TY - JOUR A1 - Munir, R. A1 - Lisec, Jan A1 - Swinnen, J. V. A1 - Zaidi, N. T1 - Too complex to fail? Targeting fatty acid metabolism for cancer therapy N2 - Given the central role of fatty acids in cancer pathophysiology, the exploitation of fatty acid metabolism as a potential antineoplastic therapy has gained much attention. Several natural and synthetic compounds targeting fatty acid metabolism were hitherto identified, and their effectiveness against cancer cell proliferation and survival was determined. This review will discuss the most clinically viable inhibitors or drugs targeting various proteins or enzymes mapped on nine interconnected fatty acid metabolism-related processes. We will discuss the general significance of each of these processes and the effects of their inhibition on cancer cell progression. Moreover, their mechanisms of action, limitations, and future perspectives will be assessed. KW - Fatty acids KW - Fatty acid synthesis KW - Fatty acid desaturation KW - Fatty acid uptake KW - Cancer therapy PY - 2022 DO - https://doi.org/10.1016/j.plipres.2021.101143 SN - 0163-7827 VL - 85 SP - 1 EP - 12 PB - Elsevier AN - OPUS4-53864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bornemann-Pfeiffer, Martin A1 - Kern, S. A1 - Wander, Lukas A1 - Meyer, Klas A1 - Maiwald, Michael T1 - Modular production involving Benchtop NMR: Current application examples driven by digitalization N2 - The demand for increasing product diversity in the chemical and pharmaceutical industry calls for new production processes that enable greater flexibility. Therefore, plants are needed which can be adapted to new processes in a fast manner and be scaled up and down easily to volatile market demands. Modular production techniques in combination with advanced process analytical technology (PAT) are considered as a promising solution able to fulfil these requirements. The success and acceptance of modular concepts in both new and existing plants is dependent of its reliability, easy applicability, and standardization. In recent past, enormous efforts were made to overcome existing barriers in a superordinate level, e.g. DEXPI [1], ENPRO [2], or MTP [3] naming just a few. Here, we’d like to present a few, more hands-on, application examples which are shown in Figure 1 aiming to increase process flexibility and applicability. This includes: a) The development of an additively manufactured mixer—flow reactor combination for the application inside of NMR instruments. [4] b) The application of automated, model-based approaches for model development and spectra evaluation. c) The application of machine-assisted spectral model building as a genuine alternative to classical model-based approaches [5] d) Improvement of NIR calibration through online available NMR reference data. [6] These examples represent miscellaneous use cases but result of the same fact: the increased use and availability of data through advanced PAT and therefore new opportunities utilizing them. T2 - SMASH - Small Molecule NMR Conference CY - Online meeting DA - 30.08.2021 KW - Process analytical technology KW - NMR spectroscopy KW - Automation PY - 2021 AN - OPUS4-53803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Hidde, Julia A1 - Grünier, Sophie A1 - Jungnickel, Robert A1 - Dariz, P. A1 - Riedel, Jens A1 - Neuhaus, B. T1 - Ageing effects in mountig media of microscope slide samples from natural history collections: A case study with Canada balsam and Permount™ N2 - Microscope slide collections represent extremely valuable depositories of research material in a natural history, forensic, veterinary, and medical context. Unfortunately, most mounting media of these slides deteriorate over time, with the reason for this not yet understood at all. In this study, Raman spectroscopy, ultraviolet–visible (UV–Vis) spectroscopy, and different types of light microscopy were used to investigate the ageing behaviour of naturally aged slides from museum collections and the experimentally aged media of Canada balsam and Permount™, representing a natural and a synthetic resin, respectively, with both being based on mixtures of various terpenes. Whereas Canada balsam clearly revealed chemical ageing processes, visible as increasing colouration, Permount™ showed physical deterioration recognisable by the increasing number of cracks, which even often impacted a mounted specimen. Noticeable changes to the chemical and physical properties of these mounting media take decades in the case of Canada balsam but just a few years in the case of Permount™. Our results question whether or not Canada balsam should really be regarded as a mounting medium that lasts for centuries, if its increasing degree of polymerisation can lead to a mount which is no longer restorable. KW - Deterioration KW - Microscope slides KW - Mounting media KW - Raman spectroscopy KW - UV–Vis spectroscopy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537632 DO - https://doi.org/10.3390/polym13132112 VL - 13 IS - 13 SP - 1 EP - 27 PB - MDPI CY - Basel AN - OPUS4-53763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Paul, Andrea A1 - Töpfer, Désirée A1 - Ruiken, J-P A1 - Illner, M A1 - Esche, E A1 - Repke, J A1 - Maiwald, Michael A1 - Meyer, Klas T1 - Raman spectroscopy for online monitoring of a homogeneous hydroformylation process in microemulsion N2 - An important industrial reaction is hydro¬formylation for the production of aldehydes from alkenes and syngas on the basis of homogeneous catalysis. The main cost factors of the processes currently used are product selectivity and the loss of the catalysts used. Therefore, various concepts for the hydroformylation of long-chain olefins have been developed, including hydroformylation in microemulsions, which is being investigated on a mini-plant scale at the Technical University of Berlin [1]. In this study, online Raman spectroscopy of the reaction of 1-dodecene to 1-tri¬decanal in a microemulsion was performed [2]. First, an experimental design was used to obtain a good representation of the operating range in the mini plant with respect to the concentrations of five reactants in a laboratory setup [3]. Based on the Raman spectra, Partial Least Squares (PLS) models for the prediction of 1-dodecene and 1-tride-decanal were calibrated and with these the reactions were predicted on a laboratory scale. In the next step, the PLS models were applied to online spectra from a mini-plant. This resulted in promising estimates of 1-tridecanal and acceptable predictions of 1-dodecene mass fractions. The predictive power of PLS models in this particular case was limited by unexpected by-product formation which, however, can easily be compensated by an extended calibration. Hence, Raman spectroscopy is a promising technique for process analysis in microemulsions. T2 - EuroPACT2021 CY - Online meeting DA - 15.11.2021 KW - Raman KW - Process analytics KW - Inline measurement PY - 2021 AN - OPUS4-53767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fricke, F. A1 - Brandalero, M. A1 - Liehr, Sascha A1 - Kern, Simon A1 - Meyer, Klas A1 - Kowarik, Stefan A1 - Hierzegger, R. A1 - Westerdick, S. A1 - Maiwald, Michael A1 - Hübner, M. T1 - Artificial Intelligence for Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy Using a Novel Data Augmentation Method N2 - Mass Spectrometry (MS) and Nuclear Magnetic Resonance Spectroscopy (NMR) are valuable analytical and quality control methods for most industrial chemical processes as they provide information on the concentrations of individual compounds and by-products. These processes are traditionally carried out manually and by a specialist, which takes a substantial amount of time and prevents their utilization for real-time closed-loop process control. This paper presents recent advances from two projects that use Artificial Neural Networks (ANNs) to address the challenges of automation and performance-efficient realizations of MS and NMR. In the first part, a complete toolchain has been realized to develop simulated spectra and train ANNs to identify compounds in MS. In the second part, a limited number of experimental NMR spectra have been augmented by simulated spectra, to train an ANN with better prediction performance and speed than state-of-the-art analysis. These results suggest that, in the context of the digital transformation of the process industry, we are now on the threshold of a strongly simplified use of MS and MRS and the accompanying data evaluation by machine-supported procedures, and can utilize both methods much wider for reaction and process monitoring or quality control. KW - Industry 4.0 KW - Cyber-Physical Systems KW - Artificial Neural Networks KW - Mass Spectrometry KW - Nuclear Magnetic Resonance Spectroscopy KW - Modular Production PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539412 UR - https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9638378 DO - https://doi.org/10.1109/TETC.2021.3131371 SN - 2168-6750 VL - 10 IS - 1 SP - 87 EP - 98 PB - IEEE AN - OPUS4-53941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Kornev, Roman A1 - Kornev, A. R. A1 - Ermakov, A. A. T1 - Laser dielectric breakdown as a novel method for producing molybdenum borides N2 - Superhard materials with a Vickers hardness in the range of 30-40 GPa are of great interest, both from a fundamental and a practical viewpoints, since they have outstanding mechanical, thermal and chemical properties. Molybdenum borides belong to this group of materials. A review of publications on synthesis of molybdenum boride indicates a) great interest in this superhard material and b) the need for new effective methods of its synthesis, especially in a nanocrystalline form. Very promising are the plasma-chemical methods based on laser induced breakdown. The breakdown can be created either in reactive gases containing volatile compounds of boron and molybdenum or on solid samples. For gas breakdown, molybdenum hexafluoride MoF6 and boron trifluoride BF3 were used in the mixture with hydrogen and argon; for solid breakdown, the pure molybdenum sample was ablated into the mixture of H2 and BF3. The plasma-chemical synthesis of MoxBy structures was carried out in the reactor shown in Figure. Laser breakdown was created by a pulsed Nd: YAG laser operating at 1064 nm with a 15 ns pulse duration, 5 Hz repetition rate, and 800 mJ pulse energy. The laser was focused by a 5 cm focal length lens to produce 26 J/cm3 energy density in the focal point. The ratios H2:BF3: MoF6 = 5:2:1 and H2:BF3 = 3:1 were used in a pressure range 30 - 760 Torr. After ablation in the mixture H2 + BF3 + MoF6, the deposit contained an amorphous phase with a small impurity of crystalline molybdenum and no boride phase. After ablation of metallic Mo into H2 + BF3, the main phase was MoB2 in the form of nano dispersed powder with an average grain size of 100 nm. The degree of conversion of boron trifluoride and the yield of molybdenum boride were studied as a function of pressure. It was established that 30 Torr is optimal for the formation of MoB2. This work was supported by the Russian Science Foundation grant No. 20-13-00035. T2 - Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy CY - Online meeting DA - 29.11.2021 KW - Plasma enhanced chemical deposition KW - Laser induced plasma KW - Plasma chemistry KW - Molybdenum boride PY - 2021 AN - OPUS4-53901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Riedel, Jens A1 - Abad Andrade, Carlos Enrique A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Gornushkin, Igor B. T1 - Recent Trends in Inexpensive Lithium Isotopic Analysis N2 - Lithium exists in two stable isotopes, 6Li and 7Li. The ratio of these in every ore varies depending on the geological history of the sample, thus providing a tool for fingerprinting the distinct origin of Li containing samples. Determination of the exact isotope ratio for e.g. designation of provenance today relies on expensive and bulky instrumentation such as multi `collector inductively coupled plasma mass spectrometry` (MC-ICP-MS). These instruments, however, are known to bear pitfalls in the characterization of particular elements including Lithium. BAM recently developed two alternative analytical devices for this task, solely relying on inexpensive optical spectroscopy in combination with state-of-the-art multivariate data analysis such as Machine learning algorithms. Both techniques have been comprehensively studied using certified reference materials and comparing the results to MC-ICP-MS results and could be shown to result in comparable figures of merit, paving the way for a more general accessibility to provenance determination instrumentation. The results also pave the way towards even further simplification of the laboratory infrastructure demands and to further include additional elements into the isotopic fingerprinting methodology. T2 - Lithium-Days CY - Halle, Germany DA - 06.12.2021 KW - Lithium KW - Isotopes KW - Optical Spectroscopy PY - 2021 AN - OPUS4-53966 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Kern, S. A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Wander, L. A1 - Kowarik, S. A1 - Liehr, S. A1 - Maiwald, Michael T1 - Modular process control with compact NMR spectroscopy - From field integration to automated data analysis N2 - Chemical companies must find new paths to stay productive in a rapidly changing environment. One of these is the potential of digital technologies. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market. Process safety is improved due to smaller amounts processed and the abilities of efficient heat-transfer allow for otherwise difficult-to-produce compounds. To exploit these advantages, a fully automated process control along with real-time quality control is mandatory and should be based on “chemical” information. The advances of a fully automated NMR analyzer were demonstrated, using a given pharmaceutical reaction step operated within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the requirements of an automated chemical production environment such as explosion safety, field communication, and robust data evaluation. Obtained results were used for direct loop advanced process control and real-time optimization of the process. NMR spectroscopy appeared as excellent online analytical tool and allowed a modular data analysis approach, which even served as reliable reference method for further PAT applications. Using the available datasets, a second data analysis approach based on artificial neural networks (ANN) was evaluated.Therefore, amount of data was augmented to be sufficient for training. The results show comparable performance, while improving the calculation time tremendously. In future, such fully integrated and interconnecting “smart” systems and processes can increase the efficiency of the production of specialty chemicals and pharmaceuticals. T2 - 5th European Conference on Process Analytics and Control Technology (EuroPACT) CY - Online meeting DA - 15.11.2021 KW - NMR spectroscopy KW - Benchtop-NMR KW - Modular production KW - Process Analytical Technology PY - 2021 AN - OPUS4-53776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Abele, M. A1 - Falkenstein, S. A1 - Friedrich, Y. A1 - Kern, Simon A1 - Korth, K. A1 - Maiwald, Michael T1 - Industrial Applications of Low-Field NMR Spectroscopy for Process and Quality Control of Silanes N2 - The combination of different silanes as starting materials and as a product of hydrolysis by several alcohols or water creates a range of hundreds of technical products for a wide range of applications. In recent years, functional trialkoxysilanes have proven to be multi-purpose organosilanes. Applications range from weather protection of buildings to bonding-imparting properties in the glass fiber industry, for sealants and adhesives, for coatings and paints to the modification of polymer materials. Commercial benchtop NMR spectrometers have the potential to be used in silane chemistry as an online method for reaction monitoring and quality control [1]. Interesting NMR nuclei for the above-mentioned products are 1H and 29Si. In a joint research cooperation between EVONIK and BAM, the applicability of low-field NMR spectroscopy for the chemical analysis of silanes was evaluated based on various case studies. In the course of the case studies it was shown how low-field NMR spectroscopy extends the application range of chemical analysis to new applications where existing technologies such as NIR, Raman, UV/VIS, etc. cannot be used quantitatively due to lack of reference data. T2 - 5th European Conference on Process Analytics and Control Technology (EuroPACT) CY - Online meeting DA - 15.11.2021 KW - NMR spectroscopy KW - Benchtop-NMR KW - Silanes KW - Quality Control PY - 2021 AN - OPUS4-53777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Westwood, S. A1 - Martos, G. A1 - Josephs, R. A1 - Choteau, T. A1 - Wielgosz, R. A1 - Davies, S. A1 - Moawad, M. A1 - Tarrant, G. A1 - Chan, B. A1 - Alamgir, M. A1 - de Rego, E. A1 - Wollinger, W. A1 - Garrido, B. A1 - Fernandes, J. A1 - de Sena, R. A1 - Oliveira, R. A1 - Melanson, J. A1 - Bates, J. A1 - Mai Le, P. A1 - Meija, J. A1 - Quan, C. A1 - Huang, T. A1 - Zhang, W. A1 - Ma, R. A1 - Zhang, S. A1 - Hao, Y. A1 - He, Y. A1 - Song, S. A1 - Wang, H. A1 - Su, F. A1 - Zhang, T. A1 - Li, H. A1 - Lam, W. A1 - Wong, W. A1 - Fung, W. A1 - Philipp, Rosemarie A1 - Dorgerloh, Ute A1 - Meyer, Klas A1 - Piechotta, Christian A1 - Riedel, Juliane A1 - Westphalen, Tanja A1 - Giannikopoulou, P. A1 - Alexopoulos, Ch. A1 - Kakoulides, E. A1 - Kitamaki, Y. A1 - Yamazaki, T. A1 - Shimizu, Y. A1 - Kuroe, M. A1 - Numata, M. A1 - Pérez-Castorena, A. A1 - Balderas-Escamilla, M. A1 - Garcia-Escalante, J. A1 - Krylov, A. A1 - Mikheeva, A. A1 - Beliakov, M. A1 - Palagina, M. A1 - Tkachenko, I. A1 - Spirin, S. A1 - Smirnov, V. A1 - Tang Lin, T. A1 - Pui Sze, C. A1 - Juan, W. A1 - Lingkai, W. A1 - Ting, L. A1 - Quinde, L. A1 - Yizhao, C. A1 - Lay Peng, S. A1 - Fernandes-Whaley, M. A1 - Prevoo-Franzsen, D. A1 - Quinn, L. A1 - Nhlapo, N. A1 - Mkhize, D. A1 - Marajh, D. A1 - Chamane, S. A1 - Ahn, S. A1 - Choi, K. A1 - Lee, S. A1 - Han, J. A1 - Baek, S. A1 - Kim, B. A1 - Marbumrung, S. A1 - Jongmesuk, P. A1 - Shearman, K. A1 - Boonyakong, C. A1 - Bilsel, M. A1 - Gündüz, S. A1 - Ün, I. A1 - Yilmaz, H. A1 - Bilsel, G. A1 - Gökçen, T. A1 - Clarkson, C. A1 - Warren, J. A1 - Achtar, E. T1 - Mass fraction assignment of Bisphenol-A high purity material N2 - The CCQM-K148.a comparison was coordinated by the BIPM on behalf of the CCQM Organic Analysis Working Group for NMIs and DIs which provide measurement services in organic analysis under the CIPM MRA. It was undertaken as a "Track A" comparison within the OAWG strategic plan. CCQM-K148.a demonstrates capabilities for assigning the mass fraction content of a solid organic compound having moderate molecular complexity, where the compound has a molar mass in the range (75 - 500) g/mol and is non-polar (pKow < −2), when present as the primary organic component in a neat organic solid and where the mass fraction content of the primary component in the material is in excess of 950 mg/g. Participants were required to report the mass fraction of Bisphenol A present in one supplied unit of the comparison material. Participants using a mass balance method for the assignment were also required to report their assignments of the impurity components present in the material. Methods used by the seventeen participating NMIs or DIs were predominantly based on either stand-alone mass balance (summation of impurities) or qNMR approaches, or the combination of data obtained using both methods. The results obtained using thermal methods based on freezing-point depression methods were also reported by a limited number of participants. There was excellent agreement between assignments obtained using all three approaches to assign the BPA content. The assignment of the values for the mass fraction content of BPA consistent with the KCRV was achieved by most of the comparison participants with an associated relative standard uncertainty in the assigned value in the range (0.1 - 0.5)%. KW - Bisphenol-A KW - Purity assessment KW - Interlaboratory key comparison KW - Metrology PY - 2021 DO - https://doi.org/10.1088/0026-1394/58/1A/08015 VL - 58 IS - 1A SP - 08015 PB - IOP Publishing AN - OPUS4-54188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, A. A1 - Lischeid, G. A1 - Koch, Matthias A1 - Lentzsch, P. A1 - Sommerfeld, Thomas A1 - Müller, M.H. T1 - Co-Cultivation of Fusarium, Alternaria, and Pseudomonas on Wheat-Ears Affects Microbial Growth and Mycotoxin Production N2 - Mycotoxigenic fungal pathogens Fusarium and Alternaria are a leading cause of loss in cereal production. On wheat-ears, they are confronted by bacterial antagonists such as pseudomonads. Studies on these groups’ interactions often neglect the infection process’s temporal aspects and the associated priority effects. In the present study, the focus was on how the first colonizer affects the subsequent ones. In a climate chamber experiment, wheat-ears were successively inoculated with two different strains (Alternaria enuissima At625, Fusarium graminearum Fg23, or Pseudomonas simiae Ps9). Over three weeks, microbial abundances and mycotoxin concentrations were analyzed and visualized via Self Organizing Maps with Sammon Mapping (SOM-SM). All three strains revealed different characteristics and strategies to deal with co-inoculation: Fg23, as the first colonizer, suppressed the establishment of At625 and Ps9. Nevertheless, primary inoculation of At625 reduced all of the Fusarium toxins and stopped Ps9 from establishing. Ps9 showed priority effects in delaying and blocking the production of the fungal mycotoxins. The SOM-SM analysis visualized the competitive strengths: Fg23 ranked first, At625 second, Ps9 third. Our findings of species-specific priority effects in a natural environment and the role of the mycotoxins involved are relevant for developing biocontrol strategies. KW - Antagonists KW - Microbe interactions KW - Mycotoxins KW - Priority effect KW - SOM-SM PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521554 DO - https://doi.org/10.3390/microorganisms9020443 VL - 9 IS - 2 SP - 443 PB - MDPI AN - OPUS4-52155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thinnes, A. A1 - Westenberger, M. A1 - Piechotta, Christian A1 - Letho, L. A1 - Wirth, F. A1 - Lau, H. A1 - Klein, J. T1 - Cholinergic and metabolic effects of metformin in mouse brain N2 - Metformin is widely used as a first-line treatment for type 2 diabetes, but central effects of metformin have received little attention. When metformin (200 mg/kg i.p.) was administered to C57Bl6 mice, metformin concentration in cerebrospinal fluid peaked at 29 μM after 30 min but dropped quickly and was low at 90 min. In mouse hypothalamus sampled by microdialysis, systemically administered metformin caused minor and transient increases of acetylcholine, glucose and lactate while choline levels decreased. When metformin (0.2−10 mM) was locally infused via retrodialysis, there was a short-lasting increase of acetylcholine in the hypothalamus. Extracellular lactate levels in hypothalamus showed a massive increase upon metformin infusion while glucose levels decreased. In isolated mitochondria of mouse brain, metformin inhibited oxygen consumption and the activity of complex I. Inhibition of mitochondrial respiration likely explains lactate formation in the brain during metformin infusion which may cause lactic acidosis during metformin intoxication. The changes of cholinergic activity in the hypothalamus may be associated with appetite suppression observed during metformin treatment. KW - Metformin KW - Blood-brain barrier KW - Lactate KW - Glucose KW - Microdialysis KW - Hypothalamus PY - 2021 DO - https://doi.org/10.1016/j.brainresbull.2021.02.018 SN - 0361-9230 VL - 170 SP - 211 EP - 217 PB - Elsevier CY - Amsterdam, Niederlande AN - OPUS4-52189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Riedel, Soraya A1 - Schneider, Rudolf T1 - Smartphone-based amperometric detection of 3,3′,5,5′-tetramethylbenzidine (TMB) – An immunomagnetic Ochratoxin A assay N2 - The demand for miniaturized analytical devices monitoring important parameters in the food and medical industry has increased strongly in the past decades. With fast progress, smart technologies are finding their way into our everyday life. For the future, it is, therefore, a major goal to also link analytical methods with smart technologies to create user-friendly on-site devices. In food industry the monitoring of harmful substances such as dioxins, heavy metals or mycotoxins plays a key role, since the European Commission prescribes legal limits for various food products and beverages[1]. Therefore, companies often have their own laboratories and trained personnel. For one of the most abundant and toxic mycotoxins, Ochratoxin A (OTA) we want to present an electrochemical detection system in which the read-out can be performed with a smartphone connected via Bluetooth to a miniaturized potentiostat. The recognition of OTA is performed with specific antibodies in a competitive assay format. Anti-OTA-antibodies were captured on magnetic beads on which the competitive binding between OTA and an OTA horseradish peroxidase (HRP) tracer was performed. To quantify OTA, the enzymatic reaction of the tracer with 3,3′,5,5′-tetramethylbenzidine (TMB) and H2O2 is employed. Oxidized TMB, which is enzymatically produced by the reduction of H2O2, is quantified by amperometry with screen-printed electrodes in a custom-made flow system. Since it is well-known that oxidized TMB can precipitate on electrode surfaces[2], we have studied pitfalls of the electrochemical detection of TMB. By cyclic voltammetry we have compared the stability of the electrochemistry of TMB at different electrode materials (gold and carbon) and pH values (pH 1 and pH 4). It was found that a stable response of the electrode could be achieved at pH 1 on gold electrodes. Thus, we applied these reaction conditions for amperometric detection of TMB in the OTA assay. The results of the electrochemical detection method are in good correlation with the photometric detection of TMB. To demonstrate the applicability, we tested our system with OTA-spiked beer and performed the measurement via smartphone. T2 - European Biosensor Symposium 2021 CY - Online meeting DA - 09.03.2021 KW - Ochratoxin A KW - Cyclic voltammetry KW - Amperometry KW - Smartphone KW - Immunoassay PY - 2021 N1 - Geburtsname von Riedel, Soraya: Höfs, S. - Birth name of Riedel, Soraya: Höfs, S. AN - OPUS4-52269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Riedel, Soraya A1 - Talke, A. A1 - Lisdat, F. T1 - Enzyme activity determination of human monoamine oxidase B (Mao B) by amperometric hydrogen peroxide detection N2 - Parkinson’s disease (PD) is one of the most common neurodegenerative disorders worldwide. About 0.3 % of the global population and approximately 2 % of people older than 80 years are affected by PD. Monoamine oxidase B (Mao B) is an enzyme, which is a drug target in Parkinson’s disease (PD), since it is involved in dopamine metabolism. Several Mao B inhibitors are well established as medication for PD patients. However, the medical treatment is only little personalized since the monitoring of the patients Mao B activity is complex and requires sophisticated laboratory equipment. Here a sensorial Mao B activity determination system has been developed which has potential in the personalization of the medical PD treatment. The enzyme activity is quantified by amperometric detection of enzymatically produced H2O2. Therefore, the enzyme is enriched from the solution via cellulose particles which are functionalized with antibodies against human Mao B. The successful capturing of the enzyme can be verified by SDS-PAGE. For activity determination the enzyme is brought in contact with a suitable substrate - here benzylamine. Selectivity of the amperometric hydrogen peroxide detection in the presence of co-reactants has been verified. Within the time span of 30 min, a linear dependency of enzymatically produced H2O2 with the substrate incubation time can be observed. This allows the evaluation of the Mao B activity. The results have been correlated to an optical detection method. Furthermore, the method has been tested for different amounts of enzyme used in the experiments and found to be sensitive enough for Mao B analysis in blood samples. T2 - European Biosensor Symposium 2021 CY - Online meeting DA - 09.03.2021 KW - Monoamine oxidase B KW - Amperometry KW - Prussian blue KW - Parkinsons's disease KW - Screen-printed electrodes PY - 2021 N1 - Geburtsname von Riedel, Soraya: Höfs, S. - Birth name of Riedel, Soraya: Höfs, S. AN - OPUS4-52270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Recknagel, Sebastian T1 - Certified reference material for the determination of hydrolytic resistance of borosilicate glass N2 - The preparation, analysis and certification of a new certified glass reference material (CRM) for the determination of hydrolytic resistance of borosilicate glass with the glass grains test is described. The CRM BAM-S053 is available in the form of glass rods (length: 185 mm, diameter: 9 mm, weight: 27·5 g). Certified properties are the acid consumption determined according to the procedures described in ISO 720, USP<660>, Ph.Eur. 3.2.1, data obtained following the procedure of ISO 719 was scattering too widely. The certified values are based on the results of 15 laboratories which participated in the certification interlaboratory comparison. The CRM is intended for the quality control when applying ISO 720, USP<660>, Ph.Eur. 3.2.1 and with limitations ISO 719. KW - CRM KW - Hydrolytic resistance KW - Borosilicate glass PY - 2021 DO - https://doi.org/10.13036/17533562.62.1.001 VL - 62 IS - 1 SP - 25 EP - 27 AN - OPUS4-52195 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rühle, Bastian A1 - Hodoroaba, Vasile-Dan T1 - Automatic Image Segmentation and Analysis using Neural Networks N2 - We present a workflow for obtaining fully trained artificial neural networks that can perform automatic particle segmentations of agglomerated, non-spherical nanoparticles from electron microscopy images “from scratch”, without the need for large training data sets of manually annotated images. This is achieved by using unsupervised learning for most of the training dataset generation, making heavy use of generative adversarial networks and especially unpaired image-to-image translation via cycle-consistent adversarial networks. The whole process only requires about 15 minutes of hands-on time by a user and can typically be finished within less than 12 hours when training on a single graphics card (GPU). After training, SEM image analysis can be carried out by the artificial neural network within seconds, and the segmented images can be used for automatically extracting and calculating various other particle size and shape descriptors. T2 - Machine Learning Workshop CY - Online Meeting DA - 18.03.2021 KW - Electron Microscopy KW - Neural Networks KW - Artificial Intelligence KW - Image Segmentation KW - Automated Image Analysis PY - 2021 AN - OPUS4-52304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rühle, Bastian A1 - Krumrey, Julian Frederic A1 - Hodoroaba, Vasile-Dan T1 - Workflow towards automated segmentation of agglomerated, non‑spherical particles from electron microscopy images using artificial neural networks N2 - We present a workflow for obtaining fully trained artificial neural networks that can perform automatic particle segmentations of agglomerated, non-spherical nanoparticles from scanning electron microscopy images “from scratch”, without the need for large training data sets of manually annotated images. The whole process only requires about 15 minutes of hands-on time by a user and can typically be finished within less than 12 hours when training on a single graphics card (GPU). After training, SEM image analysis can be carried out by the artificial neural network within seconds. This is achieved by using unsupervised learning for most of the training dataset generation, making heavy use of generative adversarial networks and especially unpaired image-to-image translation via cycle-consistent adversarial networks. We compare the segmentation masks obtained with our suggested workflow qualitatively and quantitatively to state-of-the-art methods using various metrics. Finally, we used the segmentation masks for automatically extracting particle size distributions from the SEM images of TiO2 particles, which were in excellent agreement with particle size distributions obtained manually but could be obtained in a fraction of the time. KW - Electron microscopy KW - Neural networks KW - Artificial intelligence KW - Image segmentation KW - Automated image analysis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522454 DO - https://doi.org/10.1038/s41598-021-84287-6 VL - 11 IS - 1 SP - 4942 PB - Springer Nature AN - OPUS4-52245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rühle, Bastian A1 - Krumrey, Julian Frederic A1 - Hodoroaba, Vasile-Dan T1 - Dataset accompanying the publication "Workflow towards automated segmentation of agglomerated, non-spherical particles from electron microscopy images using artificial neural networks" N2 - This dataset accompanies the following publication, first published in Scientific Reports (www.nature.com/articles/s41598-021-84287-6): B. Ruehle, J. Krumrey, V.-D. Hodoroaba, Scientific Reports, Workflow towards Automated Segmentation of Agglomerated, Non-Spherical Particles from Electron Microscopy Images using Artificial Neural Networks, DOI: 10.1038/s41598-021-84287-6 It contains electron microscopy micrographs of TiO2 particles, the corresponding segmentation masks, and their classifications into different categories depending on their visibility/occlusion. Please refer to the publication and its supporting information for more details on the acquisition and contents of the dataset, as well as the GitHub repository at https://github.com/BAMresearch/automatic-sem-image-segmentation KW - Electron microscopy KW - Neural networks KW - Image segmentation KW - Automated image analysis PY - 2021 DO - https://doi.org/10.5281/zenodo.4563942 PB - Zenodo CY - Geneva AN - OPUS4-52246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jakubowski, N. A1 - Borrmann, S. A1 - Recknagel, Sebastian A1 - Roik, Janina A1 - Rickert, F. T1 - Comparison of peristaltic pumps used for sample introduction in Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) N2 - In this investigation, two conventional peristaltic pumps are compared with a new pump based on the “easy click” principle using a simultaneous ICP-AES instrument with standard operating conditions. It is found that the figures of merit achieved are quite comparable for all three pumps. Relative standard deviations (RSDs) range between 0.2% and 1.8%, and limits of detection as low as 0.1 μg/L have been achieved , demonstrating that the easy click principle of the new pump does not compromise the analytical figures of merit. KW - ICP-AES KW - Peristaltic pumps KW - ICP-MS PY - 2020 IS - 35 / S4 SP - 6 AN - OPUS4-52020 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Solovyev, N. A1 - El-Khatib, Ahmed A1 - Costas-Rodrigues, M. A1 - Schwab, K. A1 - Griffin, E. A1 - Raab, A. A1 - Platt, B. A1 - Theuring, F. A1 - Vogl, Jochen A1 - Vanhaecke, F. T1 - Cu, Fe and Zn isotope ratios in murine Alzheimer's disease models suggest specific signatures of amyloidogenesis and tauopathy N2 - Alzheimer’s disease (AD) is characterized by accumulation of tau and amyloid-beta in the brain, and recent evidence suggests a correlation between associated protein aggregates and trace elements, such as copper, iron and zinc. In AD, distorted brain redox homeostasis and complexation by amyloid-beta and hyperphosphorylated tau May alter the isotopic composition of essential mineral elements. Therefore, high-precision isotopic analysis may reveal changes in the homeostasis of these elements. We used inductively coupled plasma-mass spectrometry (ICP-MS)-based techniques to determine the total Cu, Fe and Zn contents in the brain, as well as their isotopic compositions in both mouse brain and serum. Results for male transgenic tau (Line 66, L66) and amyloid/presenilin (5xFAD) mice were compared to those for the corresponding age- and gendermatched wild-type control mice (WT). Our data show that L66 brains showed significantly higher Fe levels than the corresponding WT. Significantly less Cu, but more Zn was found in 5xFAD brains. We observed significantly lighter isotopic compositions of Fe (enrichment in the lighter isotopes) in the brain, and in serum of L66 mice compared to WT. For 5xFAD mice, Zn exhibited a trend towards a lighter isotopic composition in brain and a heavier isotopic composition in serum compared to WT. Neither mouse model yielded differences in the isotopic composition of Cu. Our findings indicate significant pathology-specific alterations of Fe and Zn brain homeostasis in mouse models of AD. The associated changes in isotopic composition May serve as a marker for proteinopathies Underlying AD and other types of dementia. KW - Alzheimer’s disease KW - Tau KW - Amyloid-beta KW - Copper KW - Iron KW - Zinc KW - Multi-collector inductively coupled plasma-mass spectrometry (ICP-MS) KW - Brain KW - Serum KW - Isotopic analysis KW - Total element determination PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520214 DO - https://doi.org/10.1016/j.jbc.2021.100292 VL - 296 SP - 100292 PB - Elsevier Inc. CY - Amsterdam AN - OPUS4-52021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, V. A1 - Uhlemann, M. A1 - Richter, Silke A1 - Pfeifer, jens T1 - Calibration capacity of hot-pressed hydrogen standards for glow discharge optical emission and mass spectrometry N2 - Mixed copper and titanium hydride powder was hot-pressed and characterized by Carrier Gas Hot Extraction, XRay Diffraction, Thermal Gravimetric Analysis coupled with Mass Spectrometry, and Scanning Electron Microscopy. The hot-pressed and five conventional samples were applied for calibration of hydrogen in Glow Discharge Optical Emission and Mass Spectrometry. Up to the introduction of 15 ng/s hydrogen the Emission yield model is useful in Glow Discharge Optical Emission Spectrometry. A correlation between saturation and even reversal of the emission yield of the spectral lines H121, H486 and H656 and low sputtering rates was found. Hydrogen effects exist for the spectral lines of Cu(II) 219 and Ti(I) 399. In Glow Discharge Mass Spectrometry, a linear dependency of the 1H ion current on the sputtered mass per time exists over the total range of hydrogen content investigated. Hydrogen effects also exist for the sensitivity of 48Ti and 63Cu. The sputtering rate of two-phase materials depends linearly on the sputtered mass per time of one phase, which allows the sputtering rate of two-phase materials with known composition to be predicted. KW - Hot-pressing KW - GD-OES KW - GD-MS KW - Calibration KW - Hydrogen KW - Titanium hydride KW - Sputtering KW - Two-phase system PY - 2021 DO - https://doi.org/10.1016/j.sab.2020.106039 VL - 176 SP - 106039 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-52074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von der Au, Marcus A1 - Karbach, H. A1 - Bell, A. M. A1 - Bauer, O. B. A1 - Karst, U. A1 - Meermann, Björn T1 - Determination of metal uptake in single organisms, Corophiumvolutator, via complementary electrothermal vaporization/inductively coupled plasma mass spectrometry and laserablation/inductively coupled plasma mass spectrometry N2 - Rationale: (Eco-)toxicological effects are mostly derived empirically and are notcorrelated with metal uptake. Furthermore, if the metal content is determined,mostly bulk analysis of the whole organism population is conducted; thus, biologicalvariability is completely disregarded, and this may lead to misleading results. Toovercome this issue, we compared two different solid sampling techniques for theanalysis of single organisms.Methods: In this study, complementary electrothermal vaporization/inductivelycoupled plasma mass spectrometry (ETV/ICP-MS) , laser ablation/inductivelycoupled plasma mass spectrometry (LA/ICP-MS)-based methods for the analysisof individual organisms were developed and the results obtained were comparedwith the concentrations obtained after digestion and measured using ICP-MS.For this purpose, a common (eco-)toxicological test organism, the mud shrimpCorophium volutator, was selected. As proof-of-concept application, these organismswere incubated with environmentally relevant metals from galvanic anodes, whichare often used for protection against metal corrosion in, for example, offshorewind farms.Results: The bulk analysis revealed that large quantities of the incubated elementswere detectable. Using the ETV/ICP-MS method, we could identify a highbiovariability within the population of organisms tested. Using the LA/ICP-MSmethod, it could be determined that the large quantities of the elements detectedwere due to adsorption of the metals and not due to uptake, which correlates wellwith the absence of (eco-)toxicological effects.Conclusions: The results obtained imply the efficiency of complementary methods toexplain the absence or presence of (eco-)toxicological effects. In particular, methodsthat allow for single-organism analysis or provide even a spatial resolution supportthe interpretation of ecotoxicological findings. KW - ICP-MS KW - Metal toxicity KW - Metal uptake KW - Corophium volutator KW - Seawater PY - 2021 DO - https://doi.org/10.1002/rcm.8953 VL - 35 IS - 2 SP - e8953 AN - OPUS4-52077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rietsch, P. A1 - Sobottka, S. A1 - Hoffmann, Katrin A1 - Hildebrandt, P. A1 - Sarkar, B. A1 - Resch-Genger, Ute A1 - Eigler, S. T1 - Identification of the Irreversible Redox Behavior of Highly Fluorescent Benzothiadiazoles N2 - Redox switches are applied in various fields of research, including molecular lifts, electronic devices and sensors. Switching the absorbance between UV and Vis/NIR by redox processes is of interest for applications in light harvesting or biomedicine. Here, we present a series of push-pull benzothiadiazole derivatives with high fluorescence quantum yields in solution and in the crystalline solid state. Spectroelectrochemical analysis reveals the switching of UV-absorption in the neutral state to Vis/NIR absorption in the reduced state. We identify the partial irreversibility of the switching process, which appears to be reversible on the cyclic voltammetry timescale. KW - Redox switch KW - Electrochemistry KW - Dye KW - Fluorescence KW - Absorption KW - Sensor KW - Benzothiadiazole PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520865 DO - https://doi.org/10.1002/cptc.202000050 SN - 2367-0932 VL - 4 IS - 9 SP - 668 EP - 673 PB - Wiley Online Library AN - OPUS4-52086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rietsch, P. A1 - Zeyat, M. A1 - Hübner, Oskar A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Kutter, M. A1 - Paskin, A. A1 - Uhlig, J. A1 - Lentz, D. A1 - Eigler, S. T1 - Substitution Pattern-Controlled Fluorescence Lifetimes of Fluoranthene Dyes N2 - The absorption and emission properties of organic dyes are generally tuned by altering the substitution pattern. However, tuning the fluorescence lifetimes over a range of several 10 ns while barely affecting the spectral features and maintaining a moderate fluorescence quantum yield is challenging. Such properties are required for lifetime multiplexing and barcoding applications. Here, we show how this can be achieved for the class of fluoranthene dyes, which have substitution-dependent lifetimes between 6 and 33 ns for single wavelength excitation and emission. We explore the substitution-dependent emissive properties in the crystalline solid state that would prevent applications. Furthermore, by analyzing dye mixtures and embedding the dyes in carboxyfunctionalized 8 μm-sized polystyrene particles, the unprecedented potential of these dyes as labels and encoding fluorophores for time-resolved fluorescence detection techniques is demonstrated. KW - Fluorescence KW - Label KW - Fluoranthene KW - Quantum yield KW - Reporter KW - Crystal KW - Encoding KW - Multiplexing KW - Particle KW - Bead KW - Lifetime KW - Dye KW - Barcoding PY - 2021 DO - https://doi.org/10.1021/acs.jpcb.0c08851 SN - 1520-5207 VL - 125 IS - 4 SP - 1207 EP - 1213 PB - American Chemical Society AN - OPUS4-52087 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pisonero, J. A1 - Traub, Heike A1 - Cappella, Brunero A1 - Álvarez-Llamas, C. A1 - Méndez, A. A1 - Richter, Silke A1 - Ruiz Encinar, J. A1 - Costa-Fernandez, J. M. A1 - Bordel, N. T1 - Exploring quantitative cellular biomaging and assessment of CdSe/ZnS quantum dots cellular uptake in single cells, using ns-LA-ICP-SFMS N2 - High spatially resolved quantitative bioimaging of CdSe/ZnS Quantum Dots uptake in two kinds of cells is investigated combining laser ablation inductively coupled plasma mass spectrometry and the spatially resolved analysis of dried pL-droplets from a solution with a known concentration of Quantum Dots. Single cells and dried pL-droplets are morphologically characterized by Atomic Force Microscopy. A number concentration of CdSe/ZnS QDs between 3.5 104 and 48 104 is estimated to be uptaken by several selected single cells, after being incubated in the presence of a QDs suspension added to a standard cell culture medium. Mono-elemental bioimaging at subcellular resolution seems to show a higher number concentration of the CdSe/ZnS QDs in the cytosol around the cell nucleus. KW - LA-ICP-SFMS KW - Fast single pulse response KW - Quantitative bioimaging KW - Cellular uptake KW - HT22 KW - HeLa KW - Single cell KW - pL-droplets KW - CdSe/ZnS quantum Dots KW - AFM PY - 2021 DO - https://doi.org/10.1016/j.talanta.2021.122162 SN - 0039-9140 VL - 227 SP - 122162 PB - Elsevier B.V. AN - OPUS4-52121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Z. A1 - Kneipp, Janina T1 - Ligand-Supported Hot Electron Harvesting: Revisiting the pHResponsive Surface-Enhanced Raman Scattering Spectrum of p‑Aminothiophenol N2 - The discussion of the surface-enhanced Raman scattering (SERS) spectra of p-aminothiophenol (PATP) and of ist photocatalytic reaction product 4,4′-dimercaptoazobenzene (DMAB) is important for understanding plasmon-supported spectroscopy and catalysis. Here, SERS spectra indicate that DMAB forms also in a nonphotocatalytic reaction on silver nanoparticles. Spectra measured at low pH, in the presence of the acids HCl, H2SO4, HNO3, and H3PO4, show that DMAB is reduced to PATP when both protons and chloride ions are present. Moreover, the successful reduction of DMAB in the presence of other, halide and nonhalide, ligands suggests a central role of these species in the reduction. As discussed, the ligands increase the efficiency of hot-electron harvesting. The pH-associated reversibility of the SERS spectrum of PATP is established as an Observation of the DMAB dimer at high pH and of PATP as a product of its hot-electron reduction at low pH, in the presence of the appropriate ligand. KW - Redox reactions KW - Metal nanoparticles KW - Ligands KW - Raman spectroscopy KW - Nanoparticle formation PY - 2021 DO - https://doi.org/10.1021/acs.jpclett.0c03732 SN - 1948-7185 VL - 12 IS - 5 SP - 1542 EP - 1547 PB - ACS Publications AN - OPUS4-52140 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weller, Michael G. T1 - The Protocol Gap N2 - Although peer review is considered one of the main pillars of modern science, experimental methods and protocols seem to be not a rigorous subject of this process in many papers. Commercial equipment, test kits, labeling kits, previously published concepts, and standard protocols are often considered to be not worth a detailed description or validation. Even more disturbing is the extremely biased citation behavior in this context, which sometimes leads to surrogate citations to avoid low-impact journals, preprints, or to indicate traditional practices. This article describes some of these surprising habits and suggests some measures to avoid the most unpleasant effects, which in the long term may undermine the credibility of science as a whole. KW - Validation KW - Peer review KW - Experiment KW - Documentation KW - Scientific publication KW - Reproducibility crisis KW - Replication crisis KW - Trust KW - Citation KW - References KW - Surrogate citations KW - Impact PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521440 DO - https://doi.org/10.3390/mps4010012 SN - 2409-9279 VL - 4 IS - 1 SP - 1 EP - 5 PB - MDPI CY - Basel AN - OPUS4-52144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bayerlein, Bernd A1 - Hanke, T. A1 - Muth, Thilo A1 - Riedel, Jens A1 - Schilling, Markus A1 - Schweizer, C. A1 - Skrotzki, Birgit A1 - Todor, A. A1 - Moreno Torres, Benjami A1 - Unger, Jörg F. A1 - Völker, Christoph A1 - Olbricht, Jürgen T1 - A Perspective on Digital Knowledge Representation in Materials Science and Engineering N2 - The amount of data generated worldwide is constantly increasing. These data come from a wide variety of sources and systems, are processed differently, have a multitude of formats, and are stored in an untraceable and unstructured manner, predominantly in natural language in data silos. This problem can be equally applied to the heterogeneous research data from materials science and engineering. In this domain, ways and solutions are increasingly being generated to smartly link material data together with their contextual information in a uniform and well-structured manner on platforms, thus making them discoverable, retrievable, and reusable for research and industry. Ontologies play a key role in this context. They enable the sustainable representation of expert knowledge and the semantically structured filling of databases with computer-processable data triples. In this perspective article, we present the project initiative Materials-open-Laboratory (Mat-o-Lab) that aims to provide a collaborative environment for domain experts to digitize their research results and processes and make them fit for data-driven materials research and development. The overarching challenge is to generate connection points to further link data from other domains to harness the promised potential of big materials data and harvest new knowledge. KW - Data infrastructures KW - Digital representations KW - Digital workflows KW - Knowledge graphs KW - Materials informatics KW - Ontologies KW - Vocabulary providers PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546729 DO - https://doi.org/10.1002/adem.202101176 SN - 1438-1656 SP - 1 EP - 14 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-54672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR ED - Sylvester, P. ED - Schmid, Thomas ED - Dariz, P. T1 - Special issue: Modern Raman spectroscopy of minerals N2 - Dear Colleagues, Raman spectroscopy provides vibrational fingerprints of chemical compounds, enabling their identification via a comparison with reference spectra. This analytical tool has high potential not only in the identification of minerals from natural sources but also for studying the complex microstructure and mineral distribution of both ancient and modern man-made materials, ranging from, e.g., historical ceramics and mortars to modern solar cell materials. In addition to the chemical identity of minerals, Raman spectra are affected by crystal orientations, substoichiometric to stoichiometric compositional changes (e.g., in solid solution series), traces of foreign ions, stress, strain, and crystallinity, enabling a comprehensive physicochemical characterisation of minerals. This Special Issue includes method developments and applications in the field of modern Raman spectroscopy of minerals in a broad sense, from natural mineral deposits to inorganic phases in materials; covers both spectroscopic and imaging studies; and provides a platform for discussing the possibilities and limits of the technique in the context of the existing analytical arsenal. Thomas Schmid Petra Dariz KW - Analytical sciences KW - Raman spectroscopy KW - Raman microspectroscopy KW - Mineral identification KW - Mineral paragenesis PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519117 UR - https://www.mdpi.com/journal/minerals/special_issues/Raman_Spectroscopy_Minerals VL - 10 SP - 1 EP - 156 PB - MDPI CY - Basel AN - OPUS4-51911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tobias, Charlie A1 - Climent Terol, Estela A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Polystyrene Microparticles with Convergently Grown Mesoporous Silica Shells as a Promising Tool for Multiplexed Bioanalytical Assays N2 - Functional core/shell particles are highly sought after in analytical chemistry, especially in methods suitable for single-particle analysis such as flow cytometry because they allow for facile multiplexed detection of several analytes in a single run. Aiming to develop a powerful bead platform of which the core particle can be doped in a straightforward manner while the shell offers the highest possible sensitivity when functionalized with (bio)chemical binders, polystyrene particles were coated with different kinds of mesoporous silica shells in a convergent growth approach. Mesoporous shells allow us to obtain distinctly higher surface areas in comparison with conventional nonporous shells. While assessing the potential of narrow- as well as wide-pore silicas such as Mobil composition of matter no. 41 (MCM-41) and Santa Barbara amorphous material no. 15 (SBA-15), especially the synthesis of the latter shells that are much more suitable for biomolecule anchoring was optimized by altering the pH and both, the amount and type of the mediator salt. Our studies showed that the best performing material resulted from a synthesis using neutral conditions and MgSO4 as an ionic mediator. The analytical potential of the particles was investigated in flow cytometric DNA assays after their respective functionalization for individual and multiplexed detection of short oligonucleotide strands. These experiments revealed that a two-step modification of the silica surface with amino silane and succinic anhydride prior to coupling of an amino-terminated capture DNA (c-DNA) strand is superior to coupling carboxylic acid-terminated c-DNA to aminated core/shell particles, yielding limits of detection (LOD) down to 5 pM for a hybridization assay, using labeled complementary single-stranded target DNA (t-DNA) 15mers. The potential of the use of the particles in multiplexed analysis was shown with the aid of dye-doped core particles carrying a respective SBA-15 shell. Characteristic genomic sequences of human papillomaviruses (HPV) were chosen as the t-DNA analytes here, since their high relevance as carcinogens and the high number of different pathogens is a relevant model case. The title particles showed a promising performance and allowed us to unequivocally detect the different high- and low-risk HPV types in a single experimental run. KW - Bead-based assay KW - Core-shell particles KW - Human papillomavirus KW - Mesoporous silica KW - Multiplexing PY - 2020 DO - https://doi.org/10.1021/acsami.0c17940 SN - 1944-8244 VL - 13 IS - 1 SP - 207 EP - 218 PB - American Chemical Society CY - Washington, DC AN - OPUS4-51955 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Isotope analysis by high-resolution optical spectroscopy: a tool for planetary science N2 - Isotope analysis can be used to determine the age and provenance of geological samples. Modern techniques in optical spectrometry allow us a stand-off isotope analysis. This seminar will discuss how planetary science with the next Moon and Mars missions drive optical spectrometry into precise and accurate isotope analysis and how BAM will contribute. T2 - Adlershofer Kolloquium CY - Online meeting DA - 19.05.2020 KW - Provenance KW - Dating KW - Isotopes KW - Optical spectroscopy KW - Isotopic shift KW - Planetary science PY - 2020 AN - OPUS4-51995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Advances and Applications of Molecular Absorption Spectrometry: from Non-Metals to Isotope Analysis N2 - Wie kann Nicht-Messbares messbar gemacht werden? Die Antwort der Dissertation auf diese zentrale Frage der analytischen Chemie lautet: die Anwendung der hochauflösenden optischen Spektroskopie der diatomischen Moleküle. In der Arbeit wird in einem ersten Schritt in Grafitöfen, die wie Chemiereaktoren funktionieren, und durch die Anwendung verschiedener analytischer Methoden die diatomische Molekülbildung nachvollzogen. In einem zweiten Schritt werden die aufgedeckten Mechanismen auf die Bestimmung von Nichtmetallen und die Analyse von Isotopen angewendet. Die Isotopenanalytik ist das zukunftsweisendes Herzstück der Dissertation und von alltäglicher und politischer Relevanz: Mittels dieser Technik lässt sich die Herkunft von Lebensmitteln aber auch Chemiewaffen kostengünstiger und wesentlich schneller bestimmen als mit bisherigen Methoden der Massenspektrometrie. Möglich ist die Bestimmung, da alles um uns herum aus Atomen verschiedener Elemente besteht und die meisten Elemente mehrere Isotope haben. Isotope unterscheiden sich hinsichtlich ihres Gewichts, da sie über eine unterschiedliche Anzahl an Neutronen verfügen. Die Informationen über das Verhältnis von schweren und leichten Isotopen lässt sich nutzen, um zu bestimmen wo etwas entstanden ist. Jeder Ort auf unserem Planeten hat seinen persönlichen Element- und Isotopenanteil (Isotopenfingerabdruck). Das in der Arbeit angewandte Instrument misst das Verhältnis indirekt und nutzt hierzu die Interaktion zwischen Licht und Materie. Für das schwerere Isotop wird mehr Licht/Energie benötigt, um es in Bewegung zu bringen, als für das leichtere. Diese kleinen Unterschiede an Energie, die wir dafür aufwenden müssen, werden gemessen und ermöglichen die Herkunftsbestimmung. Damit leistet die Arbeit nicht nur einen wichtigen Beitrag zur Grundlagenforschung in der analytischen Chemie, sondern kann mit den aufgezeigten Ergebnissen auch Anwendung in den Bereichen Verbraucherschutz, Umweltforschung und Waffenkontrolle finden. N2 - The present work covers two main aspects of high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS), an analytical technique for elemental trace analysis. First, a comprehensive mechanistic study of molecule formation in graphite furnaces is presented, which is a key step into the recovery of analytical signals. For this, the molecule formation of CaF was studied, which is used for the indirect analytical determination of fluorine in HR-CS-GFMAS. A zirconium coating catalyzes the CaF formation, and its structure was investigated. The kinetics of this reaction was established by monitoring its molecular spectrum at different atomisation temperatures. An Arrhenius plot showed a pseudo-first order reaction with respect to fluorine (n = 1). An intermediate state was isolated, and its structure was elucidated by spectroscopic methods: scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XANES and EXAFS), and Raman microspectroscopy. Here a mechanism is proposed, where ZrO2 works as a heterogeneous catalyst: after a pyrolytic step, an intermediate state of ZrO(OCaF) is activated, and at higher temperatures, CaF(g) is released from the zirconium-coated graphite surface. Second, analytical methods were developed by using HR-CS-MAS as detector for non-metals and isotope analysis. Therefore, the determination of organic absorbable chlorine in water, the quantification of fluorine in consume care products with declared perfluorinated ingredients, and the determination of sulfur content in crude oils were investigated. Finally, the high resolution of the instrumentation allows to measure isotopic shifts with high precision in some observed molecular spectra. Consequently, the molecular spectra of enriched isotopes of boron and magnesium were investigated, establishing so the potential of HR-CS-MAS for the accurate and precise determination of isotopic amount ratios. T2 - Applied Photonics Award 2020 CY - Jena, Germany DA - 22.09.2020 KW - Herkunftsbestimmung KW - Isotopenanalyse KW - Isotope KW - Optischer Spektroskopie PY - 2020 AN - OPUS4-51996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Isotopic analysis by high-resolution optical spectroscopy N2 - Isotope analysis can be used to determine the age and provenance of geological samples or to study dynamic systems like Li-ion batteries. Modern techniques in optical spectrometry allow us a fast and slow-cost isotope analysis. These techniques include high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS) and laser ablation molecular isotopic spectrometry. This seminar will discuss our recent work on precise and accurate isotope analysis of boron, magnesium, and lithium with geology, climate, and energy research applications. T2 - Recent Trends in Chemical Science and Technology, Christian College Chengannur, India CY - Online meeting DA - 29.09.2020 KW - Isotopes KW - Optical spectrometry KW - Machine learning PY - 2020 AN - OPUS4-51997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Garde, Raul A1 - Abad Andrade, Carlos Enrique A1 - Recknagel, Sebastian A1 - Nakadi, F. A1 - Garcia-Ruiz, E. A1 - Resano, M. T1 - Simultaneous determination of halogens by high resolution absortion spectrometry N2 - The high ionization potentials and low wavelength emission lines of halogens difficult the analysis of their organohalogen compounds by ICP-based methods [1]. Other techniques, such as combustion ion chromatography (CIC) or ion-selective electrodes have proven to be more reliable to determine these elements. However, these techniques are more time-consuming and/or have lower precision and accuracy. High resolution continuum source graphite furnace molecular absorption spectrometry (HR CS GFMAS) allows the determination of solid and liquid samples by monitoring a molecule formed with the analyte and a molecule forming reagent. In the case of F, Cl and Br, several molecule forming agents have been studied for their determination. Among all of them, calcium can form a stable bond with the three elements and provides optimal analytical properties for trace analysis [2]. However, the spectral window of commercially available continuum source AAS instruments is not broad enough to cover the wavelength range necessary for a simultaneous determination. Thus, coupling it with a modular simultaneous echelle spectrograph (MOSES), which can register around 200 nm in a single measure, allows the simultaneous study of the three analytes [3]. This instrumentation is capable of register more than 200 nm of the spectra per measure keeping a high resolution. This spectral window is suitable for the monitorization of a variety of transitions of the three molecules. However, some of them are overlapped and the competitive mechanism of formation of the three molecules modify their sensitivity depending on the proportions in the sample. In this study, a compromise in the conditions and modifiers were selected in order to maximize the sensitivity and signal to noise ratio for the three molecules. The determination was carried out by standard addition of CaF and Cl and Br were obtained from the PLS model. References: [1] X. Bu, T. Wang, G. Hall, J. Anal. At. Spectrom., 18, 1443–1451 (2003) [2] M. Resano, E. García-Ruiz, M. Aramendía, M. A. Belarra, J. Anal. At. Spectrom., 34, 59–80 (2019) [3] S. Geisler, M. Okruss, H. Becker-Ross, M. Dong Huang, N. Esser, S. Florek, Spectrochimica Acta PartB, 107, 11–16 (2015) T2 - Adlershofer Forschungsforum CY - Berlin, Germany DA - 11.11.2019 KW - Halogens KW - Fluorine KW - Simultaneous determination KW - MOSES KW - Chemometry KW - Interferences PY - 2019 AN - OPUS4-51998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Molloy, J. L. A1 - Winchester, M. R. A1 - Butler, T. A. A1 - Possolo, A. M. A1 - Rienitz, O. A1 - Roethke, A. A1 - Goerlitz, V. A1 - Caciano de Sena, R. A1 - Dominguez Almeida, M. A1 - Yang, L. A1 - Methven, B. A1 - Nadeau, K. A1 - Romero Arancibia, P. A1 - Bing, W. A1 - Tao, Z. A1 - Snell, J. A1 - Vogl, Jochen A1 - Koenig, Maren A1 - Kotnala, R. K. A1 - Swarupa Tripathy, S. A1 - Elishian, C. A1 - Ketrin, R. A1 - Suzuki, T. A1 - Oduor Okumu, T. A1 - Yim, Y.-H. A1 - Heo, S. W. A1 - Min, H. S. A1 - Sub Han, M. A1 - Lim, Y. A1 - Velina Lara Manzano, J. A1 - Segoviano Regalado, F. A1 - Arvizu Torres, M. A1 - Valle Moya, E. A1 - Buzoianu, M. A1 - Sobina, A. A1 - Zyskin, V. A1 - Sobina, E. A1 - Migal, P. A1 - Linsky, M. A1 - Can, S. Z. A1 - Ari, B. A1 - Goenaga Infante, H. T1 - CCQM-K143 Comparison of Copper Calibration Solutions Prepared by NMIs/DIs N2 - CCQM-K143 is a key comparison that assesses participants’ ability to prepare single element calibration solutions. Preparing calibration solutions properly is the cornerstone of establishing a traceability link to the International System of Units (SI), and therefore should be tested in order to confirm the validity of CCQM comparisons of more complex materials. CCQM-K143 consisted of participants each preparing a single copper calibration solution at 10 g/kg copper mass fraction and shipping 10 bottled aliquots of that solution to the coordinating laboratory, the National Institute of Standards and Technology (NIST). The masses and mass fraction for the prepared solutions were documented with the submitted samples. The solutions prepared by all participants were measured at NIST by high performance inductively coupled plasma optical emission spectroscopy (HP-ICP-OES). The intensity measurements for copper were not mapped onto values of mass fraction via calibration. Instead, ratios were computed between the measurements for copper and simultaneous measurements for manganese, the internal standard, and all subsequent data reductions, including the computation of the KCRV and the degrees of equivalence, were based on these ratios. Other than for two participants whose measurement results appeared to suffer from calculation or preparation errors, all unilateral degrees of equivalence showed that the measured values did not differ significantly from the KCRV. These results were confirmed by a second set of ICP-OES measurements performed by the Physikalisch-Technische Bundesanstalt (PTB). CCQM-K143 showed that participants are capable of preparing calibration solutions starting from high purity, assayed copper metal. Similar steps are involved when preparing solutions for other elements, so it seems safe to infer that similar capabilities should prevail when preparing many different, single-element solutions. KW - Metrology KW - Primary calibration solution KW - Traceability PY - 2020 DO - https://doi.org/10.1088/0026-1394/58/1A/08006 SN - 0026-1394 VL - 58 IS - 1A SP - 08006 PB - IOP Science CY - Cambridge AN - OPUS4-51983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kader, A. A1 - Brangsch, J. A1 - Kaufmann, Jan Ole A1 - Zhao, J. A1 - Mangarova, D. B. A1 - Moeckel, J. A1 - Adams, L. C. A1 - Sack, I. A1 - Taupitz, M. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Molecular MR Imaging of Prostate Cancer N2 - This review summarizes recent developments regarding molecular imaging markers for magnetic resonance imaging (MRI) of prostate cancer (PCa). Currently, the clinical standard includes MR imaging using unspecific gadolinium-based contrast agents. Specific molecular probes for the diagnosis of PCa could improve the molecular characterization of the tumor in a non-invasive examination. Furthermore, molecular probes could enable targeted therapies to suppress tumor growth or reduce the tumor size. KW - Prostate cancer KW - Magnetic resonance imaging KW - Molecular imaging KW - Imaging KW - Molecular marker KW - Screening KW - MRI KW - Diagnosis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519503 DO - https://doi.org/10.3390/biomedicines9010001 VL - 9 IS - 1 SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-51950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reinmuth-Selzle, K. A1 - Tchipilov, Teodor A1 - Backes, A. T. A1 - Tscheuschner, Georg A1 - Tang, K. A1 - Ziegler, K. A1 - Lucas, K. A1 - Pöschl, U. A1 - Fröhlich-Nowoisky, J. A1 - Weller, Michael G. T1 - Determination of the protein content of complex samples by aromatic amino acid analysis, liquid chromatography-UV absorbance, and colorimetry N2 - Fast and accurate determination of the protein content of a sample is an important and non-trivial task of many biochemical, biomedical, food chemical, pharmaceutical, and environmental research activities. Different methods of total protein determination are used for a wide range of proteins with highly variable properties in complex matrices. These methods usually work reasonably well for proteins under controlled conditions, but the results for non-standard and complex samples are often questionable. Here, we compare new and well-established methods, including traditional amino acid analysis (AAA), aromatic amino acid analysis (AAAA) based on the amino acids phenylalanine and tyrosine, reversed-phase liquid chromatography of intact proteins with UV absorbance measurements at 220 and 280 nm (LC-220, LC-280), and colorimetric assays like Coomassie Blue G-250 dye-binding assay (Bradford) and bicinchoninic acid (BCA) assay. We investigated different samples, including proteins with challenging properties, chemical modifications, mixtures, and complex matrices like air particulate matter and pollen extracts. All methods yielded accurate and precise results for the protein and matrix used for calibration. AAA, AAAA with fluorescence detection, and the LC-220 method yielded robust results even under more challenging conditions (variable analytes and matrices). These methods turned out to be well-suited for reliable determination of the protein content in a wide range of samples, such as air particulate matter and pollen. KW - Air particulate matter KW - Aromatic amino acid analysis KW - Atmospheric aerosol KW - Chemical protein modification KW - Derivatization KW - Nitration KW - Nitrotyrosine KW - LC-UV absorbance KW - Pollen extract KW - Protein quantification KW - Protein test KW - Kjeldahl KW - Tyrosine KW - Phenylalanine KW - Hydrolysis KW - Bradford KW - BCA test KW - 280 nm KW - Air filter samples KW - Fluorescence KW - HPLC KW - Chromatography KW - Protein content KW - 150th anniversary of BAM KW - Topical collection: Analytical Methods and Applications in the Materials and Life Sciences PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545924 UR - https://pubmed.ncbi.nlm.nih.gov/35320366/ DO - https://doi.org/10.1007/s00216-022-03910-1 SP - 1 EP - 14 PB - Springer Nature Limited CY - New York, Heidelberg AN - OPUS4-54592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Kipphardt, Heinrich A1 - Tuma, Dirk A1 - Khanipour, Peyman T1 - Sensors, Analytics and Certified Reference Materials safeguarding the quality infrastructure in the hydrogen economy N2 - The prerequisites for a successful energy transition and the economic use of hydrogen as a clean green energy carrier and for H2 readiness are a rapid market ramp-up and the establishment of the required value chains. Reliable quality and safety standards for innovative technologies are the prerequisite for ensuring supply security, for environmental compatibility and sustainable climate protection, for building trust in these technologies and thus enable product and process innovations. With the Competence Centre "H2Safety@BAM", BAM is creating the safety-related prere-quisites for the successful implementation of hydrogen technologies at national as well as European level. BAM uses decades of experience in dealing with hydrogen technologies to develop the necessary quality and safety standards. The presentation will draw a bow from the typical basic tasks of BAM in the field of competence "Sensors, analytics and certified reference materials", such as maintenance and dissemination of the national gas composition standards for calorific value determination as Designated Institute for Metrology in Chemistry within the framework of the Metre Convention, to the further development of measurement and sensor technology for these tasks. For the certification of reference materials, a mostly slow and time-consuming but solid reference analysis is common. With hydrogen and its special properties, completely new requirements are added. In addition, fast and simple online analysis is required for process control, for example to register quality changes, e.g., during load changes or refuelling processes. T2 - Indo-German International Conference on Metrology for the Deployment of Green Hydrogen and Renewable Fuels in India CY - Online meeting DA - 04.04.2022 KW - Quality Infrastructure KW - Gas Reference Material KW - Hydrogen KW - Energy Gases KW - Sensors KW - Hydrogen Storage Materials PY - 2022 UR - https://www.imeko-gh2fuels.ptb.de/ AN - OPUS4-54596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Cui A1 - Reichenauer, F. A1 - Kitzmann, W.R. A1 - Kerzig, Ch. A1 - Heintze, K. A1 - Resch-Genger, Ute T1 - Efficient Triplet-Triplet Annihilation Upconversion Sensitized by a Chromium(III) Complex via an Underexplored Energy Transfer Mechanism N2 - Sensitized triplet-triplet annihilation upconversion (sTTA-UC) mainly relies on precious metal complexes thanks to their high intersystem crossing (ISC) efficiencies, excited state energies, and lifetimes, while complexes of abundant first-row transition metals were only rarely utilized and with often moderate UC quantum yields. [Cr(bpmp)2]3+ (bpmp = 2,6-bis(2-pyridylmethyl)pyridine) containing earth-abundant chromium possesses an absorption band suitable for green light excitation, a doublet excited state energy matching the triplet energy of 9,10-diphenyl anthracene (DPA), a close to millisecond excited state lifetime, and high photostability. Combined ISC and doublet-triplet energy transfer from excited [Cr(bpmp)2]3+ to DPA gives 3DPA with close-to-unity quantum yield. TTA of 3DPA furnishes greento-blue UC with a quantum yield of 12.0 % (close to the theoretical maximum). Sterically less-hindered anthracenes undergo a [4+4] cycloaddition with [Cr(bpmp)2]3+ and green light. KW - Fluorescence KW - Optical probe KW - Sensor KW - ph KW - Quantum yield KW - Quality assurance KW - Cr(III) KW - Lifetime KW - Ligand KW - Theory KW - TTA-UC KW - Energy transfer KW - Upconversion KW - Mechanism KW - Anthracene KW - Photochemistry KW - DFT KW - Cycloaddition KW - Transient absorbtion spectroscopy PY - 2022 DO - https://doi.org/10.1002/anie.202202238 VL - 61 IS - 24 SP - 1 EP - 8 PB - Wiley online library AN - OPUS4-54604 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Cui A1 - Kitzmann, W.R. A1 - Weigert, Florian A1 - Förster, Ch. A1 - Wang, X. A1 - Heintze, K. A1 - Resch-Genger, Ute T1 - Matrix Effects on Photoluminescence and Oxygen Sensitivity of a Molecular Ruby N2 - The molecular ruby analogue [Cr(ddpd)2]3+ (ddpd=N,N’-dimethyl-N,N’-dipyridine-2-ylpyridine-2,6-diamine) exhibits near infrared (NIR) emission with a high photoluminescence (PL) quantum yield ΦPL of 11 % and a lifetime of 898 μs in deaerated water at room temperature. While ligand-based control of the photophysical properties has received much attention, influences of the counter anions and microenvironment are still underexplored. In this study, the luminescence properties of the molecular ruby were systematically examined for the counter anions Cl−, Br−, [BF4]−, [PF6]−, [BPh4]−, and [BArF24]− in acetonitrile (MeCN) solution, in crystals, and embedded into polystyrene nanoparticles (PSNP). Stern-Volmer analyses of the oxygen quenching studies in the intensity and lifetime domain showed the highest oxygen sensitivity of the complexes with the counter anions of [BF4]− and [BArF24]−, which also revealed the longest luminescence lifetimes. Embedding [Cr(ddpd)2][PF6]3 in PSNPs and shielding with poly(vinyl alcohol) yields a strongly NIR-emissive oxygen-insensitive material with a record ΦPL of 15.2 % under ambient conditions. KW - Fluorescence KW - Sensor KW - Oxygen KW - Quantum yield KW - Quality assurance KW - Complex KW - Cr(III) KW - Lifetime KW - Ligand KW - Solid state KW - X-Ray analysis KW - Structure-property relationship KW - Nano KW - Polymer KW - Particle PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546057 DO - https://doi.org/10.1002/cptc.202100296 SN - 2367-0932 VL - 6 IS - 6 SP - 1 EP - 9 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pisonero, J. A1 - Bouzas-Ramos, D. A1 - Traub, Heike A1 - Cappella, Brunero A1 - Alvarez-Llamas, C. A1 - Richter, Silke A1 - Mayo, J. C. A1 - Costa-Fernandez, J. M. A1 - Bordel, N. A1 - Jakubowski, Norbert T1 - Critical evaluation of fast and highly resolved elemental distribution in single cells using LA-ICP-SFMS N2 - The analytical potential of a nanosecond laser ablation inductively coupled plasma mass spectrometer (ns-LA-ICP-SFMS) system, equipped with an ultra-fast wash-out ablation chamber, is critically investigated for fast and highly spatially resolved (∼μm) qualitative elemental distribution within single cells. Initially, a low surface roughness (< 10 nm) thin In–SnO2 layer (total coating thickness ∼200 nm) deposited on glass is employed to investigate the size, morphology and overlapping of laser-induced craters obtained at different laser repetition rates, making use of Atomic Force Microscopy (AFM). Conical craters with a surface diameter of about 2 µm and depths of about 100 nm were measured after a single laser shot. Furthermore, the influence of the sampling distance (i.e. distance between the sample surface and the inner sniffer of the ablation chamber) on the LA-ICP-MS ion signal wash-out time is evaluated. A significant decrease of the transient 120Sn+ ion signal is noticed after slight variations (±200 μm) around the optimum sampling position. Ultra-fast wash-outs (< 10 ms) are achieved reducing the aerosol mixing from consecutive laser shots even when operating the laser at high repetition rates (25 – 100 Hz). Fast and highly spatially resolved images of elemental distribution within mouse embryonic fibroblast cells (NIH/3T3 fibroblast cells) and human cervical carcinoma cells (HeLa cells), incubated with gold nanoparticles (Au NPs) and Cd-based quantum dots (QDs), respectively, are determined at the optimized operating conditions. Elemental distribution of Au and Cd in single cells is achieved using a high scanning speed (50 µm/s) and high repetition rate (100 Hz). The results obtained for the distribution of fluorescent Cd-based QDs within the HeLa cells are in good agreement with those obtained by confocal microscopy. The size, morphology and overlapping of laser-induced craters in the fixed cells are also investigated using AFM, observing conical craters with a surface diameter of about 2.5 µm and depths of about 800 nm after a single laser shot. KW - Laser ablation KW - ICP-MS KW - Nanoparticle KW - Atomic Force Microscopy KW - Cell PY - 2018 DO - https://doi.org/10.1039/c8ja00096d SP - 1 EP - 9 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-45564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Wittkamp, M. A1 - Ameskamp, J. A1 - Göhde, W. A1 - Resch-Genger, Ute T1 - Luminescence lifetime encoding in time-domain flow cytometry N2 - Time-resolved flow cytometry represents an alternative to commonly applied spectral or intensity multiplexing in bioanalytics. At present, the vast majority of the reports on this topic focuses on phase-domain techniques and specific applications. In this report, we present a flow cytometry platform with time-resolved detection based on a compact setup and straightforward time-Domain measurements utilizing lifetime-encoded beads with lifetimes in the nanosecond range. We provide general assessment of time-domain flow cytometry and discuss the concept of this platform to address achievable resolution limits, data analysis, and requirements on suitable encoding dyes. Experimental data are complemented by numerical calculations on photon count numbers and impact of noise and measurement time on the obtained lifetime values. KW - Flow cytometry KW - Fluorescence KW - Life sciences KW - Lifetime encoding KW - Polymer particles PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-465765 DO - https://doi.org/10.1038/s41598-018-35137-5 SN - 2045-2322 VL - 8 IS - 1 SP - 16715, 1 EP - 11 PB - Nature CY - London AN - OPUS4-46576 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Nirmalanathan-Budau, Nithiya A1 - Kraft, Marco A1 - Würth, Christian A1 - Hoffmann, Katrin A1 - Geißler, Daniel A1 - Martynenko, Irina T1 - Biophotonics and analytics - Photoluminescence properties of nanocrystals and surface group analysis N2 - Correlating the photoluminescence (PL) properties of nanomaterials like semiconductor nanocrystals (QDs) and upconversion nanocrystals (UCNPs) assessed in ensemble studies and at the single particle level and studying their surface chemistry is increasingly relevant for applications of these nanomaterials in the life and material sciences. Here we present a comparison of the spectroscopic properties of ensembles and single nanocrystalline emitters and simple methods for the quantification of functional groups and ligands on particle surfaces. The overall goal of this study was to derive particle architectures and surface chemistries well suited for spectroscopic and microscopic applications. T2 - Institutskolloqium Jozef Stefan Institute CY - Ljubljana, Slovenia DA - 07.11.20218 KW - Lanthanide KW - Nanoparticle KW - Nanocrystal KW - Upconversion KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Fluorescence KW - Surface chemistry KW - Deactivation pathways KW - Modeling KW - Photophysics KW - Size KW - Cleavable probe PY - 2018 AN - OPUS4-46578 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kern, Simon A1 - Wander, Lukas A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Gottu Mukkula, A. R. A1 - Holtkamp, M. A1 - Salge, M. A1 - Fleischer, C. A1 - Weber, N. A1 - Engell, S. A1 - Paul, Andrea A1 - Pereira Remelhe, M. A1 - Maiwald, Michael T1 - Flexible automation with compact NMR spectroscopy for continuous production of pharmaceuticals N2 - Modular plants using intensified continuous processes represent an appealing concept for the production of pharmaceuticals. It can improve quality, safety, sustainability, and profitability compared to batch processes; besides, it enables plug-and-produce reconfiguration for fast product changes. To facilitate this flexibility by real-time quality control, we developed a solution that can be adapted quickly to new processes and is based on a compact nuclear magnetic resonance (NMR) spectrometer. The NMR sensor is a benchtop device enhanced to the requirements of automated chemical production including robust evaluation of sensor data. Beyond monitoring the product quality, online NMR data was used in a new iterative optimization approach to maximize the plant profit and served as a reliable reference for the calibration of a near-infrared (NIR) spectrometer. The overall approach was demonstrated on a commercial-scale pilot plant using a metal-organic reaction with pharmaceutical relevance. KW - NMR Spectroscopy KW - NIR Spectroscopy KW - Real-time process monitoring KW - Real-time quality control KW - Continuous processes KW - CONSENS KW - Data Fusion PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-480623 DO - https://doi.org/10.1007/s00216-019-01752-y SN - 1618-2642 SN - 1618-2650 VL - 411 IS - 14 SP - 3037 EP - 3046 PB - Springer Nature CY - Heidelberg AN - OPUS4-48062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kern, Simon A1 - Wander, Lukas A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Gottu Mukkula, A. R. A1 - Holtkamp, M. A1 - Salge, M. A1 - Fleischer, C. A1 - Weber, N. A1 - Engell, S. A1 - Paul, Andrea A1 - King, R. A1 - Maiwald, Michael T1 - Raw data of pilot plant runs for CONSENS project (Case study 1) N2 - In case study one of the CONSENS project, two aromatic substances were coupled by a lithiation reaction, which is a prominent example in pharmaceutical industry. The two aromatic reactants (Aniline and o-FNB) were mixed with Lithium-base (LiHMDS) in a continuous modular plant to produce the desired product (Li-NDPA) and a salt (LiF). The salt precipitates which leads to the formation of particles. The feed streams were subject to variation to drive the plant to its optimum. The uploaded data comprises the results from four days during continuous plant operation time. Each day is denoted from day 1-4 and represents the dates 2017-09-26, 2017-09-28, 2017-10-10, 2017-10-17. In the following the contents of the files are explained. KW - Process Analytical Technology KW - Multivariate Data Analysis KW - Nuclear Magnetic Resonance KW - Near Infrared Spectroscopy KW - Continuous Manufacturing KW - CONSENS PY - 2018 DO - https://doi.org/10.5281/zenodo.1438233 PB - Zenodo CY - Geneva AN - OPUS4-48063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lörchner, Dominique A1 - Kraus, Werner A1 - Köppen, Robert T1 - Photodegradation of the novel brominated flame retardant 2,4,6-Tris-(2,4,6-tribromophenoxy)-1,3,5-triazine in solvent system: Kinetics, photolysis products and pathway. N2 - In this study the direct and indirect photolysis of the novel brominated flame retardant 2,4,6-Tris-(2,4,6-tribromophenoxy)-1,3,5-triazine (TTBP-TAZ) in an organic solvent mixture (60:30:10, ACN:MeOH:THF) under UV-(C) and simulated sunlight irradiation was investigated, and the formed photo-transformation products were identified for the first time. TTBP-TAZ was almost completely degraded within 10 min under UV-(C) irradiation. Due to the fast degradation no specific kinetic order could be observed. In comparison, the reaction under simulated sunlight irradiation was much slower and thus, the kinetic first-order could be determined. The observed photolysis rate constant k as well as the half-life time t1/2 were estimated to be k = (0.0163 ± 0.0002) h-1 and t1/2 = 42.3 h, respectively. The addition of 2-propanol and hydrogen peroxide to investigate the influence of indirect photolysis under UV-(C) irradiation causes no influence on the degradation of TTBP-TAZ. Nevertheless, the removal of TTBP-TAZ under UV-(C) and simulated sunlight without additional chemicals (except solvent) indicates that the direct photolysis plays a significant role in the degradation mechanism of TTBP-TAZ. In both irradiation experiments, TTBP-TAZ was quantitatively degraded that involve the formation of previously unknown PTPs. Overall, two main PTPs were determined when irradiated with UV-(C) and eight sequential debromination products were observed when irradiated by simulated sunlight. These were determined by HPLC-DAD and - MS/(MS), respectively. Based on the chosen experimental conditions the consecutive debromination as well as photo-Fries rearrangement was confirmed as the main degradation pathway by high resolution mass spectrometry and X-ray diffraction. KW - XRD KW - Direct/indirect photolysis KW - HRMS KW - Photo-transformation products KW - TTBP-TAZ PY - 2019 DO - https://doi.org/10.1016/j.chemosphere.2019.04.184 SN - 0045-6535 SN - 1879-1298 VL - 229 SP - 77 EP - 85 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-48066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dariz, P. A1 - Schmid, Thomas T1 - Phase composition and burning history of high-fired medieval gypsum mortars studied by Raman microspectroscopy N2 - The use of high-fired gypsum as binder for masonry and joint mortars or stuccowork in Central Europe in the Early and High Middle Ages was a regional specific as it depended on local gypsum deposits. The calcination technology possible at the time resulted in an assemblage of calcium sulphate phases dehydrated to different degrees and partly thermally damaged accessory minerals of the raw gypsum. Not hydrated clusters of firing products preserved in the binder matrix are a typical feature of such mortars. A novel Raman microspectroscopic approach, providing access to the burning history of individual anhydrite grains, was applied to samples from medieval South Tyrolean stucco decorations and sculptures. Beyond that, Raman microspectroscopy was employed for tracing and visualising pyrometamorphic reactions in natural impurities of the kiln run. In the discussed examples mineral thermometry indicates process temperatures above 800°C: the breakdown of magnesium-rich chlorite led to the formation of forsterite Mg2SiO4, while the thermal decomposition of dolomite CaMg(CO3)2 to periclase MgO and lime CaO yielded – after hydration and carbonation – magnesite MgCO3, CaCO3 polymorphs and magnesian calcite. Hydration of periclase in the mixed gypsum paste containing sulphate ions also resulted in magnesium sulphate hydrates, here identified in the form of hexahydrite MgSO4·6H2O. Lower burning temperatures left the accessory minerals in their pristine form, but can be traced by measuring the spectra of individual anhydrite crystals in grains of firing products and evaluating Raman band widths. Throughout the present study, calcination temperatures ranging from approx. 600°C to 900°C were determined. KW - High-fired gypsum mortar KW - Anhydrite KW - Dolomite KW - Forsterite KW - Raman microspectroscopy PY - 2019 DO - https://doi.org/10.1016/j.matchar.2019.03.013 VL - 151 SP - 292 EP - 301 PB - Elsevier Inc. AN - OPUS4-48102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lisec, Jan A1 - Jaeger, Carsten A1 - Rashid, R. A1 - Munir, R. A1 - Zaidi, N. T1 - Cancer cell lipid class homeostasis is altered under nutrient-deprivation but stable under hypoxia N2 - Background: Cancer cells modify the balance between fatty acid (FA) synthesis and uptake under metabolic stress, induced by oxygen/nutrient deprivation. These modifications were shown to alter the levels of individual triglyceride (TG) or phospholipid sub-species. To attain a holistic overview of the lipidomic profiles of cancer cells under stress we performed a broad lipidomic assay, comprising 244 lipids from six major classes. This assay allowed us to perform robust analyses and assess the changes in averages of broader lipid-classes, stratified on the basis of saturation index of their fatty-acyl side chains. Methods: Global lipidomic profiling using Liquid Chromatography-Mass Spectrometry was performed to assess lipidomic profiles of biologically diverse cancer cell lines cultivated under metabolically stressed conditions. Results: Neutral lipid compositions were markedly modified under serum-deprived conditions and, strikingly, the cellular level of triglyceride subspecies decreased with increasing number of double bonds in their fatty acyl chains. In contrast and unexpectedly, no robust changes were observed in lipidomic profiles of hypoxic (2% O2) Cancer cells despite concurrent changes in proliferation rates and metabolic gene expression. Conclusions: Serum-deprivation significantly affects lipidomic profiles of cancer cells. Although, the levels of individual lipid moieties alter under hypoxia (2% O2), the robust averages of broader lipid classes remain unchanged. KW - Tumor metabolism KW - Fatty acid metabolism KW - Lipidomic profile KW - Metabolic stress PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-481061 DO - https://doi.org/10.1186/s12885-019-5733-y SN - 1471-2407 VL - 19 SP - 501, 1 EP - 11 PB - Springer Nature AN - OPUS4-48106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neamtu, Mariana A1 - Nadejde, C. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Ababei, G. A1 - Panne, Ulrich T1 - Photocatalysis of γ-cyclodextrin-functionalised Fe3O4 nanoparticles for degrading Bisphenol A in polluted waters N2 - The efficiency, relatively low cost and eco-friendly nature of hydrogen peroxide-assisted photocatalysis treatment procedures are significant advantages over conventional techniques for wastewater remediation. Herein, we evaluate the behaviour of g-cyclodextrin (g-CD) immobilised on either bare or chitosan (CS)–functionalised Fe3O4 nanoparticles, for photodegrading Bisphenol A (BPA) in ultrapure water and in real wastewater samples. The BPA removal efficiencies with Fe3O4/g-CD and Fe3O4/CS/g-CD were compared with those of Fe3O4/b-CD, and were monitored under UVA irradiation at near-neutral pH. The addition of H2O2 at low concentrations (15 mmol L-1) significantly increased BPA photodegradation in the presence of each nanocomposite. The highest catalytic activity was shown by both Fe3O4/g-CD and Fe3O4/CS/g-CD nanocomposites (,60 and 27%BPA removal in ultrapure water and real wastewater effluent, respectively). Our findings reveal the superior performance of g-CD-functionalised Fe3O4 relative to that of Fe3O4/b-CD. The use of CD-based nanocomposites as photocatalytic materials could be an attractive option in the pre- or post-treatment stage of wastewaters by advanced oxidation processes before or after biological treatment. KW - Photooxidation KW - Sonochemical synthesis KW - Wastewater PY - 2019 DO - https://doi.org/10.1071/EN18181 SN - 1448-2517 VL - 16 IS - 2 SP - 125 EP - 136 PB - CSIRO Publishing CY - Clayton South AN - OPUS4-48316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ramos, I. I. A1 - Carl, Peter A1 - Schneider, Rudolf A1 - Segundo, M. A. T1 - Automated lab-on-valve sequential injection ELISA for determination of carbamazepine N2 - The development of an automated miniaturized analytical system that allows for the rapid monitoring of carbamazepine (CBZ) levels in serum and wastewater is proposed. Molecular recognition of CBZ was achieved through its selective interaction with microbeads carrying anti-CBZ antibodies. The proposed method combines the advantages of the micro-bead injection spectroscopy and of the flow-based platform lab-on-valve for implementation of automatic immunosorbent renewal, rendering a new recognition surface for each sample. The sequential (or simultaneous) perfusion of CBZ and the horseradish peroxidase-labelled CBZ through the microbeads is followed by real-time on-column Monitoring of substrate (3,30,5,50-tetramethylbenzidine) oxidation by colorimetry. The evaluation of the initial oxidation rate and also the absorbance value at a fixed time point provided a linear response versus the logarithm of the CBZ concentration. Under the selected assay conditions, a single analysis was completed after only 11 min, with a quantification range between 1.0 and 50 µg L⁻¹. Detection of CBZ levels in undiluted wastewater samples was feasible after a simple filtration step while good recoveries were attained for spiked certified human serum, analyzed without sample clean-up. KW - Automation KW - Bead injection spectroscopy KW - Human serum KW - Microparticles KW - Therapeutic Drug Monitoring KW - Wastewater PY - 2019 DO - https://doi.org/10.1016/j.aca.2019.05.017 SN - 0003-2670 VL - 1076 SP - 91 EP - 99 PB - Elsevier CY - Amsterdam AN - OPUS4-48317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -