TY - CONF A1 - Hahn, Marc Benjamin T1 - Geant4: A universal Monte-Carlo toolkit for Particle scattering simulations N2 - Particle scattering simulations are an useful tool to plan experiments, design detectors, estimate doses in irradiated materials and medical treatment planning. Geant4 is a Monte-Carlo toolkit for the simulation of of particles scattering in matter. Photons, electrons, ions etc can be simulated with energies in the eV to GeV range. Their interactions with matter in arbitrary scattering geometries be studied. Scattering models, cross sections and material parameters can be set to cover interactions in gas, liquid and solid state. The import of geometries from computer aided design files or the protein data base is possible. It is currently being applied in high energy and nuclear physics, accelerator and detector design, space application, dosimetry and medical sciences. In this first part of the talk a brief overview over the structure, functionality and possible applications of Geant4 will be given. In the second part an example application will be presented: The determination of the microscopic dose-damage relations in aqueous environment for electron irradiated plasmid DNA will be explained. Therefore, we combine electron scattering simulations in water with calculations concerning the movement of biomolecules to obtain the energy deposit in the biologically relevant nanoscopic volume. We present, how to combine these simulational results and experimental data via a generalized damage model to determine the microscopic dose-damage relation at a molecular level. T2 - Department 6 Seminar CY - Berlin, Germany DA - 04.04.2019 KW - Geant4 KW - Dosimetry KW - Microdosimetry KW - Radiation damage KW - Electron irradiation KW - Monte-Carlo Simulation KW - Monte-Carlo Simulations KW - DNA KW - Computer simulation KW - Geant4-DNA PY - 2019 AN - OPUS4-47819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaenisch, Gerd-Rüdiger A1 - Wieder, Frank A1 - Vogel, Justus A1 - Ewert, Uwe A1 - Bellon, Carsten A1 - Messerschmid, Magdalena ED - Xu, C. T1 - Scatter imaging – Simulation of aperture focusing by deconvolution N2 - X-ray scatter imaging is a well-established NDT technique to inspect complex objects using only a single-sided access. We present a specially designed multi-slit scatter camera consisting of several twisted slits which are parallelly arranged in a metal block. The camera projects one image per slit to the digital detector array, where the images are overlaying each other. The aperture is corrected based on a de-convolution algorithm to focus the overlaying projections into a single representation of the object. To achieve high scatter intensities from an object, it is necessary to optimize the parameters of the scatter system by simulation. T2 - IEEE Far East NDT New Technology & Application Forum CY - Xi'an, China DA - 22.06.2017 KW - Scatter imaging KW - Computer simulation KW - Aperture focusing KW - Deconvolution PY - 2018 SN - 978-1-5386-1615-4 U6 - https://doi.org/10.1109/FENDT.2017.8584606 SP - 301 EP - 306 PB - IEEE CY - Piscataway, NJ AN - OPUS4-48395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -