TY - JOUR A1 - Clark, P.C.J A1 - Andresen, Elina A1 - Sear, M. J. A1 - Favaro, M. A1 - Girardi, L. A1 - van de Krol, R. A1 - Resch-Genger, Ute A1 - Starr, D.E. T1 - Quantification of the Activator and Sensitizer Ion Distributions in NaYF4:Yb3+, Er3+ Upconverting Nanoparticles Via Depth-Profiling with Tender X-Ray Photoemission N2 - The spatial distribution and concentration of lanthanide activator and sensitizer dopant ions are of key importance for the luminescence color and efficiency of upconverting nanoparticles (UCNPs). Quantifying dopant ion distributions and intermixing, and correlating them with synthesis methods require suitable analytical techniques. Here, X-ray photoelectron spectroscopy depth-profiling with tender X-rays (2000–6000 eV), providing probe depths ideally matched to UCNP sizes, is used to measure the depth-dependent concentration ratios of Er3+ to Yb3+, [Er3+]/[Yb3+], in three types of UCNPs prepared using different reagents and synthesis methods. This is combined with data simulations and inductively coupled plasma-optical emission spectroscopy (ICP-OES) measurements of the lanthanide ion concentrations to construct models of the UCNPs’ dopant ion distributions. The UCNP sizes and architectures are chosen to demonstrate the potential of this approach. Core-only UCNPs synthesized with XCl3·6H2O precursors (β-phase) exhibit a homogeneous distribution of lanthanide ions, but a slightly surface-enhanced [Er3+]/[Yb3+] is observed for UCNPs prepared with trifluroacetate precursors (α-phase). Examination of Yb-core@Er-shell UCNPs reveals a co-doped, intermixed region between the single-doped core and shell. The impact of these different dopant ion distributions on the UCNP's optical properties is discussed to highlight their importance for UCNP functionality and the design of efficient UCNPs. KW - Shell KW - Nanomaterial KW - Nano KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Excitation power density KW - Surface KW - Coating KW - Core-shell KW - XPS KW - Intermixing KW - HAXPES KW - Method PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-552075 SN - 1613-6813 SP - 1 EP - 13 PB - Wiley-VCH-Verlag CY - Weinheim, Germany AN - OPUS4-55207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Nirmalananthan-Budau, Nithiya A1 - Tavernaro, Isabella T1 - Engineered Nanomaterials- Novel Approaches for Risk Assessment and Safe-by-Design N2 - The overall interest in nanotoxicity, triggered by the increasing use of nanomaterials in the material and life sciences, and the synthesis of an ever increasing number of new functional nanoparticles calls not only for standardized test procedures1,2 and for efficient approaches to screen the potential genotoxicity of these materials, but also for standardized and validated methods for surface analysis. 4,5 The analysis and quantification of surface chemistry is hence in the focus of an increasing number of standardization organizations and interlaboratory comparisons with different analytical methods are being done.5 For the monitoring of nanomaterial synthesis and the fast assessment of the number of functional groups such as carboxyl and amino functionalities, which are very commonly used functionalities in the life sciences, simple and validated methods are needed that can be performed with common laboratory instrumentation. 5,6 Here we provide a brief overview of the ongoing research in division Biophotonics employing quantitative NMR (qNMR), conductometry, and colorimetric and fluorometric optical assays for the determination of the total and the accessible number of carboxyl and amino groups on differently sized polymer and silica nano- and microparticles.5-7 T2 - Workshop NanoRiskSD project CY - Berlin, Germany DA - 09.06.2022 KW - Nanoparticle KW - Surface analysis KW - Standardization KW - Quality assurance KW - Validation KW - qNMR KW - Silica KW - Polymer KW - Fluorescence KW - Assay KW - Conductometry KW - Method comparison KW - Analytical sciences PY - 2022 AN - OPUS4-54999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biesen, L. A1 - Krenzer, J. A1 - Nirmalananthan-Budau, Nithiya A1 - Resch-Genger, Ute A1 - Müller, Th. J. J. T1 - Asymmetrically bridged aroyl-S,N-ketene acetalbased multichromophores with aggregationinduced tunable emission N2 - Asymmetrically bridged aroyl-S,N-ketene acetals and aroyl-S,N-ketene acetal multichromophores can be readily synthesized in consecutive three-, four-, or five-component syntheses in good to excellent yields by several successive Suzuki-couplings of aroyl-S,N-ketene acetals and bis(boronic)acid esters. Different aroyl-S,N-ketene acetals as well as linker molecules yield a library of 23 multichromophores with substitution and linker pattern-tunable emission properties. This allows control of different communication pathways between the chromophores and of aggregation-induced emission (AIE) and energy transfer (ET) properties, providing elaborate aggregation-based fluorescence switches. KW - Dye KW - Aggregation KW - Aggregation induced emission KW - Signal enhancement KW - Energy transfer KW - Switch KW - Sensor KW - Quantum yield KW - Lifetime KW - Photophysics KW - Sythesis KW - Nanaoparticle PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-550719 VL - 13 SP - 5374 EP - 5381 PB - Royal Society of Chemistry AN - OPUS4-55071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Meermann, Björn A1 - Koch, Matthias A1 - Weller, Michael G. T1 - Editorial: Analytical methods and applications in materials and life sciences N2 - Current trends in materials and life sciences are flanked by the need to push detection limits to single molecules or single cells, enable the characterization of increasingly complex matrices or sophisticated nanostructures, speed up the time of analysis, reduce instrument complexity and costs, and improve the reliability of data. This requires suitable analytical tools such as spectroscopic, separation and imaging techniques, mass spectrometry, and hyphenated techniques as well as sensors and their adaptation to application-specific challenges in the environmental, food, consumer product, health sector, nanotechnology, and bioanalysis. Increasing concerns about health threatening known or emerging pollutants in drinking water, consumer products, and food and about the safety of nanomaterials led to a new awareness of the importance of analytical sciences. Another important driver in this direction is the increasing demand by legislation, particularly in view of the 17 sustainable development goals by the United Nations addressing clean energy, industry, and innovation, sustainable cities, clean water, and responsible consumption and production. In this respect, also the development of analytical methods that enable the characterization of material flows in production processes and support recycling concepts of precious raw materials becomes more and more relevant. In the future, this will provide the basis for greener production in the chemical industry utilizing recycled or sustainable starting materials. This makes analytical chemistry an essential player in terms of the circular economy helping to increase the sustainability of production processes. In the life sciences sector, products based on proteins, such as therapeutic and diagnostic antibodies, increase in importance. These increasingly biotechnologically produced functional biomolecules pose a high level of complexity of matrix and structural features that can be met only by highly advanced methods for separation, characterization, and detection. In addition, metrological traceability and target definition are still significant challenges for the future, particularly in the life sciences. However, innovative reference materials as required for the health and food sector and the characterization of advanced materials can only be developed when suitable analytical protocols are available. The so-called reproducibility crisis in sciences underlines the importance of improved measures of quality control for all kinds of measurements and material characterization. This calls for thorough method validation concepts, suitable reference materials, and regular interlaboratory comparisons of measurements as well as better training of scientists in analytical sciences. The important contribution of analytical sciences to these developments is highlighted by a broad collection of research papers, trend articles, and critical reviews from these different application fields. Special emphasis is dedicated to often-overlooked quality assurance and reference materials. T2 - 150 years BAM: Science with impact CY - Berlin, Germany DA - 01.01.2021 KW - Analysis KW - Life sciences KW - Analytical sciences KW - Quality assurance KW - Reference material KW - Fluorescence KW - Nanoparticle KW - Sensor KW - Material sciences KW - Pollutant KW - Environment KW - Method KW - Limit of detection KW - 150th anniversary KW - ABC KW - BAM KW - Collection KW - Editorial KW - Special issue KW - Bundesanstalt für Materialforschung und -prüfung KW - Jahrestag PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-550720 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - Topical collection: Analytical methods and applications in the materials and life sciences SP - 4267 EP - 4268 PB - Springer CY - Berlin AN - OPUS4-55072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromer, Ch. A1 - Schwibbert, K. A1 - Gadicherla, A. K. A1 - Thiele, D. A1 - Nirmalananthan-Budau, Nithiya A1 - Laux, P. A1 - Resch-Genger, Ute A1 - Luch, A. A1 - Tschiche, H. R. T1 - Monitoring and imaging pH in biofilms utilizing a fluorescent polymeric nanosensor N2 - Biofilms are ubiquitous in nature and in the man-made environment. Given their harmful effects on human health, an in-depth understanding of biofilms and the monitoring of their formation and growth are important. Particularly relevant for many metabolic processes and survival strategies of biofilms is their extracellular pH. However, most conventional techniques are not suited for minimally invasive pH measurements of living biofilms. Here, a fluorescent nanosensor is presented for ratiometric measurements of pH in biofilms in the range of pH 4.5–9.5 using confocal laser scanning microscopy. The nanosensor consists of biocompatible polystyrene nanoparticles loaded with pH-inert dye Nile Red and is surface functionalized with a pH-responsive fluorescein dye. Its performance was validated by fluorometrically monitoring the time-dependent changes in pH in E. coli biofilms after glucose inoculation at 37 °C and 4 °C. This revealed a temperature-dependent decrease in pH over a 4-h period caused by the acidifying glucose metabolism of E. coli. These studies demonstrate the applicability of this nanosensor to characterize the chemical microenvironment in biofilms with fluorescence methods. KW - Dye KW - Fluorescence KW - Signal enhancement KW - Sensor KW - Quantum yield KW - Synthesis KW - Nanoparticle KW - Nano KW - Polymer KW - Ph KW - Biofilm KW - MIC KW - Corrosion KW - Microorganism KW - Bacteria PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-550751 SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 10 PB - Nature Publishing Group CY - London AN - OPUS4-55075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bertorelle, F. A1 - Wegner, Karl David A1 - Berkulic, M. P. A1 - Fakhouri, H. A1 - Comby-Zerbino, C. A1 - Sagar, A. A1 - Bernadó, P. A1 - Resch-Genger, Ute A1 - Bonacic-Koutecký, V. A1 - Le Guével, X. A1 - Antoine, R. T1 - Tailoring the NIR-II Photoluminescence of Single Thiolated Au25 Nanoclusters by Selective Binding to Proteins N2 - Atomically precise gold nanoclusters are a fascinating class of nanomaterials that exhibit molecule-like properties and have outstanding photoluminescence (PL). Their ultrasmall size, molecular chemistry, and biocompatibility make them extremely appealing for selective biomolecule labeling in investigations of biological mechanisms at the cellular and anatomical levels. In this work, we report a simple route to incorporate a preformed Au25 nanocluster into a model bovine serum albumin (BSA) protein. A new approach combining small-angle X-ray scattering and molecular modeling provides a clear localization of a single Au25 within the protein to a cysteine residue on the gold nanocluster surface. Attaching Au25 to BSA strikingly modifies the PL properties with enhancement and a redshift in the second near-infrared (NIR-II) window. This study paves the way to conrol the design of selective sensitive probes in biomolecules through a ligand-based strategy to enable the optical detection of biomolecules in a cellular environment by live imaging. KW - Fluorescence KW - Aggregation KW - Signal enhancement KW - Cluster KW - Nano KW - Metal KW - NIRII KW - SWIR KW - Sensor KW - Quantum yield KW - Lifetime KW - Photophysics KW - Synthesis KW - Protein KW - Imaging KW - Bioimaging KW - Ligand KW - Gold PY - 2022 U6 - https://doi.org/10.1002/chem.202200570 SN - 1521-3765 VL - 28 IS - 39 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-55077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Güttler, Arne A1 - Richter, Maria A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - New Reference Materials for Quantification and Standardization of Fluorescence-based Measurements N2 - Luminescence techniques are amongst the most commonly used analytical methods in the life and material sciences due to their high sensitivity and non-destructive and multiparametric character. Photoluminescence signals are, however, affected by wavelength-, polarization-, and time-dependent instrument specific effects and the compound-specific photoluminescence quantum yield. The former hamper the comparability of fluorescence measurements, while the relative determination of the latter requires suitable quantum yield standards with well-known photoluminescence quantum yields. For the simple correction of instrument specific effects in the wavelength region of 300 nm to 950 nm, the set of the five certified spectral fluorescence standards (CRM) BAM-F001 – BAM-F005, has been extended to the NIR range by including two new fluorescence standards currently under certification. T2 - 17th conference on Methods and Applications in Fluorescence CY - Gothenburg, Sweden DA - 11.09.2022 KW - Luminescence KW - Photoluminescence KW - Fluorescence KW - Quantum yield KW - Certified reference material KW - Standard PY - 2022 AN - OPUS4-56441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fa, X. A1 - Lin, Sh. A1 - Yang, J. A1 - Shen, Ch. A1 - Liu, Y. A1 - Gong, Y. A1 - Qin, A. A1 - Ou, Jun A1 - Resch-Genger, Ute T1 - −808 nm-activated Ca2+ doped up-conversion nanoparticles that release no inducing liver cancer cell (HepG2) apoptosis N2 - Anear-infrared (NIR) light-triggered release method for nitric oxide (NO) was developed utilizing core/shell NaYF4: Tm/Yb/Ca@NaGdF4:Nd/Yb up-conversion nanoparticles (UCNPs) bearing a mesoporous silica (mSiO2) shell loaded with theNOdonor S-nitroso-N-acetyl-DL-penicillamine (SNAP). To avoid overheating in biological samples, Nd3+ was chosen as a sensitizer, Yb3+ ions as the bridging sensitizer, andTm3+ ions as UV-emissive activator while co-doping with Ca2+ was done to enhance the luminescence of the activatorTm3+.NOrelease from SNAP was triggered by an NIR-UV up-conversion process, initiated by 808nmlight absorbed by the Nd3+ ions.NOrelease was confirmed by the Griess method. Under 808nmirradiation, the viability of the liver cancer cell line HepG2 significantly decreased with increasing UCNPs@mSiO2-SNAP concentration. For a UCNPs@mSiO2-SNAP concentration of 200 μgml−1, the cell survival probability was 47%. These results demonstrate that UCNPs@mSiO2-SNAP can induce the release of apoptosis-inducingNOby NIR irradiation. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Excitation power density KW - Brightness KW - NIR KW - Mechanism KW - Triggered KW - Release KW - Cell KW - PDT KW - Dye KW - Therapy KW - Surface KW - Coating PY - 2022 U6 - https://doi.org/10.1088/2050-6120/ac5524 VL - 10 IS - 2 SP - 1 EP - 9 PB - IOP Publishing AN - OPUS4-54842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radnik, Jörg A1 - Knigge, Xenia A1 - Andresen, Elina A1 - Resch-Genger, Ute A1 - Cant, D.J.H. A1 - Shard, A.G. A1 - Clifford, C.A. T1 - Composition, thickness, and homogeneity of the coating of core–shell nanoparticles—possibilities, limits, and challenges of X-ray photoelectron spectroscopy N2 - Core–shell nanoparticles have attracted much attention in recent years due to their unique properties and their increasing importance in many technological and consumer products. However, the chemistry of nanoparticles is still rarely investigated in comparison to their size and morphology. In this review, the possibilities, limits, and challenges of X-ray photoelectron spectroscopy (XPS) for obtaining more insights into the composition, thickness, and homogeneity of nanoparticle coatings are discussed with four examples: CdSe/CdS quantum dots with a thick coating and a small core; NaYF4-based upconverting nanoparticles with a large Yb-doped core and a thin Er-doped coating; and two types of polymer nanoparticles with a poly(tetrafluoroethylene) core with either a poly(methyl methacrylate) or polystyrene coating. Different approaches for calculating the thickness of the coating are presented, like a simple numerical modelling or a more complex simulation of the photoelectron peaks. Additionally, modelling of the XPS background for the investigation of coating is discussed. Furthermore, the new possibilities to measure with varying excitation energies or with hard-energy X-ray sources (hard-energy X-ray photoelectron spectroscopy) are described. A discussion about the sources of uncertainty for the determination of the thickness of the coating completes this review. KW - X-ray spectroscopy KW - Nanoparticles KW - Spectroscopy / Instrumentation KW - Spectroscopy / Theory PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-548305 VL - 414 IS - 15 SP - 4331 EP - 4345 PB - SpringerNature AN - OPUS4-54830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Miropoltsev, M. A1 - Wegner, Karl David A1 - Häusler, I. A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute T1 - Influence of Hydrophilic Thiol Ligands of Varying Denticity on the Luminescence Properties and Colloidal Stability of Quaternary Semiconductor Nanocrystals N2 - Binary photoluminescent semiconductor nanocrystals (quantum dots, QDs) are one of the best studied fluorescent nanomaterials, and their unique optoelectronic properties paved the road to many applications in (bio)nanophotonics, optoelectronics, and photovoltaics. However, concerns related to their toxic constituents like cadmium or lead and the emerging interest in greener chemistry synthesis approaches hamper their future applicability. Interesting alternatives for some applications like biosensing or bioimaging are heavy-metal-free ternary QDs like AgInS2 (AIS), CuInS2 (CIS), and quaternary QDs such as AIS-ZnS (ZAIS). In this context, we explored the effect of ligand denticity on the organic-to-aqueous phase transfer of oleylamine-stabilized ZAIS QDs with the hydrophilic ligands mercaptopropionic acid (MPA), dihydrolipoic acid (DHLA), and 3-mercapto-2,2-bis(mercaptomethyl)propanoic acid (3MPA), bearing mono-, bi-, and trialkyl thiol groups. Spectroscopic studies of the resulting water-dispersible ZAIS QDs revealed a considerable influence of ligand denticity and ligand-to-QD ratio on the spectral position and width (FWHM; full width at half-maximum) of the photoluminescence (PL) bands, the PL quantum yields (PL QY), and the PL decay kinetics. Thiol capping and phase transfer resulted in a loss in PL by at least a factor of 2. The ligand-induced PL quenching observed particularly for ligands bearing two or three thiol groups was attributed to the facilitated formation of surface-bound disulfides. The best colloidal stability under high dilution conditions was observed for 3MPA. KW - Quantum dots KW - Ligand exchange KW - Lifetime analysis KW - Thiols PY - 2022 U6 - https://doi.org/10.1021/acs.jpcc.2c05342 SN - 1932-7447 VL - 126 IS - 47 SP - 20101 EP - 20113 PB - ACS Publications AN - OPUS4-56707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -