TY - CONF A1 - Pech May, Nelson Wilbur A1 - Hirsch, Philipp Daniel A1 - Lecompagnon, Julien A1 - Ziegler, Mathias T1 - Robot-assisted laser thermography - Towards automatic characterization of surface defects N2 - By means of laser thermography, surface defects, in particular surface breaking cracks, can be detected with high sensitivity. Basically, this requires a focused heat source (high-power laser), a thermographic camera and a relative movement between laser and test object, as well as a suitable evaluation algorithm to distinguish between surface defects and defect-free areas. In this paper we report on a method in which the relative motion is realised by a robot to fully inspect large and non-planar test objects such as rail sections, turbine blades, gears, etc. We show the influence of the excitation laser, which can be varied in terms of spot geometry, wavelength, and scan scheme, and we demonstrate our evaluation algorithms with the aim of automatically detecting surface defects. T2 - 16th Quantitative Infrared Thermography Conference CY - Paris, France DA - 04.07.2022 KW - Flying line thermography KW - Surface breaking defects KW - Robot-assisted thermography PY - 2022 AN - OPUS4-55560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -