TY - GEN A1 - Schaepe, Kaija A1 - Jungnickel, H. A1 - Heinrich, Thomas A1 - Tentschert, J. A1 - Luch, A. A1 - Unger, Wolfgang ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Secondary ion mass spectrometry T2 - Characterization of nanoparticles - Measurement processes for nanoparticles N2 - This chapter provides an introduction in secondary ion mass spectrometry as one of the leading surface chemical analysis and imaging techniques with molecular specificity in the field of material sciences. The physical basics of the technique are explained along with a description of the typical instrumental setups and their modes of operation. The application paragraph specifically focuses on nanoparticle analysis by SIMS in terms of surface spectrometry, imaging, analysis in organic and complex media, and depth profiling. A review of the existing literature is provided, and selected studies are showcased. Limitations and pitfalls as well as current technical developments of SIMS application in nanoparticle surface chemical analysis are equally discussed. KW - Time-of-flight secondary ion mass spectrometry KW - Surface chemical analysis KW - Imaging KW - Nanomaterials KW - Nanoparticles KW - Core-shell PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00025-0 SP - 481 EP - 509 PB - Elsevier CY - Amsterdam AN - OPUS4-50187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marcoulaki, E. A1 - M. López de Ipina, J. A1 - Vercauteren, S. A1 - Bouillard, J. A1 - Himly, M. A1 - Lynch, I. A1 - Witters, H. A1 - Shandilya, N. A1 - van Duuren-Stuurman, B. A1 - Kunz, Valentin A1 - Unger, Wolfgang A1 - Hodoroaba, Vasile-Dan A1 - Bard, D. A1 - Evans, G. A1 - Jensen, K. A. A1 - Pilou, M. A1 - Viitanen, A.-K. A1 - Bochon, A. A1 - Duschl, A. A1 - Geppert, M. A1 - Persson, K. A1 - Votgreave, I. A1 - Niga, P. A1 - Gini, M. A1 - Eleftheriadis, K. A1 - Scalbi, S. A1 - Caillard, B. A1 - Arevalillo, A. A1 - Frejafon, E. A1 - Aguerre-Chariol, O. A1 - Dulio, V. T1 - Blueprint for a self-sustained European Centre for service provision in safe and sustainable innovation for nanotechnology JF - Nanoimpact N2 - The coming years are expected to bring rapid changes in the nanotechnology regulatory landscape, with the establishment of a new framework for nano-risk governance, in silico approaches for characterisation and Risk assessment of nanomaterials, and novel procedures for the early identification and management of nanomaterial risks. In this context, Safe(r)-by-Design (SbD) emerges as a powerful preventive approach to support the development of safe and sustainable (SSbD) nanotechnology-based products and processes throughout the life cycle. This paper summarises the work undertaken to develop a blueprint for the deployment and operation of a permanent European Centre of collaborating laboratories and research organisations supporting safe Innovation in nanotechnologies. The proposed entity, referred to as “the Centre”, will establish a ‘one-stop shop’ for nanosafety-related services and a central contact point for addressing stakeholder questions about nanosafety. Its operation will rely on significant business, legal and market knowledge, as well as other tools developed and acquired through the EU-funded EC4SafeNano project and subsequent ongoing activities. The proposed blueprint adopts a demand-driven service update scheme to allow the necessary vigilance and flexibility to identify opportunities and adjust its activities and services in the rapidly evolving regulatory and nano risk governance landscape. The proposed Centre will play a major role as a conduit to transfer scientific knowledge between the Research and commercial laboratories or consultants able to provide high quality nanosafety services, and the end-users of such services (e.g., industry, SMEs, consultancy firms, and regulatory authorities). The Centre will harmonise service provision, and bring novel risk assessment and management approaches, e.g. in silico methodologies, closer to practice, notably through SbD/SSbD, and decisively support safe and sustainable innovation of industrial production in the nanotechnology industry according to the European Chemicals Strategy for Sustainability. KW - Nanotechnology KW - European Centre KW - Nano-safety KW - Nanomaterials KW - analytical service PY - 2021 DO - https://doi.org/10.1016/j.impact.2021.100337 VL - 23 SP - 100337 PB - Elsevier B.V. AN - OPUS4-52942 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -