillary optics; and (c) 3D-FF-XRF imaging using an X-ray sheet beam or computed tomography (CT). The different FF-XRF imaging modes are illustrated using the crustacean Daphnia magna, a model organism for investigating the effects of metals on organism/ecosystem health, and foraminifera, a class of amoeboid protist. Detailed analytical characterization of the set-up is performed through analyzing various reference materials in order to determine limits of detection (LODs) and sensitivities. Experiments were performed using the BAMline at the BESSY synchrotron (Berlin, Germany) and using the P06 Hard X-ray Microprobe at the PETRAIII synchrotron (Hamburg, Germany). KW - CXC KW - BAMline KW - Maia detector KW - Synchrotron PY - 2019 U6 - https://doi.org/10.1039/c9ja00198k VL - 34 IS - 10 SP - 2083 EP - 2093 PB - Royal Society of Chemistry CY - Cambridge, United Kingdom AN - OPUS4-49359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Emmerling, Franziska T1 - Materials research with synchrotron radiation N2 - Synchrotron radiation sources with their unique properties in terms of intensity, polarization and adjustability offer a wide range of possibilities in materials research. A basic introduction about the creation and special properties of synchrotron radiation will be given. Examples of current work at BAMline, the high-energy measuring facility of the Federal Institute for Materials Research and Testing at the synchrotron BESSY, are used to illustrate the possibilities and limitations of existing measuring methods. It will be shown how the formation of corrosion layers can be tracked, how the abrasion of implants leads to the introduction of heavy metals into the surrounding bone matrix and how the detection of smallest impurities in gold is possible by optimizing the measuring conditions. Finally, an outlook at the hardware and software developments to be expected in the coming years is given. T2 - INCT-FNA Symposium 2019 CY - Niteroi, Brazil DA - 27.05.2019 KW - Synchrotron KW - XRF KW - XANES KW - EXAFS KW - TXRF KW - Color X-ray Camera PY - 2019 AN - OPUS4-48897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fittschen, U.E.A. A1 - Möckel, R. A1 - Schreiner, M. A1 - klinger, M. A1 - Radtke, Martin A1 - Meyer, B. A1 - Guhl, S. A1 - Renno, A. A1 - Godinho, J. A1 - Gloaguen, R. A1 - Gutzmer, J. T1 - Bundling analytical capacities to understand phase formation in recycling of functional materials N2 - Transitioning from combustion engine-driven transportation to e-mobility demands a paradigm shift – from a system geared to maximize energy efficiency (i.e. fuel consumption) to a system that may be constrained by the availability of high technology (critical) metals required for electrical energy storage systems and drives. In the wake of these developments efforts in securing new resources of these metals from recycling of end-of-life products are increasing steadily. Recycling of Li-Ion batteries has recently been evaluated. The results pinpoint to a critical need for understanding slag Formation and its dependence on metal components like Mn under extreme conditions. This will allow researchers to predict optimal Operation setting and to react quickly to changing market demands (which may be Li or Co at one point but may also shift to Ni or rare earth elements (REE)). The long-term goal is to control the formation of specific phases in slags allowing for a Maximum yield of elements of interest and optimal recovery in the separation processes that follows. The combination of data on the physical micro structure and local chemistry of the multi-Phase products during and after processing will help to understand and derive thermodynamic and kinetic data on its formation. In this paper we are giving an overview on the analytical challenges and approaches to provide robust data on local element concentration and species (especially Mn which is a common component of next generation Li-ion batteries cathodes), spanning the dimensions from the nanometer scale to the bulk material. The complementary interactions of X-rays and electrons make them ideal probes to collect Interface and “in-depth” information. Before- and -after studies as well as in situ structural changes and Phase (trans)formation, changes in elemental and elemental species (e.g. oxidation state) distribution may be tracked by X-ray diffraction (XRD), X-ray fluorescence microscopy and X-ray Absorption spectroscopy. The application of such advanced analytical tools will not only provide essential clues during early lab-based experiments towards the development of new recycling technologies, but may also be deployed for on-line and in-line monitoring of industrial processes. KW - Synchrotron KW - XANES KW - Slags KW - Battery PY - 2019 U6 - https://doi.org/10.4028/www.scientific.net/MSF.959.183 SN - 1662-9752 VL - 959 SP - 183 EP - 190 PB - Trans Tech Publ. AN - OPUS4-48900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - Machine learning for direct quantification of XRF measurements N2 - In X-ray fluorescence (XRF), a sample is excited with X-rays, and the resulting characteristic radiation is detected to detect elements quantitatively and qualitatively. Quantification is traditionally done in several steps: 1. Normalization of the data 2. Determination of the existing elements 3. Fit of the measured spectrum 4. Calculation of concentrations with fundamental parameters / MC simulations / standard based The problem with standard based procedures is the availability of corresponding standards. The problem with the calculations is that the measured intensities for XRF measurements are matrix-dependent. Calculations must, therefore, be performed iteratively (= time consuming) in order to determine the chemical composition. First experiments with gold samples have shown the feasibility of machine learning based quantification in principle. A large number of compositions were simulated (> 10000) and analyzed with a deep learning network. For first experiments, an ANN (Artificial Neural Network) with 3 hidden layers and 33x33x33 neurons was used. This network learned the mapping of spectra to concentrations using supervised learning by multidimensional regression. The input layer was formed by the normalized spectrum, and the output layer directly yielded the searched values. The applicability for real samples was shown by measurements on certified reference materials. T2 - Denver X-ray Conference CY - Lombard, IL, USA DA - 05.08.2019 KW - Machine learning KW - Artificial intelligence KW - Neural network KW - XRF KW - Synchrotron PY - 2019 AN - OPUS4-48903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manso, M. A1 - Pessanha, S. A1 - Guerra, M. A1 - Reinholz, Uwe A1 - Afonso, C. A1 - Radtke, Martin A1 - Lourenco, H. A1 - Carvalho, M. L. A1 - de Oliveira Guilherme Buzanich, Ana T1 - Assessment of Toxic Metals and Hazardous Substances in Tattoo Inks Using Sy-XRF, AAS, and Raman Spectroscopy N2 - Synchrotron radiation X-ray fluorescence spectroscopy, in conjunction with atomic absorption and Raman spectroscopy, was used to analyze a set of top brand tattoo inks to investigate the presence of toxic elements and hazardous substances. The Cr, Cu, and Pb contents were found to be above the maximum allowed levels established by the Council of Europe through the resolution ResAP(2008)1 on requirements and criteria for the safety of tattoos and permanent makeup. Raman analysis has revealed the presence of a set of prohibited substances mentioned in ResAP(2008)1, among which are the pigments Blue 15, Green 7, and Violet 23. Other pigments that were identified in white, black, red, and yellow inks are the Pigment White 6, Carbon Black, Pigment Red 8, and a diazo yellow, respectively. The present results show the importance of regulating tattoo ink composition. KW - Synchrotron KW - Tattoo inks KW - XRF KW - Toxic metals KW - Hazardous substances PY - 2019 U6 - https://doi.org/10.1007/s12011-018-1406-y VL - 187 IS - 2 SP - 596 EP - 601 PB - Springer AN - OPUS4-47369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - New insights in mechanochemical processes using real-time in situ investigations N2 - Use of synchrotron radiation for special sample conditions. Recent work of the group at BESSY II. T2 - DESY Usermeeting Satelite Workshop CY - Hamburg, Germany DA - 22.01.2019 KW - XRD KW - In situ KW - Rietveld KW - Synchrotron PY - 2019 AN - OPUS4-47262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana T1 - Hard X-ray spectroscopy and imaging at the BAMline and MySpot beamlines at BESSY II (Berlin, Germany) N2 - Overview of the X-ray based analytical methods conducted at the BAMline and µSpot Beamline for structure analysis. T2 - Pccr2 + AfLS conference CY - Accra, Ghana DA - 29.01.2019 KW - X-ray spectroscopy KW - Synchrotron KW - Beamline KW - Material characterization PY - 2019 AN - OPUS4-47319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana T1 - Career talk & lab tour - Working at BESSY II, a large scale research facility in Adlershof N2 - What exactly does a postdoc do at a research institute? What scientific questions does he or she want to address? What is their daily work routine? During our regular Lab Tours, female postdocs provide insight into their jobs. They also tell us about their career path: How did they get there? And what do they envision for their professional future? This time, Dr. Ana Guilherme Buzanich, a scientist from the Structure Analysis division at the Bundesanstalt für Materialforschung und -prüfung (BAM), will give an overview of her Research areas. She works at the electron storage ring BESSY-II where she conducts experiments at two hard X-ray beamlines (BAMline and µSpot). The tour includes a guided visit of the research facility. T2 - Lab Tour & Career Talk, WiNS CY - Berlin, Germany DA - 11.02.2019 KW - Women in STEM KW - X-ray Spectroscopy KW - Synchrotron KW - Beamline KW - Material characterization PY - 2019 AN - OPUS4-47418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska T1 - Structure analytics with Hard X-rays at the BAMline and µSpot beamlines N2 - An overview of the research areas at the structure analysis division is given. Specifically the in situ characterization of dynamic processes with hard X-ray diffraction and absorption spectroscopy at the BAMline and µSpot beamlines (BESSY-II). T2 - BAM-IFW Workshop CY - Dresden, Germany DA - 28.03.2019 KW - Structure analysis KW - X-ray Spectroscopy KW - Synchrotron KW - Beamline KW - Material characterization PY - 2019 AN - OPUS4-47695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -