TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Prager, Jens T1 - Reconstruction of Elastic Constants of Isotropic and Anisotropic Materials using Ultrasonic Guided Waves N2 - Acoustic methods are ideally suited for determining the mechanical properties of different materials non-destructively. The availability of such methods is particularly important for fiber-reinforced polymers (FRPs) because their properties strongly depend on the manufacturing process and in-service conditions. Since FRPs are mostly used in thin-walled components, properties can be derived from the dispersion curves of ultrasonic guided waves (UGWs). Our approach is based on an inverse procedure in which the numerically calcu-lated dispersion curves are fitted to the measured curves. The acquisition is done by applying a broadband piezoelectric transducer (PZT) to excite and a 3D laser Doppler vibrometer (3D LDV) to record the waves. Compared to the ap-proaches based on laser excitation, the PZT provides a better signal-to-noise ra-tio because more energy is brought into the structure. Whereas the 3D LDV compared to a 1D LDV or a PZT allows capturing in-plane and out-of-plane components and thus providing more dispersion information. Since the inverse procedure requires many iterations before elastic properties are retrieved, an ef-ficient tool for the calculation of the dispersion curves is necessary. For this, the Scaled Boundary Finite Element Method is used. All in all, a good agreement between theoretical and experimental curves is demonstrated. T2 - 10th European Workshop on Structural Health Monitoring (EWSHM 2022) CY - Palermo, Italy DA - 04.07.2022 KW - Lamb waves KW - Elastic waves KW - Fibre-reinforced polymers KW - Inverse procedure KW - Scaled Boundary Finite Element Method PY - 2022 AN - OPUS4-55236 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Prager, Jens T1 - Towards Characterisation of Elastic Constants of Composite Materials by means of Ultrasonic Guided Waves N2 - The availability of non-destructive methods is particularly important for composites, e.g., carbon or glass fiber-reinforced polymers because their properties strongly depend on the manufacturing process and in-service conditions. Composites are mostly used in thin-walled components which are perfectly suited for the characterisation with ultrasonic guided waves (UGWs). In this contribution, we demonstrate sensitivities of UGW to different elastic constants of a composite material. Then we present a characterisation procedure which can be used to in-fer elastic properties. Our approach is based on an inverse procedure in which the numeri-cally calculated dispersion curves are fitted to the measured curves. The acquisition is done by applying a broadband piezoelectric transducer (PZT) to excite various UGW modes and a 3D laser Doppler vibrometer (3D LDV) to record them. Compared to the approaches based on laser excitation, the PZT provides a better signal-to-noise ratio because more energy is brought into the structure. Whereas the 3D LDV compared to a 1D LDV or a PZT allows cap-turing in-plane and out-of-plane components giving more dispersion information for a better characterisation. Since the inverse procedure requires many iterations before elastic prop-erties are retrieved, an efficient tool for the calculation of the dispersion curves is necessary. For this, the Scaled Boundary Finite Element Method is used. All in all, a good agreement be-tween theoretical and experimental curves is demonstrated. T2 - ASME 2022 49th Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE2022) CY - San Diego, CA, USA DA - 25.07.2022 KW - Carbon fibre reinforced polymer KW - Glass fibre reinforced polymer KW - Inverse procedure PY - 2022 AN - OPUS4-55425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Lugovtsova, Yevgeniya T1 - Damage detection in multi-layered plates using ultrasonic guided waves N2 - This thesis investigates ultrasonic guided waves (GW) in multi-layered plates with the focus on higher order modes. The aim is to develop techniques for hybrid structures such as of adhesive bonds and composite pressure vessels (COPV) which are widely used in automotive and aerospace industries and are still challenging to inspect non-destructively. To be able to analyse GW, numerical methods and precise material properties are required. For this purpose, an efficient semi-analytical approach, the Scaled Boundary Finite Element Method, is used. The material properties are inferred by a GW-based optimisation procedure and a sensitivity study is performed to demonstrate the influence of properties on GW. Then, an interesting feature, called mode repulsion, is investigated with respect to weak and strong adhesive bonds. The results show that the coupling between two layers influences the distance between coupled modes in a mode repulsion region, thus allowing for the characterisation of adhesive bonds. At next, wave-damage interaction is studied in the hybrid structure as of the COPV. Results show that the wave energy can be concentrated in a certain layer enabling damage localisation within different layers. Further investigations are carried out on the hybrid plate with an impact-induced damage. Two well-known wavenumber mapping techniques, which allow to quantify the damage in three dimensions, are implemented and their comparison is done for the first time. KW - Lamb waves KW - Composites KW - Structural Health Monitoring KW - Inverse procedure KW - Scaled Boundary Finite Element Method PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bsz:291--ds-382863 SP - 1 EP - 131 PB - SciDok - Der Wissenschaftsserver der Universität des Saarlandes CY - Saarbrücken, Germany AN - OPUS4-57058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -