TY - CONF A1 - Völker, Tobias A1 - Günther, Tobias A1 - Millar, Steven A1 - Wilsch, Gerd T1 - Quantitative on-site analysis of harmful elements in building structures with a mobile LIBS-System N2 - Environmental influences and damage processes drastically reduce the durability of concrete and reinforced concrete structures. Much of this damage can be traced back to the penetration of harmful elements into the concrete. These elements cause damage processes such as the chlorine-induced corrosion, the alkali-silica reaction or the carbonization. For the maintenance the knowledge of the element concentration and the penetration depth of these harmful elements is essential. Based on this data, a maintenance concept can be developed and an estimation of the remaining service life-time can be carried out. Typically, chemical analyzes are used to determine harmful elements in concrete, which are costly and time consuming. As an alternative method LIBS is used. On-site measurements were carried out with a mobile LIBS-System to determine harmful elements in a parking garage. A scanner is used to obtain a two-dimensional element mapping. For the quantitative analysis, a calibration of the system is carried out with 15 reference samples based on cement with NaCl with a concentration range of chlorine of 0.05 to 2.5 wt.%. To determine the penetration profile of the harmful element chlorine, concrete cores were drilled, split and analyzed directly on-site. T2 - Xth international conference on Laser-Induced Breakdown Spectroscopy CY - Atlanta, GA, USA DA - 21.10.2018 KW - LIBS KW - Mobile-LIBS KW - On-site analysis KW - Concrete PY - 2018 AN - OPUS4-46790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd A1 - Gottlieb, Cassian A1 - Günther, Tobias A1 - Millar, Steven T1 - Fast quantitave chemical analysis of concrete using LIBS N2 - Overview about LIBS applications for investigation of building materials. T2 - NDT&E Advanced Training Workshop CY - Berlin, Germany DA - 27.06.2018 KW - LIBS KW - Concrete KW - Damage processes KW - Chlorid KW - Sulfate KW - Alkalies PY - 2018 AN - OPUS4-46821 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beckmann, Jörg ED - Jaunich, Matthias ED - Wolf, Dietmar ED - Schade, U. ED - Kerstin, von der Ehe T1 - THz-and mid IR Fourier Transform Spectroscopy on Physical Aged Polyethylene N2 - THz and mid IR spectroscopy of high-molecular PE (HMW) and ultra high-molecular PE (UHMW) reveals modifications of the molecular structure. Characteristic absorption bands are changed if the two materials are exposed by γ-Co60 radiation up to 600 kGy and subsequently stored at an annealing temperature of 398 K until for 729 days. T2 - 43rd International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THZ), 2018 CY - Nagoya, Japan DA - 09.09.2018 KW - THz Spectroscopy PY - 2018 SN - 978-1-5386-3809-5 SN - 2162-2027 SP - 1 EP - 1 PB - IEEE Xplore Digital Library AN - OPUS4-46824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd A1 - Gottlieb, Cassian A1 - Millar, Steven A1 - Günther, Tobias A1 - Sankat, Nina T1 - Application of LIBS for the chemical investigation of concrete infrastructure N2 - Concrete is often used in combination with steel as reinforced concrete. Environmental influences, especially the ingress of harmful ions in combination with the ingress of water, trigger different damage processes which reduce the designed lifetime of a structure. The ingress of chlorides from de-icing salt or sea water leads to corrosion of the reinforcement. Also the carbonation of the concrete may trigger the corrosion of the reinforcement. The ingress of alkalis from de-icing salts may cause the expansion of the amorphous silica aggregates (alkali-silica reaction) through formation of a swelling gel of calcium silicate hydrate if water is present. The ingress of sulfates may cause spalling of the concrete surface due to ettringite formation. BAM has developed the LIBS technique for automated laboratory use with high numbers of samples to investigate transport processes of harmful species (Cl-, CO2, SO42- and alkalis) in concrete. Information about ingress depth and the quantitative values are important to estimate the remaining lifetime of the infrastructure. To get information about the ingress depth, a core has to be taken and cut in the middle. The measurements are carried out at the cross section. The main advantages of LIBS are the direct measurement on the surface of the concrete, fast analysis (sample rate 100 Hz) with a spatial resolution of up to 100 µm, the consideration of the heterogeneity of the concrete. The possibility of automated measurements saves a lot of manpower and time. At the same time a 2D-evaluation provides information about hot spots of elemental concentration which may not be found by standard methods. Typical results of 2D investigation of concrete in laboratory will be presented. The performance is also demonstrated by examples for onsite applications using a mobile LIBS system. The road map to standardization is presented as well. T2 - 12th ECNDT CY - Gothenburg, Sweden DA - 11.06.2018 KW - LIBS KW - Concrete KW - Chloride KW - Sulfates KW - Heterogeneity PY - 2018 AN - OPUS4-46828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hüllmann, Dino A1 - Neumann, Patrick P. T1 - Bringing robot gas tomography to the next dimension - Aerial-based gas source localisation and gas distribution mapping using an open-path gas detector N2 - An unmanned micro aircraft (UAV) is equipped with an open-path gas detector to localise gas sources and to generate gas distribution maps. The gas detector is based on the tunable diode laser absorption spectroscopy (TDLAS) and attached to a 3-axis aerial stabilisation gimbal. Sensor validation experiments and first gas tomography reconstructions are shown. T2 - AASS Seminar Vortragsreihe der Universität Örebro CY - Örebro, Sweden DA - 11.10.2018 KW - Gas Source Localisation KW - Gas Distribution Mapping KW - UAV KW - TDLAS KW - Gas Spectroscopy KW - Gas Tomography KW - Mobile Robot Olfaction PY - 2018 AN - OPUS4-46866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hüllmann, Dino A1 - Neumann, Patrick P. A1 - Lilienthal, A. J. T1 - Gas Source Localisation from the Next Dimension N2 - Leaking methane (CH4) from infrastructures, like pipelines, industrial complexes and landfills, or accidental hazardous goods transports is critical for the environment, but can also pose a risk to human life. To enable a fast detection and localisation of these kind of leaks, we developed a novel robotic platform for aerial remote gas sensing. The platform combines an unmanned micro aircraft (UAV), a 3-axis aerial stabilisation gimbal and an open-path gas detector based on the tunable diode laser absorption spectroscopy (TDLAS). T2 - PhD Poster Session an der Universität Örebro CY - Örebro, Sweden DA - 27.11.2018 KW - Gas Source Localisation KW - Mobile Robot Olfaction KW - UAV KW - TDLAS KW - Gas Spectroscopy PY - 2018 AN - OPUS4-46869 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günther, Tobias A1 - Völker, Tobias A1 - Millar, Steven A1 - Wilsch, Gerd T1 - Spatially resolved determination of chloride content on rough surfaces using LIBS N2 - The durability and the lifetime of reinforced concrete structures can be drastically reduced by the influence of damage processes. One of the most common causes is chloride-induced corrosion, which is triggered by increased chloride content near the reinforcement. In a study, the chloride content should be determined directly at corrosion areas. The LIBS system used consists of a micro-chip laser (3 mJ, 100 Hz, 1.5ins) and two compact spectrometers covering the wavelength range of 177-355 nm (UV) and 750-940 nm (NIR). The analysis of the chloride content was carried out via the atomic chlorine spectral line 837.59 nm, using helium for signal amplification. Calibrations were carried out for quantitative chlorine measurements with 15 reference samples in the working range of 0.05 to 6.00 wt% chlorine. The calibration of the LIBS system was done according to DIN 32 645 and was tested for linearity. The determination of the quantitative chlorine contents was carried out on samples which were broken and thus have a high surface roughness. This requires real time correction of the focus point to compensate for the roughness of the samples. The poster shows spatially resolved element distributions and determined quantitative chloride concentrations near the corrosion Areas. T2 - Xth international conference on Laser-Induced Breakdown Spectroscopy CY - Atlanta, GA, USA DA - 21.10.2018 KW - LIBS KW - Rough surface KW - Chloride PY - 2018 AN - OPUS4-46791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günther, Tobias A1 - Millar, Steven A1 - Völker, Tobias A1 - Wilsch, Gerd T1 - Boosting of chlorine emission by electric discharge reheating in laser-induced plasma N2 - For the determination of the remaining life-time and the degree of damage of reinforced concrete structures such as marine construction, bridges or parking decks, a highly precise measurement of harmful species is also required for trace elements. One of the most interesting elements is chlorine, because above a certain threshold corrosion is triggered. To increase the intensity of the chlorine line, helium is usually used, which is costly. To overcome this problem, low electrical discharge reheating is used which operates in air atmosphere. A comparison between results obtained by measuring with helium and reheating by electrical discharge is presented. The performance is compared by the resulting calibration curves and the calculated limit of detection obtained by 15 reference samples based on cement with NaCl. Concentrations of reference samples range from 0.05 to 2.5 wt% chlorine. T2 - Xth international conference on Laser-Induced Breakdown Spectroscopy CY - Atlanta, GA, USA DA - 21.10.2018 KW - LIBS KW - Electric discharge KW - Plasma reheating PY - 2018 AN - OPUS4-46792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gottlieb, Cassian A1 - Günther, Tobias A1 - Wilsch, Gerd A1 - Gornushkin, Igor B. A1 - Gojani, Ardian T1 - Temporal evaluation and imaging of laser-induced plasmas on cement-based materials N2 - In civil engineering, the laser-induced breakdown spectroscopy has been applied as a fast and reliable method for a quantitative evaluation of concrete cores. Due to a two-dimensional scanning, the heterogeneity of concrete can be evaluated and elements like Cl, Na, and S are related to the cement matrix only. This study deals with the temporal evaluation and imaging of laser-induced plasmas on cement-based materials, in order to investigate the impact of aggregates with diffrent grain size on the spectral response in LIBS. T2 - Xth international conference on Laser-Induced Breakdown Spectroscopy CY - Atlanta, GA, USA DA - 21.10.2018 KW - LIBS KW - Concrete KW - Grain size PY - 2018 AN - OPUS4-46794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günther, Tobias A1 - Gottlieb, Cassian A1 - Völker, Tobias A1 - Millar, Steven A1 - Wilsch, Gerd T1 - Plasma reheating in LIBS with electric discharge to detect halogens in low concentrations N2 - The Laser-induced Breakdown Spectroscopy (LIBS) is an useful analytical technique for the chlorine detection in building materials, specifically in the reinforcement concrete. If chlorine exceeds a specific concentration threshold, the result can be pitting corrosion of the reinforcement, which affects the stability and lifetime of building structures like marine constructions, bridges or parking decks. The critical chlorine content based to cement is 0.4 wt.-% based to the cement for reinforced concrete. The ingress of chlorides from sea water or de-icing salt leads to corrosion of the reinforcement. The chlorine spectral line Cl I at 837.59 nm shows a good performance in helium atmosphere. For measurements without helium we used a electric discharge setup to reheat the Laser-induced plasma with a voltage below 100 V. In this case the reheating shows an increasing chlorine emission in air atmosphere. This work shows chlorine calibration curves with LIBS in a helium flow and LIBS with electric discharge reheating in air atmosphere. The determination of the limit of detection (LOD) for both setups and the measurement results of a drill core sample with a quantitative chlorine ingress profile will be presented. T2 - Xth international conference on Laser-Induced Breakdown Spectroscopy CY - Atlanta, GA, USA DA - 21.10.2018 KW - LIBS KW - Laser induced plasma KW - Plasma reheating KW - Electric discharge PY - 2018 AN - OPUS4-46797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernegger, Raphael A1 - Altenburg, Simon A1 - Maierhofer, Christiane T1 - Iterative numerical 2D-modelling for quantification of material defects by pulsed thermography N2 - This paper presents a method to quantify the geometry of defects such as flat bottom holes (FBH) and notches in opaque materials by a pulse thermography (PT) experiment and a numerical model. The aim was to precisely describe PT experiments in reflection configuration with a simple and fast numerical model in order to use this model and a fit algorithm to quantify defects within the material. The algorithm minimizes the difference between the time sequence of a line shaped region of interest (ROI) on the surface (above the defect) from the PT experiment and the numerical data. Therefore, the experimental data can be reconstructed with the numerical model. In this way, the defect depth of a notch or FBH and its width or diameter was determined simultaneously. A laser was used for heating which was widened to a top hat spatial profile to ensure homogeneous illumination (rectangular impulse profile in time). The numerical simulation considers heating conditions and takes thermal losses due to convection and radiation into account. We quantified the geometry of FBH and notches in steel and polyvinyl chloride plasticized (PVC-U) materials with an accuracy of < 5 %. KW - Pulsed thermography KW - Numerical modelling KW - Data reconstruction KW - Opaque materials KW - 2D model KW - Flat bottom holes KW - Notches PY - 2019 DO - https://doi.org/10.1063/1.5099719 SN - 0094-243X SP - 020015-1 EP - 11 PB - AIP AN - OPUS4-47974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Emmerling, Franziska A1 - Villajos Collado, José Antonio A1 - Maierhofer, Christiane A1 - Thiel, Erik A1 - Altenburg, Simon T1 - Already producing or still assembling? – Perspectives towards modular production and quality control in a digitized process industry N2 - The CLEAN ENERGY Flagship is an initiative designed to utilize recent game changing developments in digital, materials and manufacturing technologies to catalyze a radical paradigm shift towards clean, reliable, efficient and cost-optimal energy. Unifying and drastically accelerating radically new energy material design, processing and integration across the entire value chain addressing energy production, conversion, storage and systems. CLEAN ENERGY participants are all distinguished research organisations that each benefit from their own industry networks and contacts with regions and state-level activities and have a long history of collaborating with each other (for 10 years now under the umbrella of EERA) within a European collaborative framework. Through EERA, CLEAN ENERGY aims to become a crucial partner in the SET-Plan, supporting long-lasting approaches through its established networks and internal collaborations. T2 - Clean Energy Workshop on Autonomous Materials Development Platforms CY - Brussels, Belgium DA - 02.10.2018 KW - Digitization KW - Energy production KW - Energy storage KW - Energy systems KW - Clean energy technology PY - 2018 AN - OPUS4-46135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Ahmadi, Samim T1 - Lock-in Thermography using High-Power Laser Sources N2 - Optical lock-in thermography is a completely contactless and very sensitive NDT technique. As an optical source of energy, incandescent (i.e. halogen) lamps are most commonly used because they are relatively inexpensive and offer high irradiances at the test site. However, they are strongly restricted by their low modulation bandwidth with a maximum modulation frequency of only about 1 Hz. The use of high-power kilowatt-class laser sources, e.g. diode laser arrays, pushes this constraint beyond 100 Hz, see Fig.1. This allows for the exploration of the near-surface region of metals and layer systems with better and more accurate penetration depth and depth resolution. Moreover, these lasers are virtually free of any additional thermal radiation that could interfere with the “true” thermal response emitted from the heated sample. In turn, they can be easily used in a one-sided test configuration. Using the one-dimensional solution to the thermal heat diffusion equation together with the absorptance of the material which is illuminated with a harmonically modulated light source, we can calculate the temperature oscillation at the surface of a solid. As a second step, we calculate the corresponding oscillation of the total thermal emission using Stefan-Boltzmann law as a first order approximation and taking into account the emissivity of the material. Within this framework we can calculate the minimal irradiance of a light source necessary to provoke a measurable signal within a thermographic camera at a noise equivalent temperature difference (NETD) of 30 mK. In Fig. 2 this relationship is displayed for a wide spectrum of modulation frequencies and for a number of different light sources scaled to the same electrical input power and illumination area. Using this figure, it is now easily possible to analyze the range of materials to be tested using lock-in thermography, since only the materials (dotted lines) below the irradiance-vs-frequency curves (solid lines) are heated in excess of the camera’s NETD. This figure clearly shows that laser sources considerably increase the application range of lock-in thermography, since especially for metals with a high reflectance and high thermal diffusivity a high irradiance is vitally important to allow for lock-in texting. We present current activities with kilowatt-class high-power laser sources for advanced lock-in thermography and focus on the application of laser arrays that offer a very high irradiation strength over a large sample area beyond the mentioned advantages. T2 - Conference QIRT 2018 CY - Berlin, Germany DA - 25.06.2018 KW - Thermography KW - Laser Thermography KW - Lock-in Thermography PY - 2018 AN - OPUS4-45449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Burgholzer, P. A1 - Berer, T. A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Ahmadi, Samim A1 - Gruber, J. A1 - Mayr, G. A1 - Hendorfer, G. T1 - Blind structured illumination as excitation for super-resolution photothermal radiometry N2 - Using an infrared camera for radiometric imaging allows the contactless temperature measurement of multiple surface pixels simultaneously. From the measured surface data, a sub-surface structure, embedded inside a sample or tissue, can be reconstructed and imaged when heated by an excitation light pulse. The main drawback in radiometric imaging is the degradation of the spatial resolution with increasing depth, which results in blurred images for deeper lying structures. We circumvent this degradation with blind structured illumination, combined with a non-linear joint sparsity reconstruction algorithm. The ground-breaking concept of super-resolution can be transferred from optics to thermographic imaging. T2 - Conference QIRT 2018 CY - Berlin, Germany DA - 25.06.2018 KW - Thermography KW - Laser thermography KW - Super resolution PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-454506 SN - 978-3-940283-94-8 DO - https://doi.org/10.1080/17686733.2019.1655247 SP - We.3.A.2, 1 EP - 7 AN - OPUS4-45450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maierhofer, Christiane A1 - Krankenhagen, Rainer A1 - Altenburg, Simon A1 - Röllig, Mathias A1 - Myrach, Philipp T1 - Passive and active thermography applied to buildings and cultural heritage - Cracks and protection layers N2 - Artificial and natural cracks have been investigated with active and passive thermography. For the determination of the thickness of protection layers on concrete, an active thermography method has been developed. T2 - Short Courses of the QIRT 2018 Conference CY - Berlin, Germany DA - 25.6.2018 KW - Active themrography KW - Passive thermography KW - Cracks KW - Concrete PY - 2018 AN - OPUS4-45456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strangfeld, Christoph A1 - Prinz, Carsten A1 - Hase, Felix A1 - Kruschwitz, Sabine T1 - Data of embedded humidity sensors, sample weights, and measured pore volume distribution for eight screed types N2 - Four cement-based and four calcium-sulphate-based screed types are investigated. The samples have a diameter of 300 mm and a height of 35 or 70 mm. Up to ten humidity sensors are embedded directly during the concreting of the screed samples. Thus, the humidity over the sample height is monitored during hardening, hydration, evaporation, and oven drying. Furthermore, the screed samples are weighed during every measurement to determine the total mass and the corresponding moisture loss. To define the pore system precisely, mercury intrusion porosimetry as well as gas adsorption is performed. According to the data, the entire pore volume distribution is known. The measured pore diameters range from 0.8 nm to 100 µm and the total porosity of the examined screeds ranges between 11% and 22%. Based on these measurement data, moisture transport, pore saturation as well as sorption isotherms and their hysteresis may be calculated quantitatively as described in “Monitoring of the absolute water content in porous materials based on embedded humidity sensors” (Strangfeld and Kruschwitz, 1921). KW - Concrete and screed KW - Embedded humidity sensors KW - Pore volume distribution KW - Material moisture PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-462339 DO - https://doi.org/10.1016/j.dib.2018.09.020 SN - 2352-3409 VL - 21 SP - 8 EP - 12 PB - Elsevier CY - Amsterdam AN - OPUS4-46233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Küttenbaum, Stefan A1 - Maack, Stefan A1 - Taffe, A. T1 - Structural safety referring to ultrasound on concrete bridges N2 - Measuring means knowing. The structural engineer’s Knowledge about structures is vitally important for the assessment of their structural safety. This contribution shows, how non-destructive testing methods can be used to collect valuable Information about existing structures. This value is expressed in this paper by the usability in probabilistic assessments and thus by the reliability of the information. The development of non-destructive testing methods in civil-engineering allows the realistic measurement and visualization of inner constructions of concrete components with a minimum of destructive interventions. The evaluation of the quality of measurement data is of fundamental importance for quantitative measurements in order to ensure the objectivity of testing and evaluation and to assess the reliability of the knowledge acquired. Both systematic and random deviations must be identified, quantified and taken into account to obtain statistically sound data. The Focus of this contribution is on the methodical path, how displayed measurement data can be processed into reliable knowledge. It is not about developing assessment methods but about providing necessary knowledge to increase their operational usability. T2 - 16th International Probabilistic Workshop CY - Vienna, Austria DA - 12.09.2018 KW - NDT KW - Reassessment KW - Probabilistic KW - Non-destructive testing in civil engineering PY - 2018 DO - https://doi.org/10.1002/best.201800034 SN - 1437-1006 VL - 113 IS - S2 SP - 7 EP - 13 PB - Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG CY - Berlin AN - OPUS4-46143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Küttenbaum, Stefan A1 - Maack, Stefan A1 - Taffe, A. T1 - Structural safety referring to ultrasound on concrete bridges N2 - Measuring means knowing. The structural engineer’s Knowledge about structures is vitally important for the assessment of their structural safety. This contribution shows, how non-destructive testing methods can be used to collect valuable Information about existing structures. This value is expressed in this paper by the usability in probabilistic assessments and thus by the reliability of the information. The development of non-destructive testing methods in civil-engineering allows the realistic measurement and visualization of inner constructions of concrete components with a minimum of destructive interventions. The evaluation of the quality of measurement data is of fundamental importance for quantitative measurements in order to ensure the objectivity of testing and evaluation and to assess the reliability of the knowledge acquired. Both systematic and random deviations must be identified, quantified and taken into account to obtain statistically sound data. The Focus of this contribution is on the methodical path, how displayed measurement data can be processed into reliable knowledge. It is not about developing assessment methods but about providing necessary knowledge to increase their operational usability. T2 - 16th International Probabilistic Workshop CY - Vienna, Austria DA - 12.09.2018 KW - NDT KW - Reassessment KW - Probabilistic KW - Non-destructive testing in civil engineering KW - Existing bridges PY - 2018 AN - OPUS4-46144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Bernd R. A1 - Laquai, René A1 - Nellesen, J. A1 - Tillmann, W. A1 - Kupsch, Andreas A1 - Bruno, Giovanni T1 - In situ analysis of damage evolution in an Al/Al2O3 MMC under tensile load by synchrotron x-ray refraction imaging N2 - 3D imaging techniques have an enormous potential to understand the microstructure, its evolution, and its link to mechanical, thermal, and transport properties. In this conference paper we report the use of a powerful, yet not so wide-spread, set of X-ray techniques based on refraction effects. X-ray refraction allows determining internal specific surface (surface per unit volume) in a non-destructive fashion, position and orientation sensitive, and with a nanometric detectability. We demonstrate showcases of ceramics and composite materials, where microstructural parameters could be achieved in a way unrivalled even by high-resolution techniques such as electron microscopy or computed tomography. We present in situ analysis of the damage evolution in a carbon fibre reinforced polymer and a Al/Al2O3metal matrix composite during tensile load, the direct observation of damage accumulation during creep of Al-3.85Mg and the identification of void formation (different kinds of defects, particularly unsintered powder hidden in pores, and small inhomogeneity’s like cracks) in Ti64 parts produced by selective laser melting using synchrotron X-ray refraction radiography tomography. T2 - Materials Science and Engineering 2018 (MSE2018) CY - Darmstadt, Germany DA - 26.09.2018 KW - Synchrotron X-ray refraction radiography KW - In-situ tensile test KW - Damage evolution KW - Metal matrix composite PY - 2018 AN - OPUS4-46149 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kruschwitz, Sabine A1 - Ebell, Gino A1 - Shen, J. T1 - Towards Data Based Corrosion Analysis of Concrete with Supervised Machine Learning N2 - Half-Cell-Potential Mapping (HP) is the most popular non-destructive testing (NDT) method for the detection of active corrosion in reinforced concrete. HP is influenced by parameters such as moisture and chloride gradients in the component. The sensitivity to the spatially small, but dangerous pitting is low. In this study we show how additional measurement information can be used with multi-sensor data fusion to improve the detection performance and to automate data evaluation. The fusion is based on supervised machine learning (SML). SML are methods that recognize relationships in (sensor) data based on given labels. We use SML to distinguish "defective" and "intact" labeled areas in our dataset. It consists of 18 measurement - each contains HP, ground radar, microwave moisture and Wenner resistance data. Exact labels for changing environmental conditions were available in a laboratory study on a reinforced concrete slab, which deteriorated controlled and accelerated. The deterioration progress was monitored continuously and corrosion was generated targeted at a predefined location. The detection results are quantified and statistically evaluated. The SML results shows a significant improvement over the best single method (HP). T2 - NDE/NDT for Highway and Bridges: Structural Materials Technology (SMT 2018) and the International Symposium Non-Destructive Testing in Civil Engineering (NDT-CE 2018) CY - New Brunswick, NJ, USA DA - 27.08.2018 KW - Data fusion KW - Half-cell potential mapping KW - Data based decision making KW - Non-destuctive corrosion testing of concrete KW - Supervised machine learning PY - 2018 SP - 1 EP - 7 AN - OPUS4-45512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahmadi, Samim A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Burgholzer, P. A1 - Berer, T. A1 - Gruber, J. A1 - Mayr, G. A1 - Hendorfer, G. T1 - Thermographic super resolution using structured 1D laser illumination and joint sparsity N2 - Thermographic NDE is based on the interaction of thermal waves with inhomogeneities. These inhomogeneities are related to sample geometry or material composition. Although thermography is suitable for a wide range of inhomogeneities and materials, the fundamental limitation is the diffusive nature of thermal waves and the need to measure their effect radiometrically at the sample surface only. The propagation of the thermal waves from the heat source to the inhomogeneity and to the detection surface results in a degradation in the spatial resolution of the technique. A new concerted ansatz based on a spatially structured heating and a joint sparsity of the signal ensemble allows an improved reconstruction of inhomogeneities. As a first step to establish an improved thermographic NDE method, an experimental setup was built based on structured 1D illumination using a flash lamp behind a mechanical aperture. As a follow-up to this approach, we now use direct structured illumination using a 1D laser array. The individual emitter cells are driven by a random binary pattern and additionally shifted by fractions of the cell period. The repeated measurement of these different configurations with simultaneously constant inhomogeneity allows for a reconstruction that makes use of joint sparsity. With analytical-numerical modelling or numerical FEM simulations, we study the influence of the parameters on the result of non-linear reconstruction. For example, the influence of the illumination pattern as a variable heat flux density and Neumann boundary condition for convolution with the constant Green's function can be studied. These studies can be used to derive optimal conditions for a measurement technique. T2 - 62. International School of Quantum Electronics die Tagung “Progress in Photoacoustic & Photothermal Phenomena" CY - Erice, Italy DA - 06.09.2018 KW - Super resolution KW - Virtual wave KW - Laser thermography KW - 1d laser KW - Joint sparsity KW - Laser array KW - VCSEL array KW - High-power laser PY - 2018 AN - OPUS4-46180 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahmadi, Samim A1 - Thiel, Erik A1 - Ziegler, Mathias T1 - Thermal wave field engineering using structured 1D laser illumination N2 - Thermal waves are solutions of the heat diffusion equation for periodic boundary conditions and can be seen analogously to strongly damped waves. Although the underlying differential equation differs from the wave equation, the essential property for analogy between both equations is linearity such that superposition applies. This linearity is maintained even after a linear transformation, such as the Fourier transform from time to frequency domain. It follows that the temporal superposition principle is already used in active thermography, e.g. in pulsed thermography, as a superposition of many individual frequencies. However, the systematic spatial superposition has not yet been fully exploited, mainly due to a lack of suitable energy sources. As a first step, we are investigating how thermal wave fields of arbitrary space-time structures can be engineered using structured laser illumination. The proof of principle was shown using a laser coupled projector. Unfortunately, the available optical output power was limited due to the thermal stress limit of the device. That is why we are working towards a more sophisticated moving 1D array of high-power diode lasers. We characterized the novel light source and believe that apart from the benefit of spatial and temporal illumination it can combine the temporal regimes of impulse and lock-in thermography. In a second step, we investigate moving and oscillating line sources with different line shapes. We use a Green’s Function ansatz to analytically model the thermal wave propagation of structured 1D laser illumination in isotropic materials. Furthermore, we show some methods how they can be implemented. With this technique, we were able to accelerate our detection method firstly presented in for vertical narrow defects by factor three. Generally, we believe that this technique opens up similar opportunities than in other NDE methods. High-resolution ultrasound, for example, is also based on the superposition of single emitters and a recent concept suggests an option to deal with the diffusion wave character of the thermal waves. T2 - 62. International School of Quantum Electronics die Tagung “Progress in Photoacoustic & Photothermal Phenomena” CY - Erice, Italy DA - 06.09.2018 KW - Thermal wave KW - Thermal wave field KW - Thermal engineering KW - Structured laser illumination KW - 1d laser KW - Laser array KW - Laser thermography PY - 2018 AN - OPUS4-46193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oesch, Tyler A1 - Niederleithinger, Ernst A1 - Kühne, Hans-Carsten A1 - Effner, Ute T1 - Quality assurance of engineered barriers in underground waste disposals N2 - This poster provides an overview of ultrasonic investigations of an engineered test barrier at ERAM Morsleben, which were completed as part of contractual work with the Bundesgesellschaft für Endlagerung mbH (BGE). This includes both experiments with the Large Aperture Ultrasound System (LAUS) and the ultrasonic borehole array. Also included in the poster is a description of the planned BAM thematic project “SealWasteSafe”. In particular, the proposed geopolymer materials are described and future research requirements are detailed. T2 - 1. Statuskonferenz Endlagerung von hochradioaktiven Abfällen CY - Berlin, Germany DA - 08.11.2018 KW - Large Aperture Ultrasound System (LAUS) KW - Ultrasonic Borehole Array KW - SealWasteSafe KW - Geopolymer KW - Crack Detection PY - 2018 AN - OPUS4-47021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Millar, Steven A1 - Kruschwitz, Sabine A1 - Wilsch, Gerd T1 - Determination of total chloride content in cement pastes with laser-induced breakdown spectroscopy (LIBS) N2 - The presented work discusses the accuracy of Laser Induced Breakdown Spectroscopy (LIBS) in determining the total chloride content in cement pastes. LIBS as an emission spectroscopy method is used to detect simultaneously several elements present in cement-based materials. By scanning surfaces the variability in the spatial distribution of elements can be visualised. However, for a quantification of the results, studies are necessary to characterise possible influences due to the wide variation of the chemical compositions in which cement can occur. It is shown how the calibration can be done, how the calibration samples were produced, and which statistical parameters are necessary to describe the precision of the regression. The performance of LIBS is estimated by detecting chloride in validation samples. Therefore, 55 samples and 7 ets with changing mix ompositions were produced. The presented study deals with possible influences of different mix compositions, ncluding different cations of chloride, varying w/c-ratios and the artial replacement of Portland cement with last furnace slag (50% BFS) and limestone (30% LS). Comparing the LIBS results with otentiometric titration, n accuracy of±0.05 wt%/total has been determined. KW - Spectroscopy KW - LIBS KW - Chloride KW - Quantification KW - Cement PY - 2019 DO - https://doi.org/10.1016/j.cemconres.2018.12.001 SN - 0008-8846 VL - 117 IS - March SP - 16 EP - 22 PB - Elsevier CY - Amsterdam AN - OPUS4-47059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wasmer, Paul A1 - Krome, Fabian A1 - Bulling, Jannis A1 - Prager, Jens T1 - A fluid model for the simulation of fluid‐structure interaction in the Scaled Boundary Finite Element Method for prismatic structures N2 - The Scaled Boundary Finite Element Method is known as an efficient method for the simulation of ultrasonic wave propagation. As to investigate acoustic wave behavior in case of fluid‐structure interaction, a fluid model is implemented in the SBFEM for prismatic structures. To omit coupling terms a displacement‐based formulation is used. Spurious modes, which occur in the solution, are suppressed using a penalty parameter. To verify this formulation dispersion curves obtained with Comsol Multiphysics are compared to results of SBFEM. The results of both methods are in very good agreement T2 - GAMM 2018 CY - Munich, Germany DA - 19.03.2018 KW - Scaled Boundary Finite Element Method KW - Penalty Parameter KW - Fluid-Structure Interaction KW - Guided Waves PY - 2018 DO - https://doi.org/10.1002/pamm.201800139 VL - 18 IS - 1 SP - e201800139 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-47063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Tobias A1 - Millar, Steven A1 - Strangfeld, Christoph A1 - Wilsch, Gerd T1 - Classification of cement pastes with laser-induced breakdown spectroscopy N2 - In civil engineering, the investigation of existing infrastructure is of major importance for maintaining and ensuring stability of the structures. To ensure durability, uniform regulations and standards apply e.g. the European standard EN 206-1. In some countries, the EN-standard is supplemented by additional standards, as in Germany with DIN 1045-2. Here, specific application rules are described, e.g. for the cement type, to ensure the resistant to different exposures. Therefore, the knowledge of the materials originally used is important in assessing the condition of existing concrete structure. Unfortunately, these are often unknown and must be determined retrospectively. Therefore, we present the application of the laser-induced breakdown spectroscopy to distinguish between different types of cement. Spectral information’s are used to build a classification model. First, the accuracy of the classification is analyzed on ten pure laboratory cement samples. To investigate possible sources of error, the model was then applied to cement samples with different moisture content. The study shows that LIBS is a promising tool for distinguishing between cement types. For further industrial application, however, factors influencing the LIBS signal must be included to ensure a robust model. T2 - 10th Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy CY - Brno, Czech Republic DA - 08.09.2019 KW - Spectroscopy KW - LIBS KW - Cement KW - Classification PY - 2019 AN - OPUS4-49253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph A1 - Munsch, Sarah Mandy A1 - Kruschwitz, Sabine T1 - Water content in construction materials N2 - Discussion of material moisture and moisture transport in liquid and vapour phase. Prediction of the pore saturation in partially saturated pores in building materials. T2 - 5. Herbstschule Competence Center for Material Moisture CY - Ettlingen, Germany DA - 08.10.2019 KW - Material moisture KW - Building materials KW - Embedded sensors KW - Partially saturated pores PY - 2019 N1 - Geburtsname von Munsch, Sarah Mandy: Nagel, S. M. - Birth name of Munsch, Sarah Mandy: Nagel, S. M. AN - OPUS4-49260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph T1 - Correlation between the electric impedance and the water layer thickness in partially saturated screed samples N2 - Discussion of material moisture in liquid and vapour phase. Prediction of the pore saturation in partially saturated pores in building materials. Correlation between the electric impedance and the water layer thickness in partially saturated screed samples. T2 - 10. CMM Tagung CY - Ettlingen, Germany DA - 10.10.2019 KW - Embedded sensors KW - Corresponding relative humidity KW - Electrical impedance KW - Material moisture KW - Building materials KW - Partiallly saturated pores PY - 2019 AN - OPUS4-49261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaenisch, Gerd-Rüdiger A1 - Wieder, Frank A1 - Vogel, Justus A1 - Ewert, Uwe A1 - Bellon, Carsten A1 - Messerschmid, Magdalena ED - Xu, C. T1 - Scatter imaging – Simulation of aperture focusing by deconvolution N2 - X-ray scatter imaging is a well-established NDT technique to inspect complex objects using only a single-sided access. We present a specially designed multi-slit scatter camera consisting of several twisted slits which are parallelly arranged in a metal block. The camera projects one image per slit to the digital detector array, where the images are overlaying each other. The aperture is corrected based on a de-convolution algorithm to focus the overlaying projections into a single representation of the object. To achieve high scatter intensities from an object, it is necessary to optimize the parameters of the scatter system by simulation. T2 - IEEE Far East NDT New Technology & Application Forum CY - Xi'an, China DA - 22.06.2017 KW - Scatter imaging KW - Computer simulation KW - Aperture focusing KW - Deconvolution PY - 2018 SN - 978-1-5386-1615-4 DO - https://doi.org/10.1109/FENDT.2017.8584606 SP - 301 EP - 306 PB - IEEE CY - Piscataway, NJ AN - OPUS4-48395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano Munoz, Itziar A1 - Evsevleev, Sergei A1 - Laquai, René A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Bruno, Giovanni T1 - Damage characterization via 2D and 3D X-ray refraction techniques N2 - We present two examples of the potential of synchrotron X-ray refraction techniques. First, we focus on the 3D imaging of hydrogen assisted cracks in an EN AW – 6060 aluminium alloy which are otherwise undetected by absorption-based CT. The second work is a quantitative analysis of the damage evolution in an Al/Al2O3 Metal Matrix Composite during interrupted in-situ tensile load. T2 - International Conference on Tomography of Materials & Structures CY - Cairns, Australia DA - 22.07.2019 KW - X-ray refraction KW - Analyzer-based imaging KW - Aluminum alloy KW - Metal matrix composite KW - Damage characterization PY - 2019 AN - OPUS4-48604 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahmadi, Samim A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Hirsch, Philipp Daniel A1 - Karagianni, Christina A1 - Burgholzer, P. A1 - Mayr, G. A1 - Jung, P. A1 - Caire, G. T1 - Thermographic super resolution imaging using structured 1D laser illumination N2 - Thermographic nondestructive evaluation (NDE) is based on the interaction of thermal waves with inhomogeneities. These inhomogeneities are related to sample geometry or material composition. Although thermography is suitable for a wide range of inhomogeneities and materials, the fundamental limitation is the diffusive nature of thermal waves and the need to measure their effect radiometrically at the sample surface only. The propagation of the thermal waves from the heat source to the inhomogeneity and to the detection surface results in a degradation in the spatial resolution of the technique. A new concerted ansatz based on a spatially structured heating and a joint sparsity of the signal ensemble allows an improved reconstruction of inhomogeneities. As a first step to establish an improved thermographic NDE method, an experimental setup was built based on structured 1D illumination using a flash lamp behind a mechanical aperture. As a follow-up to this approach, we now use direct structured illumination using a 1D laser array. The individual emitter cells are driven by a pseudo-random binary pattern and are additionally shifted by fractions of the cell period. The repeated measurement of these different configurations enables to illuminate each spot of the sample surface in lateral direction. This allows for a reconstruction that makes use of joint sparsity. The measured data set is processed using super resolution image reconstruction algorithms such as the iterative joint sparsity (IJOSP) algorithm. Using this reconstruction technique and 150 different illumination patterns results in a spatial resolution enhancement of approximately a factor of four compared to the resolution of 5.9 mm for homogenously illuminated thermographic reconstruction. Further, new data processing techniques have been studied before applying the IJOSP algorithm that are more performant or less prone to errors regarding image reconstruction. The choice of regularization parameters in data processing as well as experimental parameters such as the illumination pattern as a variable heat flux density (i.e., the Neumann boundary condition for convolution with the constant Green's function) have a big influence on the reconstruction goodness. With analytical-numerical modelling and numerical FEM simulations, we studied the influence of the experimental parameters on the result of the non-linear IJOSP reconstruction. This has also been investigated experimentally e.g. using different laser line widths or more measurements per position. These studies are used to derive optimal conditions for a certain measurement image reconstruction technique. T2 - 20-th International Conference on Photoacoustic and Photothermal Phenomena CY - Moscow, Russia DA - 07.07.2019 KW - Super resolution KW - Virtual wave KW - Laser thermography KW - 1d laser KW - Joint sparsity KW - Laser array KW - VCSEL array KW - High-power laser PY - 2019 AN - OPUS4-48578 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahmadi, Samim A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Hirsch, Philipp Daniel A1 - Karagianni, Christina A1 - Burgholzer, P. A1 - Mayr, G. A1 - Jung, P. A1 - Caire, G. T1 - Photothermal super resolution imaging: a comparison of different reconstruction techniques N2 - The diffusive nature of heat propagation complicates the separation of two closely spaced defects. This results in a fundamental limitation in spatial resolution. Therefore, super resolution (SR) image reconstruction can be used. SR processing techniques based on spatially structured heating and joint sparsity of the signal ensemble allows for an improved reconstruction of closely spaced defects. This new technique has been studied using a 1D laser array with randomly chosen illumination pattern. This paper presents the results after applying SR algorithms such as the iterative joint sparsity (IJOSP) algorithm, to our processed measurement data. Two different data processing strategies are evaluated and discussed regarding their influence on the reconstruction goodness as well as their complexity. Moreover, the degradation of the SR reconstruction by the choice of regularization parameters in data processing is discussed. The application of both SR techniques that are evaluated in this paper results in a spatial resolution enhancement of approximately a factor of four which leads to a better separation of two closely spaced defects. The fundamental difference between both SR techniques is their complexity. T2 - 46th Annual Review of Profress in Quantitative Nondestructive Evaluation CY - Portland, OR, USA DA - 14.07.2019 KW - Super resolution KW - Virtual wave KW - Laser thermography KW - 1d laser KW - Joint sparsity KW - Laser array KW - VCSEL array KW - High-power laser KW - Fourier transform KW - Dimension reduction PY - 2019 AN - OPUS4-48579 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahmadi, Samim A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Hirsch, Philipp Daniel A1 - Karagianni, Christina A1 - Burgholzer, P. A1 - Mayr, G. A1 - Jung, P. A1 - Caire, G. T1 - Photothermal super resolution image reconstruction using structured 1d laser illumination N2 - The separation of two closely spaced defects in fields of Thermographic NDE is very challenging. The diffusive nature of thermal waves leads to a fundamental limitation in spatial resolution. Therefore, super resolution image reconstruction can be used. A new concerted ansatz based on spatially structured heating and joint sparsity of the signal ensemble allows for an improved reconstruction of closely spaced defects. This new technique has been studied using a 1D laser array with randomly chosen illumination pattern. This paper presents the results after applying super resolution algorithms, such as the iterative joint sparsity (IJOSP) algorithm, to our processed measurement data. Different data processing techniques before applying the IJOSP algorithm as well as the influence of regularization parameters in the data processing techniques are discussed. Moreover, the degradation of super resolution reconstruction goodness by the choice of experimental parameters such as laser line width or number of measurements is shown. The application of the super resolution results in a spatial resolution enhancement of approximately a factor of four which leads to a better separation of two closely spaced defects. T2 - 46th Annual Review of Profress in Quantitative Nondestructive Evaluation CY - Portland, OR, USA DA - 14.07.2019 KW - Super resolution KW - Virtual wave KW - Laser thermography KW - 1d laser KW - Joint sparsity KW - Laser array KW - VCSEL array KW - High-power laser PY - 2019 AN - OPUS4-48591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahmadi, Samim A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Hirsch, Philipp Daniel A1 - Karagianni, Christina A1 - Burgholzer, P. A1 - Mayr, G. A1 - Jung, P. A1 - Caire, G. T1 - A comparison of different techniques for photothermal super resolution image reconstruction N2 - The separation of two closely located defects in fields of Thermographic NDE is very challenging. The diffusive nature of thermal waves leads to a fundamental limitation in spatial resolution. Therefore, super resolution image reconstruction can be used. A new concerted ansatz based on spatially structured heating and joint sparsity of the signal ensemble allows an improved reconstruction of closely located defects. This new technique has also been studied using 1D laser arrays in active thermography. The post-processing can be roughly described by two steps: 1. Finding a sparse basis representation using a reconstruction algorithm such as the Fourier transform, 2. Application of an iterative joint sparsity (IJOSP) method to the firstly reconstructed data. For this reason, different methods in post-processing can be compared using the same measured data set. The focus in this work was the variation of reconstruction algorithms in step 1 and its influence on the results from step 2. More precise, the measured thermal waves can be transformed to virtual (ultrasound) waves that can be processed by applying ultrasound reconstruction algorithms and finally the super resolution algorithm. Otherwise, it is also possible to make use of a Fourier transform with a subsequent super resolution routine. These super resolution thermographic image reconstruction techniques in post-processing are discussed and evaluated regarding performance, accuracy and repeatability. T2 - 20-th International Conference on Photoacoustic and Photothermal Phenomena CY - Moscow, Russia DA - 07.07.2019 KW - Super resolution KW - Virtual wave KW - Laser thermography KW - 1d laser KW - Joint sparsity KW - Laser array KW - VCSEL array KW - High-power laser KW - Fourier transform KW - Dimension reduction PY - 2019 AN - OPUS4-48592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Léonard, Fabien T1 - Good practice guide on the correct choice of characterisation technique based on level of accuracy and type of measurement N2 - The characterisation of AM structures is an important aspect of the AM process, required in order to: 1. optimise the AM printing process 2. assess the quality of produced parts A wide range of characterisation techniques are available, and the selection can be complex, based on multiple factors. One output from the MetAMMi project is a good practice guide on the correct choice of characterisation technique. T2 - Workshop on additive manufacturing CY - Berlin, Germany DA - 13.05.2019 KW - X-ray computed tomography KW - Mechanical properties KW - Microstructural analysis KW - Defect detection PY - 2019 AN - OPUS4-48262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Léonard, Fabien T1 - XCT simulation: Effects of error sources on dimensional measurements for medical and standard objects N2 - The quantification of experimental and data analysis errors is most of the times jeopardised by the presence of surface roughness, waviness, as well as by typical measurement artefacts of the XCT technique (for instance refraction at sharp edges). One way to at least estimate the influence of those factors on dimensional measurements and on tolerances is to simulate them using Monte-Carlo method. An alternative strategy is to use independent knowledge (e.g. CMM data) to smoothen/calibrate/correct XCT data. T2 - Workshop on additive manufacturing CY - Berlin, Germany DA - 13.05.2019 KW - aRTist KW - Part geometry KW - Part material KW - Beam hardening KW - Partial volume effect PY - 2019 AN - OPUS4-48263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Léonard, Fabien T1 - Digital image analysis procedures for dimension, dimensional error, and 3D bulk defect assessment N2 - XCT is a powerful technique for dimensional measurements of AM parts. AM parts pose new challenges to the metrologists and CT specialists. Robust digital image analysis have been proposed for dimensional measurements and defect detections based on experience within the MetAMMI project. T2 - Workshop on additive manufacturing CY - Berlin, Germany DA - 13.05.2019 KW - X-ray computed tomography KW - Metrology KW - Implant PY - 2019 AN - OPUS4-48264 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Torge, Manfred A1 - Seneschal-Merz, Karine A1 - Günther, Tobias A1 - Wilsch, Gerd T1 - Determination of boron in 19th and 20th century paint layers using LIBS N2 - 19th and 20th centuries glass paint layers consist of a colour body and a colourless lead silicate flux, in which borax or boric acid was added as further component to improve the paint ability and to reduce the firing temperature for multiple layers of paint. Model glasses were used in laboratory tests to investigate the stability of glass paints with additions of boron oxide. To determine boron in paint layers, a LIBS-system with pulsed NdYAG-laser was used. T2 - Technart 2019 CY - Brugge, Belgien DA - 07.05.2019 KW - Stained glass windows KW - Glass paints KW - LIBS PY - 2019 AN - OPUS4-48229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zheng, H. A1 - Ertel, Jens-Peter A1 - Kourmpetis, M. A1 - Kanfoud, J. A1 - Niederleithinger, Ernst A1 - Gan, T.-H. T1 - Integrity testing of cast in situ concrete piles based on an impulse response function method using sine‑sweep excitation by a shaker N2 - In this study, an Impulse Response Function analysis of pile response to sine-sweep excitation by a low cost, portable Shaker was used to identify defects in piles. In straightforward impact-echo methods, echoes from the pile toe and defects are visible in the time domain measurements. However, these echoes are not present in the time domain records of piles subjected to sine-sweep excitations, due to interactions between the input and output signals. For this reason, the impulse response function in the time domain has been calculated and is able to identify the echoes from pile impedance changes. The proposed methodology has been evaluated both numerically and experimentally. A one-dimensional pile-soil interaction system was developed, and a finite difference method used to calculate the pile response to sine-sweep excitation. The numerical simulations indicate that impulse response measurements with a synthesized logarithmic, sine-sweep excitation could be an effective tool for detecting defects in piles. The methodology was further tested with field trials on 6 cast in situ concrete test piles including 1 intact pile and 5 defective piles subjected to sine-sweep excitations by a shaker. In 5 of the 6 cases the echoes from the pile toe could be identified in the deconvoluted waveforms—the impulse Response functions. Damage detection is more difficult and dependent on the selection of the optimal regularization parameter. Further research and optimization of the deconvolution process is needed to evaluate the effectiveness compared to standard pile integrity testing methods. KW - Pile testing KW - Shaker KW - Deconvolution PY - 2019 DO - https://doi.org/10.1007/s10921-019-0595-4 SN - 0195-9298 SN - 1573-4862 VL - 38 IS - 2 SP - 55, 1 EP - 18 PB - Springer CY - Cham, Switzerland AN - OPUS4-48185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Caetano, D. M. A1 - Rabuske, T. A1 - Fernandes, J. A1 - Pelkner, Matthias A1 - Fermon, C. A1 - Cardoso, S. A1 - Ribes, B. A1 - Franco, F. A1 - Paul, J. A1 - Piedade, M. A1 - Freitas, P. P. T1 - High-Resolution Nondestructive Test Probes Based on Magnetoresistive N2 - This paper discloses two high-sensitivity probes for Eddy Current Nondestructive Test (NDT) of buried and surface defects. These probes incorporate eight and 32 magnetoresistive sensors, respectively, which are optimized for high sensitivity and spatial resolution. The signal processing and interfacing are carried out by a full-custom application-specific integrated circuit (ASIC). The ASIC signal chain performs with a thermal input-referred noise of 30 nV/√Hz at 1 kHz, with 66 mW of power consumption, in a die with 3.7 × 3.4 mm 2 . NDT results are presented, showing that there is an increase in spatial resolution of surface defects when contrasted to prior art, enabling the probes to resolve defects with diameters of 0.44 mm, pitches of 0.6 mm, and minimum edge distance as low as 0.16 mm. The results also show that the probe for buried defects is a good all-round tool for detection of defects under cladding and multiple-plate flat junctions. KW - ASIC KW - Magnetoresistive sensor KW - Nondestructive testing KW - Eddy current testing KW - High resolution PY - 2019 DO - https://doi.org/10.1109/TIE.2018.2879306 VL - 66 IS - 9 SP - 7326 EP - 7337 PB - IEEE AN - OPUS4-48239 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Kotschate, Daniel A1 - Bente, Klaas T1 - Advances in air-coupled ultrasonic transducers for non-destructive testing N2 - Conventional ultrasonic testing involves the application of a fluid couplant for impedance matching. Increasing use of lightweight structures, composite materials and adhesive joints mostly in aerospace and automotive industry created an increasing interest in air-coupled ultrasonic testing methods, to protect sensitive surfaces and simplify maintenance. Commercially available air-coupled transducers consist of a piezocomposite material and matching layers to reduce the impedance mismatch between the transducer and air. This contribution is an overview of innovative approaches using new piezoelectric materials and other physical principles to transmit and receive an ultrasonic pulse in air. Capacitive and piezoelectric micromachined ultrasonic transducers (CMUTs and PMUTs) produce high pressure levels, but they exhibit a very narrow bandwidth. Optical laser-based methods for transmitting and receiving ultrasound promise a higher bandwidth, but do not achieve the same sensitivity as conventional air-coupled transducers. Ferroelectrets are charged cellular polymers exhibiting piezoelectric properties, having a very small acoustic impedance well matched to air. Ferroelectret transducers achieve about the same bandwidth as the most broadband conventional air-coupled transducers, having a higher sensitivity. Thermoacoustic transducers use heat to initiate an acoustic wave, acting as transmitters in ultrasonic range. Thermoacoustic transducers enable excitation of extremely broadband pulses while producing high pressure levels, which opens new possibilities for advanced signal processing. The newest member of the family of air-coupled ultrasonic transmitters is the plasma-based transducer, using both the thermoacoustic effect and the movements of the ions (so called ionic wind) to create acoustic waves. T2 - International Congress on Ultrasonics CY - Bruges, Belgium DA - 03.09.2019 KW - Air-coupled transducers KW - Non-destructive testing KW - Ferroelectret KW - Thermoacoustics KW - Plasma acoustics PY - 2019 AN - OPUS4-48963 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Küttenbaum, Stefan A1 - Braml, T. A1 - Maack, Stefan T1 - Refining stochastic models for the reassessment of bridges using advanced NDT-methods N2 - Increasing requirements on the infrastructure caused by more and heavier traffic coincide with both the aging and the progressive degradation of bridge constructions. These exemplary issues lead to a non-negligible need for reassessments of existing bridges. Compared to the new building design, safety reserves can be used in the evaluation of such existing structures, since uncertainties that may arise during the design, construction and previous Service time are better known or no longer present. Uncertainties can be evaiuated more precisely by measurements. In the meantime, the application of advanced NDT-methods on concrete structures have become so capable, that crucial structure Parameters like certain material properties or geometrical dimensions can be quantified without significant destructive interventions. The measured data can be explicitly incorporated into the probabilistic computation models used for the bridge reassessment in form of random variables. Therewith, a previously insufficient model can be refined to achieve a higher level of approximation. This contribution emphasises two fundamental steps of the measured data based probabilistic reassessment: The sensitivity analyses to identify the cruciai Parameters and the needed accuracy of the related information as well as the comparison with expected uncertainties of non-destructively measured Parameters. T2 - 17th International Probabilistic Workshop CY - Edinburgh, UK DA - 11.09.2019 KW - Measurement KW - Reassessment KW - NDT KW - Concrete bridges PY - 2019 SP - 99 EP - 105 AN - OPUS4-48998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Küttenbaum, Stefan A1 - Braml, T. A1 - Maack, Stefan T1 - Refining stochastic models for the reassessment of bridges using NDT-methods N2 - Increasing requirements on the infrastructure caused by more and heavier traffic coincide with both the aging and the progressive degradation of bridge constructions. These exemplary issues lead to a non-negligible need for reassessments of existing bridges. Compared to the new building design, safety reserves can be used in the evaluation of such existing structures, since uncertainties that may arise during the design, construction and previous Service time are better known or no longer present. Uncertainties can be evaiuated more precisely by measurements. In the meantime, the application of advanced NDT-methods on concrete structures have become so capable, that crucial structure Parameters like certain material properties or geometrical dimensions can be quantified without significant destructive interventions. The measured data can be explicitly incorporated into the probabilistic computation models used for the bridge reassessment in form of random variables. Therewith, a previously insufficient model can be refined to achieve a higher level of approximation. This contribution emphasises two fundamental steps of the measured data based probabilistic reassessment: The sensitivity analyses to identify the cruciai Parameters and the needed accuracy of the related information as well as the comparison with expected uncertainties of non-destructively measured Parameters. T2 - 17th International Probabilistic Workshop CY - Edinburgh, UK DA - 11.09.2019 KW - Measurement KW - Reassessment KW - Structural safety KW - Concrete bridges KW - NDT PY - 2019 AN - OPUS4-48999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bulling, Jannis A1 - Gravenkamp, H. A1 - Birk, C. T1 - A high-order finite element technique with automatic treatment of stress singularities by semi-analytical enrichment N2 - This paper presents an approach to the automatic enrichment of finite elements in the vicinity of a stress singularity. The enrichment consists of semi-analytical singular modes constructed using the Scaled Boundary Finite Element Method (SBFEM). In contrast to analytical methods, the SBFEM provides modes for inhomogeneous and anisotropic materials without additional effort. The finite element basis can be of arbitrary order and remains unaltered by the enrichment. The approach requires enrichment in only one layer of elements around a node. Due to the compatibility of SBFEM with FEM, there is no Need for transitional elements, and there are no parasitic terms. The approach is tested for several benchmark problems. The stress intensity factors are computed based on techniques inspired by the SBFEM. The proposed procedure is compared to a Standard finite element implementation and shows a significant improvement in the error of the displacement field for problems involving singular stresses. KW - Enriched finite element method KW - Scaled boundary finite element method KW - Stress intensity factors KW - Singular stress PY - 2019 DO - https://doi.org/10.1016/j.cma.2019.06.025 VL - 355 SP - 135 EP - 156 PB - Elsevier B.V. AN - OPUS4-48979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Boehm, Rainer A1 - Heckel, Thomas A1 - Brackrock, Daniel A1 - Spruch, W. A1 - Beggerow, T. ED - Bond, L. J. ED - Holland, S. ED - Laflamme, S. T1 - High Speed Hollow Axle Inspection with a New Designed Cone Type Phased Array N2 - Hollow axle inspection can be performed without demounting the axles and without dismantling the wheels and the brake discs by using the drilling for the scan. To increase inspection reliability and inspection speed, the application of phased array systems instead of conventional probes is a good choice. For solid shaft inspection phased array setups became standard in the recent years. Nevertheless, for hollow axle inspection typically a number of conventional probes rotating through the axles drilling are applied. The new approach uses an electronically steered rotating sound field from a phased array for the circumferential scan. This is realized by a cone shaped phased array which operates in immersion technique. That allows a significant increase in inspection speed and a reduction of the mechanical effort of the inspection system. The inspection can be carried out by a linear movement of the probe setup along the axles drilling. Applying additional focal laws allows exact inclination and focusing of the sound beam in the plane vertical to the specimen axis to concentrate the sound in the zones close to the external surface. An additional focus in the plane of incidence increases overall resolution and sensitivity. The cone type phased array probe has been optimized to detect transversal flaws in and close to the outer surface of the hollow axle with orientation in the radial-radial plane. The prototype probe system, sound field simulations and measurement results are presented. T2 - 45th Annual Review of Progress in Quantitative Nondestructive Evaluation CY - Portland, Oregon, USA DA - 13.07.2019 KW - Cone Shaped Phased Array KW - Hollow Axle Inspection KW - High Speed Testing PY - 2019 SN - 978-0-7354-1832-5 DO - https://doi.org/10.1063/1.5099834 SN - 0094-243X VL - 2102 IS - 1 SP - UNSP 100006-1 EP - UNSP 100006-11 PB - American Institute of Physics CY - Maryland, Vereinigte Staaten AN - OPUS4-48936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Xu, W. A1 - Zscherpel, Uwe A1 - Peng, J. A1 - Luo, L. A1 - Gao, X. A1 - Li, J. T1 - Investigation on Wall Thickness Ranges Using Digital Radiography for Tangential Projection Technique N2 - X-ray testing is based on the attenuation of X-rays when passing through matter. Image detectors acquire the X-ray information which is defined by the local penetrated wall thickness of the tested sample. By X-ray absorption in the detector and following read-out and digitization steps a digital image is generated. As detectors a radiographic film and film digitization, a storage phosphor imaging plate and a special Laser scanner (Computer Radiography - CR) or a digital detector array (DDA) can be used. The digital image in the computer can then be further analyzed using many types of image processing. In the presented work the automated evaluation of wall thickness profiles are investigated using a test steel pipe with 9 different wall thicknesses and various X-ray voltages and different filter materials at the tube port and intermediate between object and detector. In this way the influence of different radiation qualities on the accuracy of the automated wall thickness evaluation depending on the penetrated wall thickness of the steel pipe was investigated. T2 - 10th International Conference on Information Optics and Photonics CY - Beijing, China DA - 08.07.2018 KW - Image evaluation KW - Computed radiography (CR) KW - Digital Detector Array (DDA) KW - Tangential radiography KW - Wall thickness measurement PY - 2018 SN - 978-1-51062580-8 DO - https://doi.org/10.1117/12.2506324 SN - 0277-786X VL - 10964 SP - Article Number: UNSP 109645B PB - SPIE CY - Bellingham, WA AN - OPUS4-47346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Küttenbaum, Stefan A1 - Taffe, A. A1 - Braml, T. A1 - Maack, Stefan T1 - Reliability assessment of existing bridges based on NDT-results N2 - The non-destructive testing methods available for civil engineering (NDT-CE) enable the measurements of quantitative parameters, which realistically describe the characteristics of existing buildings. In the past, methods for quality evaluation and concepts for validation expanded into NDT-CE to improve the objectivity of measured data. Thereby, a metrological foundation was developed to collect statistically sound and structurally relevant information about the inner construction of structures without destructive interventions. More recently, the demand for recalculations of structural safety was identified. This paper summarizes a basic research study on structural analyses of bridges in combination with NDT. The aim is to use measurement data of nondestructive testing methods as stochastic quantities in static calculations. Therefore, a methodical interface between the guide to the expression of uncertainty in measurement and probabilistic approximation procedures (e.g. FORM) has been proven to be suitable. The motivation is to relate the scientific approach of the structural analysis with real information coming from existing structures and not with those found in the literature. A case study about the probabilistic bending proof of a reinforced concrete bridge with statistically verified data from ultrasonic measurements shows that the measuring results fulfil the requirements concerning precision, trueness, objectivity and reliability. T2 - 5th ICCRRR 2018 - International Conference on Concrete Repair, Rehabilitation and Retrofitting CY - Cape Town, South Africa DA - 19.11.2018 KW - NDT KW - Concrete KW - Stochastic model KW - Reassessment KW - Reliability PY - 2018 AN - OPUS4-46768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Tobias A1 - Gornushkin, Igor B. A1 - Kazakov, Alexander Ya. A1 - Wilsch, Gerd T1 - Application of two calibration-free LIBS techniques for synthetic spectra of cement samples N2 - Two calibration-free LIBS techniques are used for the quantitative analysis of synthetic cement samples: the CF-LIBS based on the Boltzmann plot method and the Monte Carlo (MC) LIBS based on the iterative spectrum fitting. In CF-LIBS, the inverse problem is solved, i.e. the elemental concentrations are determined by the reconstruction of plasma parameters from spectra. The MC-LIBS technique solves the direct problem by finding the highest correlation between the model-generated and experimental spectrum. The accuracy of both calibration-free LIBS methods suffers from factors such as inaccurately determined instrumental function, the deviation of experimental plasma from the mathematical model used, not taking into account the collection geometry and from the uncertainty of spectroscopic data. Therefore, the both calibration-free LIBS approaches are applied to synthetic spectra which perfectly suit the mathematical model of the method. This test yields the accuracy of both the approaches for the ideal case. In addition, the accuracy of both methods is investigated for non-isothermal plasma, because real laser-induced plasma often has high gradients in temperature. Both methods assume an isothermal plasma. T2 - Xth international conference on Laser-Induced Breakdown Spectroscopy CY - Atlanta, GA, USA DA - 21.10.2018 KW - Cement KW - MC-LIBS KW - LIBS KW - CF-LIBS PY - 2018 AN - OPUS4-46774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Evsevleev, Sergei A1 - Müller, Bernd R. A1 - Lange, Axel A1 - Kupsch, Andreas T1 - Refraction driven X-ray caustics at curved interfaces N2 - X-ray refraction related interaction has received rising interest since about two decades in the field of imaging, beam shaping and analysis although being discovered a century ago. Due to refraction at interfaces in inhomogeneous media X-rays undergo natural focusing (or defocusing) of waves, revealing caustics. Such Kind of intensity patterns are well-known for visible light, but have been sparsely discussed for X-rays. The Variation of irradiation density may be predicted in case of known shapes. Analogously to light optics, the intensity distributions cover several orders of magnitude including complete extinction. The partly convergent (and divergent) caustic stripes originate from narrow zones of typical size of some 10−6 of the boundary curvature radius. For the deflection of plane wave synchrotron radiation (energy in the range of some keV to some ten keV) at rods and tubes of several μm diameter, we find good Agreement between experiments and modeling by ray tracing according to Snell’s law without additional diffraction contributions. Apart from Basic Research implications, caustics may influence the performance of irradiation technologies such as sterilization or molecular cross-linking. KW - X-ray caustics KW - X-ray refraction KW - Irradiation KW - Radiation shielding KW - Synchrotron Radiation PY - 2019 UR - http://www.sciencedirect.com/science/article/pii/S0168900218314591 DO - https://doi.org/10.1016/j.nima.2018.10.152 SN - 0168-9002 SN - 1872-9576 VL - 916 SP - 275 EP - 282 PB - Elsevier AN - OPUS4-46924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertovic, Marija T1 - How can we use psychology to optimize the NDT inspection process and prevent human error N2 - The aim of this presentation is to highlight how psychology can be used to prevent human error. It starts with examples of accidents, incidents and events that have happened due to too little attention being dedicated to human factors. It continues arguing that human factors are one of the main factors influencing the reliability of non-destructive testing and gives definitions of the main terms. Furthermore, it presents a method used to identify risks in mechanized NDT to be used for the purposes of the final disposal of spent nuclear fuel and presents a study, in which human-centred design and eye tracking have been used to optimism the inspection procedure. The conclusion is that human factors methods can be used to identify problems during the inspection process and generate mitigation strategies that can be used to decrease human error and enhance safety. T2 - The Nordic Symposium on Nuclear Power CY - Stockholm, Sweden DA - 26.11.2018 KW - Zerstörungsfreie Prüfung KW - Human factors KW - Human error KW - Risk management PY - 2018 AN - OPUS4-46938 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -