TY - JOUR A1 - Zöllner, Moritz T. A1 - Dariz, Petra A1 - Riedel, Jens A1 - Schmid, Thomas T1 - Dolomite and Mg Calcite as Mineral Thermometers in Mortar Binders. A High Resolution Raman Spectroscopic Study N2 - This paper suggests the use of high‐resolution Raman scattering bands of MgCa carbonates as posteriori thermometer minerals in archaeometric studies. Therefore, the thermal behavior of two dolomite samples and the hydration and carbonation reaction in air of the decomposition products were investigated by Raman microspectroscopy. The increase in the calcination temperature resulted in the formation of – Raman silent MgO and – inert Mg calcite at 700°C–750°C. In contrast, the decarbonation, hydration, and recarbonation of sample material exposed to 750°C–900°C in a muffle furnace led to the appearance of Mg‐free calcite. High spectral resolution Raman spectroscopy enabled a spectral distinction between these two groups due to differences in the band parameters (peak position, bandwidth) of the vibrational (v1, v4, L) modes of calcite. In combination with Raman microspectroscopic mapping, this spectral information represents a new approach for the estimation of burning temperatures of medieval high‐fired gypsum mortars via natural dolomite impurities. Thus, the results of this work highlight the importance and potential of Raman microspectroscopy as a thermometric tool for elucidating the thermal history of anthropogenic fired materials, with potential applications for archaeometry and art technology, as well as for quality controls in the frame of the production of mineral mortar binders and ceramics or bricks, respectively. KW - Mineral thermometry KW - Raman spectroscopy KW - Dolomite KW - High-fired gypsum mortar PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-630270 DO - https://doi.org/10.1002/jrs.6810 SN - 1097-4555 SP - 1 EP - 13 PB - Wiley AN - OPUS4-63027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zöllner, Moritz T1 - Thermal decomposition of dolomite: Raman spectroscopy as a thermometric tool for the analysis of carbonates in mortar binders. N2 - The reconstruction of the thermal history of minerals is an on-going challenge in the study of anthropogenic materials, e.g., ceramics and mortar binders. For millennia carbonate rocks have been used as the starting material, though the exact manufacturing procedures are often unknown. Preparatory parameters such as firing temperature, heating and cooling rates, soaking time, and kiln atmosphere greatly influence the chemical and structural properties of the resulting products. Analysis of replicas produced under well-defined laboratory conditions help identify indicators for such process parameters and therefore provide valuable insights into historical production workflows. Raman micro-spectroscopy is a valuable method here because of its high sensitivity for crystal-chemical alterations coupled with a high spatial resolution. Previous studies on pyrogenic anhydrite were able to distinguish between gypsum materials that were heated at different temperatures between 400 – 900 °C [1, 2]. The results of thermal experiments with natural dolomite powder between 500 – 900 °C are presented, evaluating the thermal decomposition of dolomite and the consequent formation of calcium carbonate. Raman measurements were performed at room temperature on calcinated samples, as well as subsequently hydrated and re-carbonated samples. A peak-fitting routine using python scripts was employed to extract the peak positions and the full width at half maximum (FWHM) values of the ν1-, ν4- and L-bands of the carbonates. The results reveal the formation of Mg-calcite from dolomite at 700 – 750 °C and the formation of Mg-free calcite after calcination above 750 °C and subsequent hydration and re-carbonation. The findings from the thermal experiments are compared with Raman-microscopy mappings on medieval and reenacted mortars containing dolomite. Mg-calcite with comparable peak position and FWHM values have been successfully identified, proving Raman spectroscopy to be a suitable tool for elucidating the manufacturing procedures of anthropogenic materials. T2 - European Mineralogical Conference 2024 CY - Dublin, Ireland DA - 18.08.2024 KW - Raman spectroscopy KW - Dolomite KW - Mineral thermometry PY - 2024 AN - OPUS4-61975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zöllner, Moritz T1 - Thermal decomposition of dolomite: Raman spectroscopy as a thermometric tool for the analysis of carbonates in mortar binders. N2 - High-spectral resolution Raman spectroscopy is a powerful tool for the chemical and structural analysis in material sciences. Beyond its usage for the qualitative identification of minerals, Raman spectroscopy has been applied for the quantitative characterisation of chemical phases. The precise measurement of Raman peak position and band width values allows for an empirical differentiation of chemically similar phases and thus provides valuable insights to the structural properties of a material. In the field of archaeometry, the crystal structure of minerals can be used to elucidate the preparatory parameters of historical samples, such as the firing temperature. Comparison of historical materials with replicas produced under well-defined laboratory conditions help identify indicators for such process parameters. Previous Raman studies on pyrogenic anhydrite were able to distinguish between gypsum materials that were heated at different temperatures between 400–900 °C [1–3]. The results of thermal experiments with natural dolomite powder between 500–900 °C are presented, evaluating the thermal decomposition of dolomite and the consequent formation of calcium carbonate. Raman measurements were performed with excitation at 532 nm and 1800 mm-1 grating at room temperature on calcinated samples, as well as subsequently hydrated and re-carbonated samples. These high-resolution conditions are necessary to resolve the individual spectral contributions of different calcium/magnesium carbonate species. However, this sensitivity does not come without potential pitfalls. While the usage of micro-Raman spectroscopy with high spectral resolution shows great promise for evaluating minor shifts in peak positions and band widths, several technical aspects must be considered. For example, great care must be taken to exclude the thermal impact of the highly focused Raman laser on the sample. Similarly, exact standard operating procedures have to be followed to circumvent mechanical hysteresis in the alignment of the spectrographs’ grating. The influence of these two effects is presented and effective countermeasures are introduced to avoid resulting systematic errors. Statistical reliability and chemical imaging both rely on the individual analysis of thousands of Raman spectra. Thus, besides the spectral acquisition, also highly automated data analysis must be applied. Therefore, a peak-fitting routine using python scripts was employed to extract the peak positions and the full width at half maximum (FWHM) values of the ν1-, ν4- and L-bands of the carbonates. The results reveal the formation of Mg-calcite from dolomite at 700–750 °C and the formation of Mg-free calcite after calcination above 750 °C and subsequent hydration and re-carbonation (Fig. 1a). The findings from the thermal experiments are compared with Raman-microscopy mappings on medieval and reenacted mortars containing dolomite. Mg-calcite with comparable peak position and FWHM values have been successfully identified (Fig. 1b), proving Raman spectroscopy to be a suitable tool for elucidating the manufacturing procedures of anthropogenic materials. T2 - 16th GeoRAMAN Conference CY - Rhodes, Greece DA - 24.09.2024 KW - Raman spectroscopy KW - Dolomite KW - Mineral thermometry PY - 2024 AN - OPUS4-61977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zöllner, Moritz T1 - Thermal decomposition of dolomite: Raman spectroscopy as a thermometric tool for the analysis of carbonates in mortar binders N2 - The reconstruction of the thermal history of minerals is an on-going challenge in the study of anthropogenic materials, e.g., ceramics and mortar binders. For millennia carbonate rocks have been used as the starting material, though the exact manufacturing procedures are often unknown. Preparatory parameters such as firing temperature, heating and cooling rates, soaking time, and kiln atmosphere greatly influence the chemical and structural properties of the resulting products. Analysis of replicas produced under well-defined laboratory conditions help identify indicators for such process parameters and therefore provide valuable insights into historical production workflows. Raman micro-spectroscopy is a valuable method here because of its high sensitivity for crystal-chemical alterations coupled with a high spatial resolution. Previous studies on pyrogenic anhydrite were able to distinguish between gypsum materials that were heated at different temperatures between 400–900 °C [1-3]. The results of thermal experiments with natural dolomite powder between 500–900 °C are presented, evaluating the thermal decomposition of dolomite and the consequent formation of calcium carbonate. Raman measurements were performed at room temperature on calcinated samples, as well as subsequently hydrated and re-carbonated samples. Raman band positions and the full width at half maximum (FWHM) values of the ν1-, ν4- and L-bands of the carbonates are extracted and reveal the formation of Mg-calcite from dolomite at 700–750 °C and the formation of Mg-free calcite after calcination above 750 °C and subsequent hydration and re-carbonation. The findings from the thermal experiments are compared with Raman-microscopy mappings on medieval and reenacted mortars containing dolomite. Mg-calcite with comparable peak position and FWHM values have been successfully identified, proving Raman spectroscopy to be a suitable tool for elucidating the manufacturing procedures of anthropogenic materials. T2 - SciX 2024 CY - Raleigh, NC, USA DA - 20.10.2024 KW - Raman spectroscopy KW - Dolomite KW - Mineral thermometry PY - 2024 AN - OPUS4-61978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zöllner, Moritz T1 - Raman spectroscopy as a thermometric tool for the analysis of mortar binders N2 - The reconstruction of the thermal history of anthropogenic materials is crucial for understanding historical manufacturing techniques. Preparatory parameters such as firing temperature, heating and cooling rates, soaking time, and kiln atmosphere significantly affect the chemical and structural properties of the final product. Comparing historical materials with replicas produced under well-defined laboratory conditions helps identify indicators for these parameters. This comparative approach is greatly enhanced by spectroscopic analyses. Raman spectroscopy has proven to be a powerful tool in this field due to its high sensitivity to crystal-chemical alterations and high spatial resolution. The results of thermal experiments with gypsum and carbonate raw materials at burning temperatures up to 1000 °C are presented. Precise measurements of Raman peak positions and Raman band widths enable the differentiation of chemically similar phases. Changes in the Raman band parameters are evident even after the subsequent hydration-hardening process of the fired samples, allowing the spectral discrimination of samples treated at different temperatures steps. These findings from the thermal experiments are further applied to Raman micro-spectroscopic mappings of medieval and reenacted mortars. The extracted Raman band parameters show comparable values between the experimental and real-life samples, proving Raman spectroscopy as a suitable tool for estimating the burning temperature and thus elucidating the manufacturing procedures of anthropogenic materials. T2 - Jahrestagung Archäometrie und Denkmalpflege 2025 CY - Dresden, Germany DA - 18.03.2025 KW - Raman spectroscopy KW - Mineral thermometry PY - 2025 AN - OPUS4-62778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zänker, Steffen A1 - Scholz, Gudrun A1 - Krahl, Thoralf A1 - Prinz, Carsten A1 - Emmerling, Franziska A1 - Kemnitz, E. T1 - Luminescent properties of Eu3+/Tb3+ doped fluorine containing coordination polymers N2 - Lanthanides doped coordination polymers (CPs) with different binding motifs were synthesized to investigate the influence of the different fluorine positions in the structure on the decay time τ of the excited states. Fluorine can be integrated into the network mechanochemically via a fluorinated organic linker, here barium tetrafluoroterephthalate Ba(p-BDC-F4)2 or directly via a metal-fluorine bond (barium terephthalate fluoride BaF(p-BDC)0.5). The CP with a metal-fluorine bond shows the highest lifetime of the excited states of lanthanides (Eu3+, Tb3+ or Eu3+& Tb3+). The excitation of the lanthanides can be performed directly via the excitation wavelength typical for lanthanides and via the excitation wavelength of the linker. This enabled the simultaneous excitation of Eu3+ and Tb3+ in one CP. In the emission spectra (λem = 393 nm) of the mixed doped CPs (Eu3+ and Tb3+) the bands of both lanthanides can be observed. The integration into the crystal lattice and the homogeneous distribution of the lanthanides in the CPs is shown by X-ray diffraction, TEM, STEM-EDS measurements and the long decay times. KW - Alkaline earth metal coordination polymers KW - Fluorine coordination polymers KW - Lanthanides doped coordination polymers KW - Luminescence PY - 2021 DO - https://doi.org/10.1016/j.solidstatesciences.2021.106614 VL - 117 SP - 106614 PB - Elsevier Masson SAS AN - OPUS4-52559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zänker, Steffen A1 - Scholz, G. A1 - Marquardt, Julien A1 - Emmerling, Franziska T1 - Structural changes in Ba-compounds of different hardness induced by high-energy ball milling – evidenced by 137Ba NMR and X-ray powder diffraction N2 - Changes in the global bulk and local structures, of three different barium compounds (BaZrO3, BaF2, and BaFCl),were induced by mechanical milling and followed using X-ray powder diffraction (PXRD), subsequent microstructure analysis, and 137Ba solid state NMR spectroscopy. Harder materials like BaZrO3 experience significantly higher structural changes upon milling than softer materials like BaF2. Moreover, soft materials with layered structures, like BaFCl, show a pronounced structural change during the milling process. By combining PXRD and solid state NMR, detailed information on the changes to the global and local structures were obtained, which are of interest for mechanochemical synthesis, mechanically treated catalysts or ionic conductors. KW - Mechanochemistry KW - X-ray diffraction KW - Solid state NMR PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547397 DO - https://doi.org/10.1002/zaac.202200026 SN - 0044-2313 VL - 648 IS - 10 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zweigle, J. A1 - Schmidt, A. A1 - Bugsel, B. A1 - Vogel, Christian A1 - Simon, Fabian A1 - Zwiener, C. T1 - Perfluoroalkyl acid precursor or weakly fluorinated organic compound? A proof of concept for oxidative fractionation of PFAS and organofluorines N2 - Organofluorine mass balance approaches are increasingly applied to investigate the occurrence of per- and polyfluoroalkyl substances (PFAS) and other organofluorines in environmental samples more comprehensively. Usually, complex samples prevent the identification and quantification of every fluorine-containing molecule. Consequently, large unidentified fractions between fluorine sum parameters such as extractable organic fluorine (EOF) and the sum of quantified analytes are frequently reported. We propose using oxidative conversion to separate (unidentified) weakly fluorinated compounds (e.g., pesticides, pharmaceuticals) from PFAA-precursors (perfluoroalkyl chain lengths ≥ C6). We show with three organofluorine model substances (flufenamic acid, diflufenican, pantoprazole) that CF3-groups or aromatic fluorine can be quantitatively converted to inorganic fluoride and trifluoroacetic acid (TFA) by applying PhotoTOP oxidation (UV/TiO2). The principle of fluorine separation in mixtures is demonstrated by the oxidation of the three weakly fluorinated compounds together with the PFAA-precursor 6:2/6:2 fluorotelomer mercaptoalkyl phosphate diester (FTMAP). After oxidation, the products F− and TFA were separated from PFCAs ( C4) by SPE, and the fractions were analyzed individually. Closed mass balances both with and without the addition of organic matrix were achieved. Eventually, the fluorine balance was verified by total fluorine measurements with combustion ion chromatography (CIC). The proposed methods should be considered a proof of concept to potentially explain unidentified fractions of the EOF, especially if compounds with low fluorine content such as pesticides, pharmaceuticals, and their transformation products contribute largely to the EOF. Future studies are needed to show the applicability to the complexity of environmental samples. Graphical Abstract KW - Combustion Ion Chromatography KW - Per- and Polyfluoroalkyl substances (PFAS) PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-613429 DO - https://doi.org/10.1007/s00216-024-05590-5 SP - 1 EP - 10 PB - Springer Science and Business Media LLC AN - OPUS4-61342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zweigle, J. A1 - Capitain, C. A1 - Simon, Fabian Michael A1 - Roesch, Philipp A1 - Bugsel, B. A1 - Zwiener, C. T1 - Non-extractable PFAS in functional textiles − Characterization by complementary methods: oxidation, hydrolysis, and fluorine sum parameters N2 - Per- and polyfluoroalkyl substances (PFAS) are widely used for durable water-repellent finishing of different fabrics and textiles like outdoor clothing, carpets, medical textiles and more. Existing PFAS extraction techniques followed by target analysis are often insufficient in detecting widely used side-chain fluorinated polymers (SFPs) that are barely or non-extractable. SFPs are typically copolymers consisting of a non-fluorinated backbone with perfluoroalkyl side-chains to obtain desired properties. We compared the accessible analytical information and performance of complementary techniques based on oxidation (dTOP assay, PhotoTOP), hydrolysis (THP assay), standard extraction, extractable organic fluorine (EOF), and total fluorine (TF) with five functional textiles and characterized 7 further textiles only by PhotoTOP oxidation. The results show that when applied directly to textile samples, oxidation by dTOP and PhotoTOP and also hydrolysis by the THP are able to capture large fractions of the TF in form of perfluoroalkyl side-chains present in the textiles while methods relying on extracts (EOF, target and non-target analysis) were much lower (e.g., factor ~25-50 lower). The conversion of large fractions of the measured TF into PFCAs or FTOHs from fluorinated side chains is in contrast to previous studies. Concentrations ranged from