TY - JOUR A1 - Surov, Artem O. A1 - Vasilev, Nikita A. A1 - Churakov, Andrei V. A1 - Stroh, Julia A1 - Emmerling, Franziska A1 - Perlovich, German L. T1 - Solid Forms of Ciprofloxacin Salicylate: Polymorphism, Formation Pathways, and Thermodynamic Stability N2 - The crystallization of ciprofloxacin - an antibacterial fluoroquinolone compound - with salicylic acid resulted in the isolation of five distinct solid forms of the drug, namely, an anhydrous salt, two polymorphic forms of the salt monohydrate, methanol and acetonitrile solvates, and the salt-cocrystal hydrate. The salicylate salts were investigated by different analytical techniques ranging from powder and single crystal X-ray diffractometry, differential scanning calorimetry, thermogravimetric analysis, variable temperature powder X-ray diffraction, dynamic vapor sorption analysis, dissolution, and solubility investigations. Real-time in situ Raman spectroscopy was used to investigate the mechanochemical formation pathways of the different solid polymorphs of ciprofloxacin salicylate. The mechanism of the phase transformation between the crystalline forms was evaluated under mechanochemical conditions. It was found that the formation pathway and kinetics of the grinding process depend on the form of the starting material and reaction conditions. The analysis of the solid-state thermal evolution of the hydrated salts revealed the two-step mechanism of dehydration process, which proceeds through a formation of the distinct intermediate crystalline products. KW - Cocrystal KW - Polymorphism KW - Ciprofloxacin KW - XRD KW - DSC PY - 2019 U6 - https://doi.org/10.1021/acs.cgd.9b00185 SN - 1528-7483 VL - 19 IS - 5 SP - 2979 EP - 2990 PB - American Chemical Society AN - OPUS4-47903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stroh, Julia A1 - Feiler, Torvid A1 - Ali, N. Z. A1 - Minas da Piedade, M. E. A1 - Emmerling, Franziska T1 - Mechanistic Insights into a Sustainable Mechanochemical Synthesis of Ettringite N2 - Mechanochemistry offers an environmentally benign and facile synthesis method for a variety of cement paste constituents. In addition, these methods can be used to selectively tune the properties of cement components. The mineral ettringite is an important component of cementitious materials and has additional technological potential due to its ion exchange properties. Synthesis of ettringite via mechanochemistry is an environmentally friendly alternative to conventional wet-chemical synthesis established in industry. This contribution explores the mechanism of a two-step mechanochemical synthesis of ettringite, which was previously found to greatly improve the reaction conversion as compared with one-pot synthesis. The crystallinity of Al(OH)3 was found to decrease during the first stage of this mechanochemical synthesis. This was correlated to a significant decrease in the particle size of Al(OH)3 in this stage. No other significant changes were found for the other components, suggesting that mechanochemical activation of Al(OH)3 is responsible for the enhanced formation of ettringite by the two-step approach. The environmentally friendly approach developed for ettringite synthesis offers a versatile synthetic strategy, which can be applied to synthesise further cementitious materials. KW - Ettringite KW - Mechanochemistry KW - Sustainability KW - X-ray diffraction PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-489172 VL - 8 IS - 7 SP - 1012 EP - 1019 PB - ChemPubSoc AN - OPUS4-48917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stroh, Julia A1 - Ali, Naveed Zafar A1 - Maierhofer, Christiane A1 - Emmerling, Franziska T1 - Ettringite via Mechanochemistry: A Green and Rapid Approach for Industrial Application N2 - Here, we report on a first mechanochemical synthesis of ettringite, an important cement hydrate phase. The mineral compound ettringite ([Ca3Al(OH)6]2·(SO4)3·26H2O) occurs rarely in nature, but is common for cement-based materials. Ettringite has wide technical application in the ceramic and paper industry. However, its typical wet-chemical synthesis is cumbersome and produces waste water and CO2 emissions. Here, we investigate the first mechanochemical synthesis of ettringite for developing an easy and sustainable alternative for industrial application. The mechanosynthesis was monitored in situ by coupled synchrotron X-ray diffraction (XRD) and infrared thermography (IRT). The consumption of the reactants and the formation of the reaction product were monitored with time-resolved XRD. IRT showed the temperature increase based on the exothermic reaction. The reaction conversion was significantly improved changing the strategy of the mechanosynthesis from a one- to a two-step process. The latter included neat pregrinding of solid reactants followed by a delayed addition of the stoichiometric amount of water. Thus, an increase of reaction conversion from 34 to 94% of ettringite could be achieved. KW - XRD KW - Mechanochemistry KW - Ettringite KW - In situ PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-479016 SN - 2470-1343 VL - 4 IS - 4 SP - 7734 EP - 7737 PB - ACS Publications CY - Washington, DC AN - OPUS4-47901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stroh, Julia A1 - Emmerling, Franziska T1 - In situ full phase analysis of the early cement hydration N2 - Fresh cement paste is a suspension consisting of a hydraulic binder (cement), water, and numerous minor components – admixtures. Addition of admixtures aims at specific modification of properties of the fresh cement paste or hardened cementitious building material. Specific admixtures, so-called superplasticizers (SP), are used to improve the flowability of the fresh cement paste with reduced water content. The latter is the starting material for the high-strength concrete. Thus, SPs are essential for the ambitious construction projects. However, uncontrollable retardation of the setting time in presence of SPs is occasionally observed. Obviously, SPs influence early products of the cement hydration leading to changes in the microstructure development. The hardening is thus delayed, and the quality of the resulting building material suffers. The mechanisms of the admixture action during the hydration process are still intensively investigated [1-7]. A detailed understanding of the admixture effects during the early hydration stage is the key to control and individual adjustment of the cement-based construction materials. We use the unique combination of the wall-free sample holder and the time-resolved X-ray scattering analysis to achieve the full information about the hydrate phases formed under the influence of admixtures. We use ultrasonic levitator to start the cement hydration in levitated cement pellets [8, 9]. The sample levitation allows collection of the unimpaired information about cement hydrate phases. The most beneficial is the avoiding of the contributions of the sample holder material to the data signal. We induce the cement hydration by adding water to unhydrated Portland cement during the data acquisition. The full phase composition of the hydrating cementitious system can be gathered in situ using wide angle X-ray scattering (WAXS). During the hydration of cement both crystalline and amorphous hydrate phases are formed. WAXS data contain the information about crystalline phases behind the Bragg reflections, whereas the amorphous hydrates influence the appearance of the background. Application of the data analysis specific for crystalline or amorphous phases is needed. The data quantification by the Rietveld method allows to conclude about the changes of the phase amounts due to the presence of admixture. The calculation of the pair distribution functions allows analysis of the amorphous hydrates. Based on this information, the SP effects and the extent of their involvement into the ongoing reactions can be concluded. A detailed understanding of the complex cement hydration process is envisioned. T2 - Anakon 2019 CY - Münster, Germany DA - 25.03.2019 KW - Cement KW - Admixtures KW - Pair Distribution Functions KW - X-ray diffraction KW - Total scattering analysis PY - 2019 AN - OPUS4-47664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -