TY - CONF A1 - Vogl, Jochen A1 - Koenig, Maren T1 - Isotope dilution mass spectrometry applied as primary method of measurement with examples from the ENVCRM project N2 - The presentation describes the application of isotope dilution mass spectrometry as a primary method of measurement with all Advantages and disadvantges. This is exempflified for the candidate reference materials within the EnvCRM Project. T2 - Workshop Matrix Reference Materials for Environmental Analysis CY - Gebze, Turkey DA - 16.05.2018 KW - Reference material KW - Soil KW - Heavy metals PY - 2018 AN - OPUS4-45896 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - The triple isotope calibration approach BT - A new calibration approach for obtaining absolute isotope ratios of multi-isotopic elements N2 - The calibration of isotope ratio measurements is an ongoing challenge since instrumental isotope fractionation (IIF) has been detected in mass spectrometry (MS). There is a variety of approaches which either bypass IIF such as delta measurements or refer to reference materials (RMs) and thus shifting the problem of calibration to somebody else: the RM producer. For certifying isotope RMs with absolute isotope ratios only a few approaches are available, namely the isotope mixture approach, the double spike approach, the mass bias regression model and total evaporation in TIMS. All of them require either enriched isotopes, isotope RMs of another element or an RM for correcting residual error. As the enriched isotopes required for the isotope mixture and the double spike approach need to be fully characterized beforehand, all mentioned calibration approaches require a standard. Here, a new and standard-free calibration approach for obtaining absolute isotope ratios of multi-isotopic elements has been developed. The underlying principle is that each MS suffers from IIF and thus yields a specific isotope fractionation line in a three-isotope diagram. When applying a second MS featuring a different ionization mechanism, we obtain a second isotope fractionation line with a different slope in the same three-isotope diagram. In both cases the absolute isotope ratios range somewhere on the isotope fractionation line. Consequentially, the intersect of both lines yield the absolute isotope ratios of the measured sample. This theory has been tested by measuring Cd and Pb isotope ratios of suitable isotope RMs with a TIMS and an ICP-MS, both equipped with multi-collector array. During the measurements the ionization conditions were changed such that different extent of the isotope fractionation has been achieved. With the resulting data set the theory described above could be verified. The obtained absolute isotope ratios were metrologically compatible with the certified isotope ratios. The remaining average bias of -5 ‰ can be reduced with further improvements. The calibration approach is universal and can be applied to any multi-isotopic element and it is not limited by the type of the mass spectrometer. T2 - Virtual Goldschmidt 2021 CY - Online meeting DA - 04.07.2021 KW - Absolute isotope ratio KW - Traceability KW - Metrology KW - Calibration KW - Uncertainty KW - Triple isotope fractionation PY - 2021 AN - OPUS4-53023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rienitz, O. A1 - Jährling, R. A1 - Noordmann, J. A1 - Pape, C. A1 - Röhker, K. A1 - Vogl, Jochen A1 - Manzano, J. V. L. A1 - Kozlowski, W. A1 - Caciano de Siena, R. A1 - Marques Rodrigues, J. A1 - Galli, A. H. A1 - Yim, Y.-H. A1 - Lee, K.-S. A1 - Lee, J. H. A1 - Min, H.-S. A1 - Chingbo, C. A1 - Naijie, S. A1 - Qian, W. A1 - Ren, T. A1 - Jun, W. A1 - Tangpaisarnkul, N. A1 - Suzuki, T. A1 - Nonose, N. A1 - Mester, Z. A1 - Yang, L. A1 - Pagliano, E. A1 - Greenberg, P. A1 - Mariassy, M. A1 - Näykki, T. A1 - Cankur, O. A1 - Coskun, F. G. A1 - Ari, B. A1 - Can, S. Z. T1 - CCQM-K122 "Anionic impurities and lead in salt solutions" N2 - The determination of the mass fractions of bromide, sulfate, and lead as well as the isotopic composition of the lead (expressed as the molar mass and the amount fractions of all four stable lead isotopes) in an aqueous solution of sodium chloride with a mass fraction of 0.15 g/g was the subject of this comparison. Even though the mass fractions ranged from 3 μg/g (bromide) to 50 ng/g (lead), almost all results reported agreed with the according KCRVs. KW - Absolute isotope ratio KW - Lead isotope ratios KW - Metrology KW - Traceability PY - 2020 DO - https://doi.org/10.1088/0026-1394/57/1A/08012 VL - 57 IS - 1A SP - 8012 PB - IOP Science AN - OPUS4-51156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Paul, Andrea A1 - Meyer, Klas A1 - Kern, Simon T1 - NMR spectroscopy for online monitoring and process control N2 - Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. We present a range of approaches for the automated spectra analysis moving from statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modelling and Quantum Mechanical calculations). The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. Here we introduce our smart online NMR sensor module provided in an explosion proof housing as example.Based on concentration measurements of reagents and products by the NMR analyzer a continuous production and direct loop process control were successfully realized for several validation runs in a modular industrial pilot plant and compared to conventional analytical methods (HPLC, near infrared spectroscopy). The NMR analyser was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme. T2 - Global Expert Meeting Analytical Quantification, Syngenta Crop Protection AG CY - Stein, Switzerland DA - 22.05.2018 KW - Process monitoring KW - Online NMR spectroscopy KW - Indirect hard modeling KW - Benchtop NMR spectroscopy PY - 2018 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-45004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Paul, Andrea A1 - Meyer, Klas A1 - Kern, Simon T1 - Already producing or still calibrating? – Online NMR spectroscopy as smart field device N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. Here we introduce our smart online NMR sensor module provided in an explosion proof housing as example. Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. We present a range of approaches for the automated spectra analysis moving from statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modelling and Quantum Mechanical calculations). Based on concentration measurements of reagents and products by the NMR analyzer a continuous production and direct loop process control were successfully realized for several validation runs in a modular industrial pilot plant and compared to conventional analytical methods (HPLC, near infrared spectroscopy). The NMR analyser was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme (“Integrated CONtrol and SENsing”, www.consens-spire.eu). T2 - Analytical Chemists Meeting, Syngenta Crop Protection Monthey SA CY - Monthey, Switzerland DA - 23.05.2018 KW - Process monitoring KW - Online NMR spectroscopy KW - Indirect hard modeling KW - Benchtop NMR spectroscopy KW - Direct loop control PY - 2018 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-45006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiele, Isabel A1 - Santolin, Lara A1 - Meyer, Klas A1 - Machatschek, Rainhard A1 - Bölz, Uwe A1 - Tarazona, Natalia A. A1 - Riedel, Sebastian L. T1 - Microbially synthesized poly(hydroxybutyrate-co-hydroxyhexanoate) with low to moderate hydroxyhexanoate content: Properties and applications N2 - Plastic pollution is the biggest environmental concern of our time. Breakdown products like micro- and nanoplastics inevitably enter the food chain and pose unprecedented health risks. In this scenario, bio-based and biodegradable plastic alternatives have been given a momentum aiming to bridge a transition towards a more sustainable future. Polyhydroxyalkanoates (PHAs) are one of the few thermoplastic polymers synthesized 100 % via biotechnological routes which fully biodegrade in common natural environments. Poly(hydroxybutyrate-cohydroxyhexanoate) [P(HB-co-HHx)] is a PHA copolymer with great potential for the commodity polymers industry, as its mechanical properties can be tailored through fine-tuning of its molar HHx content. We have recently developed a strategy that enables for reliable tailoring of the monomer content of P(HB-co-HHx). Nevertheless, there is often a lack of comprehensive investigation of the material properties of PHAs to evaluate whether they actually mimic the functionalities of conventional plastics. We present a detailed study of P(HB-co-HHx) copolymers with low to moderate hydroxyhexanoate content to understand how the HHx monomer content influences the thermal and mechanical properties and to link those to their abiotic degradation. By increasing the HHx fractions in the range of 2 – 14 mol%, we impart an extension of the processing window and application range as the melting temperature (Tm) and glass temperature (Tg) of the copolymers decrease from Tm 165 ◦C to 126 ◦C, Tg 4 ◦C to − 5.9 ◦C, accompanied by reduced crystallinity from 54 % to 20 %. Elongation at break was increased from 5.7 % up to 703 % at 14 mol% HHx content, confirming that the range examined was sufficiently large to obtain ductile and brittle copolymers, while tensile strength was maintained throughout the studied range. Finally, accelerated abiotic degradation was shown to be slowed down with an increasing HHx fraction decreasing from 70 % to 55 % in 12 h. KW - Molecular Biology KW - General Medicine KW - Biochemistry KW - Structural Biology PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595636 DO - https://doi.org/10.1016/j.ijbiomac.2024.130188 VL - 263 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-59563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Villajos Collado, José Antonio A1 - Balderas‐Xicohténcatl, Rafael A1 - Al Shakhs, Ali N. A1 - Berenguer‐Murcia, Ángel A1 - Buckley, Craig E. A1 - Cazorla‐Amorós, Diego A1 - Charalambopoulou, Georgia A1 - Couturas, Fabrice A1 - Cuevas, Fermin A1 - Fairen‐Jimenez, David A1 - Heinselman, Karen N. A1 - Humphries, Terry D. A1 - Kaskel, Stefan A1 - Kim, Hyunlim A1 - Marco‐Lozar, Juan P. A1 - Oh, Hyunchul A1 - Parilla, Philip A. A1 - Paskevicius, Mark A1 - Senkovska, Irena A1 - Shulda, Sarah A1 - Silvestre‐Albero, Joaquin A1 - Steriotis, Theodore A1 - Tampaxis, Christos A1 - Hirscher, Michael A1 - Maiwald, Michael T1 - Establishing ZIF‐8 as a reference material for hydrogen cryoadsorption: An interlaboratory study N2 - AbstractHydrogen storage by cryoadsorption on porous materials has the advantages of low material cost, safety, fast kinetics, and high cyclic stability. The further development of this technology requires reliable data on the H2 uptake of the adsorbents, however, even for activated carbons the values between different laboratories show sometimes large discrepancies. So far no reference material for hydrogen cryoadsorption is available. The metal‐organic framework ZIF‐8 is an ideal material possessing high thermal, chemical, and mechanical stability that reduces degradation during handling and activation. Here, we distributed ZIF‐8 pellets synthesized by extrusion to 9 laboratories equipped with 15 different experimental setups including gravimetric and volumetric analyzers. The gravimetric H2 uptake of the pellets was measured at 77 K and up to 100 bar showing a high reproducibility between the different laboratories, with a small relative standard deviation of 3–4 % between pressures of 10–100 bar. The effect of operating variables like the amount of sample or analysis temperature was evaluated, remarking the calibration of devices and other correction procedures as the most significant deviation sources. Overall, the reproducible hydrogen cryoadsorption measurements indicate the robustness of the ZIF‐8 pellets, which we want to propose as a reference material. KW - Physical and theoretical chemistry KW - Atomic and molecular physics, and optics PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594788 DO - https://doi.org/10.1002/cphc.202300794 SN - 1439-7641 SP - 1 EP - 7 PB - Wiley CY - Weinheim AN - OPUS4-59478 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Bornemann-Pfeiffer, Martin A1 - Lademann, J. A1 - Kraume, M. A1 - Maiwald, Michael T1 - Contributions Towards Variable Temperature Shielding for Compact NMR Instruments N2 - The application of compact NMR instruments to continuously flowing samples at higher temperatures or exothermically reacting mixtures is limited by the temperature sensitivity of permanent magnets. Typically, such temperature effects directly influence the achievable magnetic field homogeneity and hence measurement quality. The internal-temperature control loop of the magnet and instruments is typically not designed for compensation of such effects. Passive insulation is restricted by the small dimensions within the magnet borehole. Here, we present a design approach for active heat shielding with the aim of variable temperature control of NMR samples for benchtop NMR instruments using a compressed airstream which is variable in flow and temperature. Based on the system identification and surface temperature measurements using an optical thermo-graphy setup, a model predictive control was set up to minimize any disturbance effect on the permanent magnet from the probe or sample temperature. This methodology will facilitate the application of variable-temperature shielding and, therefore, potentially extend the application of compact NMR instruments to flowing samples at higher temperature than the permanent magnet. T2 - 18. Kolloquium AK Prozessanalytik CY - Krefeld, Germany DA - 27.11.2023 KW - Thermostating KW - Benchtop-NMR KW - NMR spectroscopy KW - Process Analytical Technology PY - 2023 AN - OPUS4-58970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Paul, Andrea A1 - Meyer, Klas A1 - Kern, Simon T1 - NMR spectroscopy for online monitoring and process control N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. Here we introduce our smart online NMR sensor module provided in an explosion proof housing as example. Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. We present a range of approaches for the automated spectra analysis moving from statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modelling and Quantum Mechanical calculations). Based on concentration measurements of reagents and products by the NMR analyzer a continuous production and direct loop process control were successfully realized for several validation runs in a modular industrial pilot plant and compared to conventional analytical methods (HPLC, near infrared spectroscopy). The NMR analyser was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme (“Integrated CONtrol and SENsing”, www.consens-spire.eu). T2 - REsearch and Development Seminar, Syngenta Crop Protection AG CY - Münchwilen, Switzerland DA - 22.05.2018 KW - Process monitoring KW - Online NMR spectroscopy KW - Indirect hard modeling KW - Benchtop NMR spectroscopy PY - 2018 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-45003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Kern, Simon T1 - Sustainable and Flexible Production of High Quality Chemicals and Pharmaceuticals Using Smart Sensors and Modular Production Units N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. The talk introduces a smart online NMR sensor module provided in an explosion proof housing as example. This sensor was developed for an intensified industrial process (pharmaceutical lithiation reaction step) funded by the EU’s Horizon 2020 research and innovation programme (www.consens-spire.eu). Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. The talk also generally covers current aspects of high-field and low-field online NMR spectroscopy for reaction monitoring and process control and gives also an overview on direct dissolution studies of API cocrystals. T2 - Chemistry Group Seminar Pfizer Inc. CY - La Jolla, California, USA DA - 09.03.2018 KW - Process Monitoring KW - Online NMR Spectroscopy KW - Smart Sensors KW - Indirect Hard Modeling KW - Modular Production KW - CONSENS PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444382 AN - OPUS4-44438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Quantitative NMR Spectroscopy Uncertainty Analysis Workshop N2 - qNMR provides the most universally applicable form of direct concentration or purity determination without need for reference materials of impurities or the calculation of response factors but only exhibiting suitable NMR properties. The workshop presents basic terms of statistics and uncertainty analysis, which are the basis for qNMR spectroscopy and data analysis such as, e.g., standard deviations, linear regression, significance tests, etc. and gives typical examples of applications in qNMR spectroscopy. T2 - Practical Applications of NMR in Industry Conference ​(PANIC) Validation Workshop 2018 CY - La Jolla, California, USA DA - 08.03.2018 KW - qNMR KW - NMR Validation KW - Basic Statistics KW - Linear Regression PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444395 AN - OPUS4-44439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kern, Simon A1 - Liehr, Sascha A1 - Wander, Lukas A1 - Bornemann-Pfeiffer, Martin A1 - Müller, S. A1 - Maiwald, Michael A1 - Kowarik, Stefan T1 - Artificial neural networks for quantitative online NMR spectroscopy N2 - Industry 4.0 is all about interconnectivity, sensor-enhanced process control, and data-driven systems. Process analytical technology (PAT) such as online nuclear magnetic resonance (NMR) spectroscopy is gaining in importance, as it increasingly contributes to automation and digitalization in production. In many cases up to now, however, a classical evaluation of process data and their transformation into knowledge is not possible or not economical due to the insufficiently large datasets available. When developing an automated method applicable in process control, sometimes only the basic data of a limited number of batch tests from typical product and process development campaigns are available. However, these datasets are not large enough for training machine-supported procedures. In this work, to overcome this limitation, a new procedure was developed, which allows physically motivated multiplication of the available reference data in order to obtain a sufficiently large dataset for training machine learning algorithms. The underlying example chemical synthesis was measured and analyzed with both application-relevant low-field NMR and high-field NMR spectroscopy as reference method. Artificial neural networks (ANNs) have the potential to infer valuable process information already from relatively limited input data. However, in order to predict the concentration at complex conditions (many reactants and wide concentration ranges), larger ANNs and, therefore, a larger Training dataset are required. We demonstrate that a moderately complex problem with four reactants can be addressed using ANNs in combination with the presented PAT method (low-field NMR) and with the proposed approach to generate meaningful training data. KW - Online NMR spectroscopy KW - Real-time process monitoring KW - Artificial neural networks KW - Automation KW - Process industry PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507508 DO - https://doi.org/10.1007/s00216-020-02687-5 SN - 1618-2642 VL - 412 IS - 18 SP - 4447 EP - 4459 PB - Springer CY - Berlin AN - OPUS4-50750 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Luco Colilles, Arnau T1 - Evaluation of two compact near-infrared spectrometers for the detection of microplastics in soil samples N2 - In the last years, the Process Analytical Technology (PAT) research field has become of great importance due to its connection with the industrial world. This industry related research, along with the evolutionary progress that technology has seen lately, has allowed that key analytical techniques in an industrial environment have undergone a radical development. One of these techniques has been the near-infrared spectroscopy (NIRS). This technique, currently common in "online" industrial analysis, has seen a remarkable revolution, especially since the introduction of the microelectromechanical systems technology (MEMS) in the spectroscopy field. Nowadays it is possible to find compact spectrometers no bigger than a wristwatch in the market. Although there is an unavoidable question: can these compact spectrometers actually compete against the traditional spectrometers? In this project different calibration parameters of two compact NIR spectrometers ("Spectral Engines Oy NIR-One Sensor NM2.0", with 1550 to 1950 nm range; and "NeoSpectra Si-ware", with 1300 to 2550 nm range) were evaluated, and the obtained results were compared with a reference spectrometer ("Bruker Optik GmbH Matrix-F", with 15000 to 4000 cm–1 range). In order to obtain the different calibration parameters, a sequence of quality performance tests were conducted. The results obtained after the different experiments carried out with both compact spectrometers prove that their performance is more than acceptable for routine analysis. Afterward, model samples of different microplastics in soil at different known concentration were analyzed with all three spectrometers. Chemometric models capable to identify and classify microplastics in soil were established. For this analysis five of the most used plastics worldwide were used: polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), and polyvinyl chloride (PVC). After the Principal component analysis (PCA), it can be seen that only the NIR-One NM2.0 is capable to differentiate all types of microplastics in soil at concentrations of 1–2 %, while the NeoSpectra Si-ware is unable to identify the PET sample. KW - Near-infrared KW - Microplastics KW - Compact spectrometers PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511626 UR - http://hdl.handle.net/2445/138198 SP - 1 EP - 29 PB - Universitat de Barcelona CY - Barcelona AN - OPUS4-51162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Balderas-Xicohtencatl, R. A1 - Villajos Collado, José Antonio A1 - Casabán, J. A1 - Wong, D. A1 - Maiwald, Michael A1 - Hirscher, M. T1 - ZIF‑8 Pellets as a Robust Material for Hydrogen Cryo-Adsorption Tanks N2 - Cryoadsorption on the inner surface of porous materials is a promising solution for safe, fast, and reversible hydrogen storage. Within the class of highly porous metal−organic frameworks, zeolitic imidazolate frameworks (ZIFs) show high thermal, chemical, and mechanical stability. In this study, we selected ZIF-8 synthesized mechanochemically by twin-screw extrusion as powder and pellets. The hydrogen storage capacity at 77 K and up to 100 bar has been analyzed in two laboratories applying three different measurement setups showing a high reproducibility. Pelletizing ZIF-8 increases the packing density close to the corresponding value for a single crystal without loss of porosity, resulting in an improved volumetric hydrogen storage capacity close to the upper limit for a single crystal. The high volumetric uptake combined with a low and constant heat of adsorption provides ca. 31 g of usable hydrogen per liter of pellet assuming a temperature−pressure swing adsorption process between 77 K − 100 bar and 117 K − 5 bar. Cycling experiments do not indicate any degradation in storage capacity. The excellent stability during preparation, handling, and operation of ZIF-8 pellets demonstrates its potential as a robust adsorbent material for technical application in pilot- and full-scale adsorption vessel prototypes. KW - Hydrogen adsorption storage KW - Metal−organic frameworks KW - ZIF-8 KW - Cryoadsorption KW - Hydrogen Storage KW - MefHySto PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569473 DO - https://doi.org/10.1021/acsaem.2c03719 SN - 2574-0962 SP - 1 EP - 8 PB - ACS Publications CY - Washington DC AN - OPUS4-56947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bornemann-Pfeiffer, Martin A1 - Kern, Simon A1 - Maiwald, Michael A1 - Meyer, Klas T1 - Calibration-Free Chemical Process and Quality Control Units as Enablers for Modular Production N2 - Modular chemical production is a tangible translation of the digital transformation of the process industry for specialty chemicals. In particular, it enables the speeding-up of process development and thus a quicker time to market by flexibly connecting and orchestrating standardised physical modules and bringing them to life (i.e., parameterising them) with digitally accumulated process knowledge. We focus on the specific challenges of chemical process and quality control, which in its current form is not well suited for modular production and provide possible approaches and examples of the change towards direct analytical methods, analytical model transfer or machine-supported processes. KW - Modular Production KW - Chemical Process Control KW - Process Analytical Technology KW - Digital Transformation KW - Industry 4.0 PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517264 DO - https://doi.org/10.1002/cite.202000150 SN - 1522-2640 VL - 93 IS - 1-2 SP - 62 EP - 70 PB - Wiley-VCH CY - Weinheim AN - OPUS4-51726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kern, Simon A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Gräßer, Patrick A1 - Paul, Andrea A1 - King, R. A1 - Maiwald, Michael T1 - Online low-field NMR spectroscopy for process control of an industrial lithiation reaction—automated data analysis N2 - Monitoring specific chemical properties is the key to chemical process control. Today, mainly optical online methods are applied, which require time- and cost-intensive calibration effort. NMR spectroscopy, with its advantage being a direct comparison method without need for calibration, has a high potential for closed-loop process control while exhibiting short set-up times. Compact NMR instruments make NMR spectroscopy accessible in industrial and rough environments for process monitoring and advanced process control strategies. We present a fully automated data analysis approach which is completely based on physically motivated spectral models as first principles information (Indirect Hard Modelling – IHM) and applied it to a given pharmaceutical lithiation reaction in the framework of the European Union’s Horizon 2020 project CONSENS. Online low-field NMR (LF NMR) data was analysed by IHM with low calibration effort, compared to a multivariate PLS-R (Partial Least Squares Regression) approach, and both validated using online high-field NMR (HF NMR) spectroscopy. KW - Online NMR spectroscopy KW - Process analytical technology KW - Partial Least Squares Regression KW - Indirect Hard Modeling KW - Benchtop NMR Spectroscopy KW - Smart Sensors KW - CONSENS PY - 2018 UR - https://link.springer.com/article/10.1007/s00216-018-1020-z DO - https://doi.org/10.1007/s00216-018-1020-z SN - 1618-2642 SN - 1618-2650 VL - 410 IS - 14 SP - 3349 EP - 3360 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-44847 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Workshop: Basic Statistics for NMR N2 - qNMR provides the most universally applicable form of direct concentration or purity determination without need for reference materials of impurities or the calculation of response factors but only exhibiting suitable NMR properties. The workshop presents basic terms of statistics and uncertainty analysis, which are the basis for qNMR spectroscopy and data analysis such as, e.g., standard deviations, linear regression, significance tests, etc. and gives typical examples of applications in qNMR spectroscopy. T2 - qNMR-Summit 2018 CY - Würzburg, Germany DA - 10.10.2018 KW - Quantitative NMR Spectroscopy KW - Statistics KW - Quality Assurance KW - NMR validation KW - qNMR PY - 2018 AN - OPUS4-46368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Rosner, M. A1 - Curbera, J. A1 - Peltz, U. A1 - Peplinski, Burkhard T1 - Lead isotope analysis in magic artefacts from the Berlin museums N2 - A set of 59 ancient magical artefacts, mainly made of lead, was selected from the collections of the Staatliche Museen zu Berlin in order to unravel their origins. All the selected artefacts have been studied for their Pb isotope compositions, which covered the whole range of the Mediterranean ore deposits. However, the majority (≈86%) were made of lead matching the small compositional range of the Laurion ore deposits. Only eight out of the 59 artefacts were made of recycled lead or lead from other ore deposits. Additionally, all but two were approximately dated based on their inscriptions. The lead isotopic composition together with information obtained from the inscriptions, the resulting dating, the context of the find and the known history of each item allowed us to gain more detailed information about the origins of these magical artefacts. The Attic provenance of 36 curse tablets was confirmed, whereas for 11 curse tablets previously classified as non-Attic, the provenance was either confirmed and specified (six artefacts) or changed to Attic (five artefacts). Surprisingly, the majority (six out of eight) of the analysed curse tablets from the Egyptian collection showed a lead isotopic composition closely matching that of Laurion. A Laurion-like lead isotopic composition was also observed for three of the four analysed oracular tablets from Dodona. Together with the dating information, this points to Laurion as the major and dominant lead source in the Aegean, at least during the fourth–third century B.C. The few curse tablets from earlier than the fourth–third century B.C. point to the use of multiple and thus isotopically more variable lead sources compared with the Roman times. KW - Lead isotopes KW - Pb isotopes KW - Greek curse tablets KW - Antikensammlung Berlin KW - Ägyptisches Museum Berlin PY - 2018 DO - https://doi.org/10.1007/s12520-016-0445-6 SN - 1866-9557 SN - 1866-9565 VL - 10 IS - 5 SP - 1111 EP - 1127 PB - Springer Verlag CY - Berlin AN - OPUS4-45628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinrich, Hans-Joachim A1 - Richter, Silke A1 - Recknagel, Sebastian T1 - Certification of the mass fractions of trace elements in a medium purity graphite reference material N2 - The increasing application of graphite materials in various fields of technology and science enhances the demand for strictly controlled properties which are often directly correlated to the contents of trace element impurities. Therefore, the availability of powerful, rapid and reliable analytical methods for the determination of trace impurities is essential for process and quality control. Certified reference materials, indispensable for the development and validation of appropriate trace analytical methods for the characterization of special purity graphite materials are still lacking. Therefore, BAM in co-operation with the working group “Special Materials” of the committee of chemists of GDMB (Gesellschaft der Metallurgen und Bergleute e.V.) certified an industrially sourced graphite material with genuine elemental impurities. The candidate material was a commercial product (NBG 18) taken from the customary production line of the producer SGL CARBON, Chedde (France). The homogeneity of the powdered material was assessed by means of ETV-ICP OES and DC Arc-OES. Certification of the candidate reference material was based on an inter-laboratory comparison involving 17 expert laboratories from Germany, France, Slovenia, USA, South Africa. A variety of different mineralization, digestion, leaching, fusion and combustion techniques prior to ICP OES and photometry, methods without sample preparation (INAA, k0-INAA) as well as typical solid sampling methods (ETV-ICP OES, ETV-ICP-MS, SS-ET AAS, DC Arc-OES, MF-DC Arc-OES) were used to characterise the material. Certified mass fractions and their expanded uncertainties (k = 2) were assigned for 27 elements (Al, B, Ba, Be, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Si, Sr, Ti, V, W, Y, Zn, Zr), ranging from (0.00050 ± 0.00027) mg/kg for Be to (41 ± 6) mg/kg for Si. Additionally, informative values are given for the: trace element contents of Ag, As, Au, Bi, Cd, Cs, Dy, Eu, Ga, Gd, Hg, In, La, Nb, Rb, Re, Rh, Sb, Sc, Se, Sm, Sn, Ta, Tb, Te, Th, U; method specific values obtained by ETV-ICP OES (BETV and SiETV) and the ash content of the material. The certified material “BAM-S009 Medium Purity Graphite Powder” is available for purchase from BAM. T2 - ESAS & CANAS 2018 CY - Berlin, Germany DA - 20.03.2018 KW - Graphite KW - Certification KW - Trace elements KW - Reference material PY - 2018 AN - OPUS4-44775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raab, A. A1 - Solovyev, N. A1 - El-Kathib, Ahmed A1 - Vogl, Jochen A1 - Costas-Rodriguez, M. A1 - Vanhaecke, F. A1 - Schwab, K. A1 - Griffin, E. A1 - Platt, B. A1 - Theuring, F. T1 - Isotope signature of iron, copper and zinc in mouse models (L66 and 5XFAD) and their controls used for dementia research N2 - Introduction: The influence of copper, iron and zinc concentrations on the formation of ß-amyloid plaques and neurofibrillary tangles in Alzheimer’s disease (AD) is widely discussed in the community. The results from human and animal studies so far are mixed with some studies showing a correlation and others not. From a number of studies, it is known that disease state and isotopic composition of essential elements can be coupled. Aim: The aim of the study was to identify changes in element content and isotopic composition in two transgenic mouse models used in AD research compared to their genetic WT relatives and to establish whether element content and isotopic signature between different laboratories is comparable. Methods: ß-amyloid (5xFAD) and tau overexpressing (L66) mice together with their matching wild-types were bred at dedicated facilities in accordance with the European Communities Council Directive (63/2010/EU). Serum and brain were sampled after sacrifice and the samples distributed among the participants of the study. The tissues were acid digested for total element determination and high-precision isotope ratio determination. Element content was determined by either sector-field or quadrupole-based inductively coupled plasma mass spectrometry (ICPMS). For the determination of isotope ratios multi-collector ICPMS was used. Results: Total copper content was significantly higher for L66 and their matched WT compared to 5xFAD and WT. Brains of L66 mice contained more Fe in brain than their WT, Zn and Cu were not significantly different between L66 and WT. Whereas 5xFAD mice had a slightly lower Cu and slightly higher Zn concentration in brain compared to WT. The isotopic signature in brain of L66 mice for Fe was different from their controls, whereas Zn isotope ratios were influenced in 5xFAD mice compared to their WT . The Cu isotopic ratio did not seem to be influenced in either strain. In serum, the shifts were less pronounced. Conclusion: Even though neither Tau-protein nor amyloid precursor protein are known to be metal-dependent / -containing proteins, the overexpression of both influences the Fe, Cu and Zn metabolism in brain and to some extent also in serum as can be seen not only using total element determination but probably more clearly studying the isotopic signature of Fe, Cu and Zn. T2 - International Conference of Trace Elements and Minerals CY - Aachen, Germany DA - 05.06.2022 KW - Isotope delta value KW - Copper KW - Zinc KW - Iron KW - Dementia PY - 2022 AN - OPUS4-58230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pramann, A. A1 - Vogl, Jochen A1 - Rienitz, O. T1 - The Uncertainty Paradox: Molar Mass of Enriched Versus Natural Silicon Used in the XRCD Method N2 - The X-ray crystal density method uses silicon spheres highly enriched in 28Si as a primary method for the dissemination of the SI base unit kilogram yielding smallest possible uncertainties associated with the mass m within a few parts in 10-8. This study compares different available and newly developed analytical methods and their results for the determination of the molar mass M of silicon highly enriched in 28Si (Me) and of silicon (Mx) with an almost natural isotopic distribution. While for Me relative uncertainties urel(Me) in the lower 10-9 range are obtained routinely, it was not possible to fall below a value of urel(Mx) < 4 x 10-6 in the case of natural silicon, which is approximately three orders of magnitude larger. The application of the state-of the-art isotope ratio mass spectrometry accompanied with sophisticated thoroughly investigated methods suggests an intrinsic cause for the large uncertainty associated with the molar mass of natural silicon compared to the enriched material. KW - silicon KW - Molar mass KW - Isotope ratios KW - SI KW - Kilogram KW - Mole KW - XRCD method PY - 2020 DO - https://doi.org/10.1007/s12647-020-00408-y VL - 35 SP - 499 EP - 510 PB - Springer Verlag AN - OPUS4-51637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hommel, C. A1 - Hassler, J. A1 - Matschat, Ralf A1 - Vogt, T. A1 - Detcheva, A. K. A1 - Recknagel, Sebastian T1 - A fast and robust direct solid sampling method for the determination of 27 trace, main and minor elements in soda-lime glass based on ETV-ICP OES and using a gaseous halogenating modifier N2 - A method, based on electrothermal vaporization (ETV) coupled to inductively coupled plasma optical emission spectrometry (ICP OES), has been optimized for direct solid sampling analysis of soda-lime glass - the most common type of industrially manufactured glass. This method allows fast and reliable quantification of the main elements - Al, Ca, K, Mg, Na, and Si - and trace elements - As, Ba, Cd, Ce, Co, Cr, Cu, Fe, Mn, Mo, Ni, (P), Pb, Sb, (Se), Sn, Sr, Ti, V, Zn, and Zr. In the presented ETV-ICP OES method, calibration is performed predominantly with matrix-free synthetic samples. This metrological advantage is normally not achieved with direct solid sampling methods and is one of the goals of the present study. In a certification interlaboratory comparison for the soda-lime glass CRM BAM-S005c, 2 out of 16 laboratories employed the ETV-ICP OES method. An improved analytical performance was obtained compared with the results of laboratories that used conventional liquid ICP OES. For both methods, the average relative deviations between the laboratory results and certified values as well as the average values of relative standard deviation were with a few exceptions <10%, in most cases even <5%, which indicated high trueness and precision. KW - ICP-OES KW - ETV KW - Soda-lime glass KW - Reference material PY - 2021 DO - https://doi.org/10.1039/d1ja00081k SN - 0267-9477 SN - 1364-5544 VL - 36 IS - 8 SP - 1683 EP - 1693 PB - Royal Society of Chemistry CY - London AN - OPUS4-53181 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tatzel, Michael A1 - Vogl, Jochen A1 - Rosner, M. A1 - Tütken, T. T1 - How to measure the three-isotope composition of metal(oid) elements by MC-ICP-MS N2 - In chemical elements with three or more stable isotopes, mass-dependent stable isotope fractionation yields correlated isotope ratios, m2/m1 and m3/m1. In three-isotope space, i.e. in a δ’m2/δ’m1 vs. δ’m3/δ’m1 plot, data align along a slope θ, the so called ‘triple isotope fractionation exponent’ that scales the two isotope ratios. Theoretical calculations predict small differences in θ for kinetic- and equilibrium isotope fractionation (Young et al. 2002) and thus the precise measurement of θ allows constraining the reaction mechanism. However, due to an apparent lack of precision of stable isotope analysis by MC-ICP-MS, θ is merely used as analytical quality control, i.e. for demonstration that samples and standards plot within their analytical precision in the range of theoretical θ-values originating in δ-zero. We show how θ can be determined precisely enough by MC-ICP-MS to distinguish kinetic- and equilibrium isotope fractionation, even when isotopic differences between samples are low. For low magnitudes of isotope fractionation, we exploit new, isotopically fractionated isotope standard materials (Vogl et al. 2016). We determine quality norms regarding interferences and measurement conditions to warrant trueness and to maximize precision. We exemplary explore the measurement of the three-isotope composition of Mg stable isotopes, budget the uncertainty of θ-values, and report the first θ-values of carbonate-water pairs and bioapatite. Our measurement approach adds a new dimension to isotope data beyond the δ-scale that has a high potential to reveal different modes of (bio)mineral precipitation in the sedimentary and biological record and thus to contribute solving conundrums in the Earth and Life Sciences. T2 - 13. Symposium Massenspektrometrische Verfahren der Elementspurenanalyse CY - Berlin, Germany DA - 03.09.2018 KW - Isotope fractionation KW - Delta values KW - Magnesium PY - 2018 AN - OPUS4-45898 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Vocke, B. T1 - Delta values & isotope ratios - potential CCQM comparisons N2 - The talk presents several potential CCQM comparisons for delta values and isotope ratios with a focus on metals and semi-metals. T2 - CCQM IRWG Meeting CY - Paris, France DA - 18.04.2018 KW - Isotope amount ratio KW - Traceability KW - Uncertainty PY - 2018 AN - OPUS4-45895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - You, Zengchao A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique T1 - Chemometrical analysis of spectral data obtained from glow discharge optical emission spectroscopy for elemental analysis of metals N2 - The poster shows the combination of GD-OES and machine learning. The gola of this project is to establish a new and robust calibration model, which can be used to identify elemental composition and concentration of metals from a single spectra. T2 - Salsa make and measure Konferenz CY - Online meeting DA - 16.09.2021 KW - Glow discharge optical emission spectroscopy KW - Machine learning PY - 2021 AN - OPUS4-53323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xiao, J. A1 - Vogl, Jochen A1 - Rosner, M. A1 - Jin, Z. T1 - Boron isotope fractionation in soil-plant systems and its influence on biogeochemical cycling N2 - Boron (B) is an essential mineral nutrient for higher plants. Although B plant nutrition is well studied, the B isotope fractionation at the soil-plant interface, within plant metabolism, and its influence on biogeochemical cycling is not fully understood. Boron concentrations and isotope variations (δ11B) of the dicotyledonous plants of Chenopodium album and Brassica napus and their growing soils along a climatic gradient were analyzed to decipher these unresolved issues of the B behavior. The boron concentrations and δ11B values show an increasing trend from roots to leaves for both plants, while a decreasing trend from flower to shell and to seed for Brassica napus. A large boron isotope fractionation occurs within the plants with median Δ11Bleaf-root ≈ +20‰, which is related to different boron transporters and transportation ways. Formation of borate dimerized rhamnogalacturonan II in cell and B(OH)3 transportation in xylem lead to heavier δ11B values from root to stem and leaf while B(OH)4􀀀 transportation in phloem lead to lighter δ11B values from flower to shell and seed. Although samples cover a distinct transect with systematically different climatic conditions, Δδ11B within the individual plant compartments and between the bulk plants and the soil available B do not show any systematic variation. This suggests that B uptake from the soil into Chenopodium album and Brassica napus occurs without a distinct isotope fractionation at the soil-plant interface (median Δ11Bbulkplant-soil = 􀀀 0.2‰) and plants are able to regulate boron uptake. Both the observed large B fractionation within plant and low or absent B isotope fractionation at the soil-plant interface may have profound implications for the biological and geological B cycle. If this observed boron behavior also exists in other plants, their litters would be an important source for exporting 11B-rich biological material from continental ecosystems via rivers to the global oceans. This may be helpful for the explanation of ocean B cycle and the increasing δ11B values over the Cenozoic. KW - Boron isotopic composition KW - Boron isotope fractionation KW - Soil available boron KW - Biological boron recycling KW - Chenopodium album KW - Brassica napus PY - 2022 DO - https://doi.org/10.1016/j.chemgeo.2022.120972 SN - 0009-2541 VL - 606 SP - 1 EP - 8 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-55031 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Optical spectrometry for isotope analysis N2 - Isotope analysis plays a critical role in various disciplines, including environmental science, archaeology, and forensic investigations. Traditional methods such as mass spectrometry provide precise isotopic data but often require complex, costly setups and extensive sample preparation. As an alternative, optical spectrometry has emerged as a versatile and less invasive technique. This presentation explores the advancements and applications of optical spectrometry methods in isotope analysis, emphasizing their benefits and challenges. T2 - University of Calgary PHYS 561 - Stable And Radioactive Isotope - Winter 2024 CY - Online meeting DA - 07.03.2024 KW - Isotopes KW - HR-CS-MAS KW - Chemometrics KW - Laser Ablation Molecular Absorption spectrometry KW - LAMIS PY - 2024 AN - OPUS4-59948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Winckelmann, Alexander A1 - Morcillo, Dalia A1 - Jegieka, Dennis A1 - Vogl, Jochen A1 - Florek, S. A1 - Recknagel, Sebastian T1 - Isotope analysis through the integration of chemometrics into optical spectroscopy N2 - Lithium (Li), Boron (B), Nitrogen (N), Magnesium (Mg), and Calcium (Ca) are pivotal elements across various spheres such as the hydrosphere, biosphere, and lithosphere, significantly impacting (bio-) geochemical and physiological processes. These elements exhibit stable isotopes with substantial roles in geological, environmental, and biological studies. The traditional method for measuring isotope amount ratios has been through mass spectrometry, which, despite its accuracy, comes with high operational costs, the need for skilled operators, and time-consuming sample preparation processes. Combining optical spectroscopy with chemometrics introduces an innovative, cost-effective approach by the hand of high-resolution continuum source atomic and molecular absorption spectrometry (HR-CS-AAS and HR-CS-MAS) for the analysis of isotope ratios in Li, B, N, Mg, and Ca. By analyzing the atomic or molecular absorption spectrum of the in-situ generated cloud of atoms of diatomic molecules (e.g., Li, BH, NO, MgF, CaF) during the electronic transition from the fundamental state, this method allows for the rapid determination of isotope ratios directly from sample solutions without the need for complex sample preparation. For each element, the respective atomic or molecule's absorption spectrum was deconvoluted into its isotopic components using partial least squares regression or machine learning algorithms. Robust calibration models were developed, calibrated with enriched isotope, and validated against certified reference materials. Spectral data underwent preprocessing to optimize the modeling to determine the optimal number of latent variables. The findings showcase that this optical spectrometric method yields results that agree with those obtained via inductively coupled plasma mass spectrometry (ICP-MS), offering a promising, cost-effective, and rapid alternative for isotope analysis with precisions as low as ± 0.2‰. This approach is a significant advancement in analytical chemistry, providing a new way to study isotope variations in biological, environmental, and geological samples. T2 - Analytica Conference CY - Munich, Germany DA - 09.04.2024 KW - Isotopes KW - HR-CS-MAS KW - Chemometrics KW - Lithium KW - Boron KW - Magnesium KW - Nitrogen PY - 2024 AN - OPUS4-59946 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Winckelmann, Alexander A1 - Hoffmann, Volker A1 - You, Zengchao A1 - Richter, Silke A1 - Recknagel, Sebastian T1 - What does GD-OES reveal about the aging and manufacturing processes of lithium-ion batteries? N2 - Glow-Discharge Optical Emission Spectroscopy (GD-OES), a powerful analytical technique, sheds light on the two critical aspects of lithium-ion batteries (LIBs): manufacturing and aging 1, 2. We optimized cell production in manufacturing by adjusting parameters, including cathode doping, electrolyte concentration, and pressing force. GD-OES provided in-depth elemental composition and homogeneity analysis, which is crucial for identifying optimal manufacturing conditions. These findings were validated by electrochemical impedance spectroscopy, confirming the quality of the manufactured batteries. Shifting the focus to aging, we use GD-OES for fluorine depth profiling, a key element in understanding polymer and electrolyte degradation. However, fluorine presents analytical challenges. We addressed this by substituting argon with a neon:argon mixture, which significantly enhanced fluorine detection sensitivity. This advancement not only improves accuracy but also holds the potential to guide sustainable and cost-efficient manufacturing strategies. Through its versatility, GD-OES has proven to be a powerful tool for not only optimizing LIB manufacturing processes but also gaining deeper insights into their aging mechanisms. This research extends beyond academic interest, offering tangible benefits for the industry by translating into improved battery quality, extended lifespan, and overall performance. T2 - The 6th International Glow Discharge Spectroscopy Symposium CY - Liverpool, United Kingdom DA - 21.04.2024 KW - GD-OES KW - Depth profiles KW - Lithium KW - Battery KW - Fluorine KW - Aging KW - Manufacturing KW - Glow-discharge PY - 2024 AN - OPUS4-59945 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grimmer, Christoph A1 - Strzelczyk, Rebecca A1 - Richter, Matthias A1 - Musyanovych, Anna A1 - Horn, Wolfgang T1 - Development, application and measurement uncertainty of emission reference materials N2 - Volatile organic compounds (VOCs) emitted by furniture and building materials can cause health issues. For an improvement of indoor air quality low emitting materials should be used. Quality assurance and –control (QA/QC) measures require an emission reference material (ERM) with a predictable emission rate of VOCs. The idea is to use porous materials as ERM, which store the VOCs inside their pores and emit them constantly. T2 - Webinar Metrology for Indoor Air Quality Reference materials for QA/QC of the emission test chamber procedure CY - Online meeting DA - 11.04.2024 KW - Emission reference materials KW - Indoor air quality KW - Materials emissions test KW - VOC PY - 2024 AN - OPUS4-59963 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grimmer, Christoph A1 - Richter, Matthias A1 - Musyanovych, Anna A1 - Strzelczyk, Rebecca A1 - Horn, Wolfgang T1 - Preparation of novel emission reference materials: μ-capsules & impregnated porous materials N2 - Volatile organic compounds (VOCs) emitted by furniture and building materials can cause health issues. For an improvement of indoor air quality low emitting materials should be used. Quality assurance and –control (QA/QC) measures require an emission reference material (ERM) with a predictable emission rate of VOCs. The idea is to use porous materials as ERM, which store the VOCs inside their pores and emit them constantly. T2 - WORKSHOP: METROLOGY FOR INDOOR AIR QUALITY CY - Mol, Belgium DA - 18.10.2023 KW - Emission reference materials KW - Indoor air quality KW - Materials emissions test KW - VOC PY - 2023 AN - OPUS4-59961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Riedel, Jens A1 - Larsson, H. A1 - Temps, F. A1 - Hartke, B. T1 - Resonance dynamics of DCO (<(X over tilde>(2)A') simulated with the dynamically pruned discrete variable representation (DP-DVR) N2 - Selected resonance states of the deuterated formyl radical in the electronic ground state X^2A´ are computed using our recently introduced dynamically pruned discrete variable representation [H. R. Larsson, B. Hartke, and D. J. Tannor, J. Chem. Phys. 145, 204108 (2016)]. Their decay and asymptotic distributions are analyzed and, for selected resonances, compared to experimental results obtained by a combination of stimulated emission pumping and velocity-map Imaging of the product D atoms. The theoretical results show good agreement with the experimental kinetic energy distributions. The intramolecular vibrational energy redistribution is analyzed and compared with previous results from an effective polyad Hamiltonian. Specifically, we analyzed the part of the wavefunction that remains in the interaction region during the decay. The results from the polyad Hamiltonian could mainly be confirmed. The C=O stretch quantum number is typically conserved, while the D-C=O bend quantum number decreases. Differences are due to strong anharmonic coupling such that all resonances have major contributions from several zero-order states. For some of the resonances, the coupling is so strong that no further zero-order states appear during the dynamics in the interaction region, even after propagating for 300 ps. KW - Reaction dynamics KW - Spectroscopy KW - Quantum state PY - 2018 DO - https://doi.org/10.1063/1.5026459 SN - 0021-9606 VL - 148 IS - 20 SP - 204309-1 EP - 204309-15 PB - AIP publishing CY - New York AN - OPUS4-45345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Maiwald, Michael T1 - NMR Validation - Measurement Uncertainty N2 - There is a need within the NMR community to progress forward in exploring new facets in which we can use analytical techniques to advance our understanding of various systems. One aspect the NMR community hasn’t fully encompassed is the validation process, which also involves setting reference standards, establishing a common language that directly relates to NMR, communication relating to validation, and much more. This workshopcontribution starts with an overview on international metrology for qNMR spectroscopy. Since NMR is completely described by mathematical equations, the measurement unceartainty can directly be dreived from formula. Examples are presented. These are differentiated between type A and B evaluations. Finally the Expanded Unceartainty is defined. Since the user needs a risk-based unceartainty assessment, different "leagues" for routine, advanced, and high level needs are proposed to make clear, that no all sources of uncertainty have to be taken in considerention at practical levels. T2 - Practical Applications of NMR in Industry Conference (PANIC) 2019 - Validation Workshop CY - Hilton Head Island, USA DA - 04.03.2019 KW - Quantitative NMR Spectroscopy KW - qNMR KW - Uncertainty Evaluation KW - Weighing Uncertainty KW - NMR Method Validation PY - 2019 AN - OPUS4-47509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Peters, Claudia A1 - Maiwald, Michael T1 - Interlaboratory Comparison of Low-Field NMR Spectrometers – Purities at 200 and 10 mmol/L - Preliminary Results N2 - Due to its advantages of being a direct comparison method, quantitative NMR spectroscopy (qNMR) becomes more and more popular in industry. While conventional high-field NMR systems are often associated with high investment and operational costs, the upcoming market of permanent-magnet based benchtop NMR systems show a considerable option for a lot of applications. The mobility of these systems allows to bring them more closely to the real production environment, e.g. for at-line quality control. In this work we present an interlaboratory comparison study investigating the qNMR performance of state-of-the-art benchtop NMR spectrometers. Therefore, BAM prepared two samples of a mixture of NMR reference standards tetramethylbenzene (TMB) and tetrachloronitrobenzene (TCNB) at concentration levels of 200 mM and 10 mM. These “ready-to-use” samples were sent to participant laboratories, which performed analysis on their benchtop NMR equipment of different vendors and fields from 43 to 80 MHz. Raw data was reported back and further investigated by using different data analysis methods at BAM. After this very first qNMR comparison study of benchtop NMR spectrometers show promising results, following studies are planned to cover more parts of the qNMR process, e.g. sample preparation and weighing, but also data analysis, as commonly done in similar studies for high-field NMR spectroscopy in industry and metrology. T2 - 7th Practical Applications of NMR in Industry Conference (PANIC) CY - Hilton Head Island, SC, USA DA - 04.03.2019 KW - qNMR KW - Benchtop NMR KW - Interlaboratory Comparison PY - 2019 AN - OPUS4-47512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Peters, Claudia A1 - Maiwald, Michael T1 - Interlaboratory comparison of low-field NMR spectrometers – Purities at 200 and 10 mmol/L - Preliminary results N2 - Due to its advantages of being a direct comparison method, quantitative NMR spectroscopy (qNMR) becomes more and more popular in industry. While conventional high-field NMR systems are often associated with high investment and operational costs, the upcoming market of permanent-magnet based benchtop NMR systems show a considerable option for a lot of applications. The mobility of these systems allows to bring them more closely to the real production environment, e.g. for at-line quality control. In this work we present an interlaboratory comparison study investigating the qNMR performance of state-of-the-art benchtop NMR spectrometers. Therefore, BAM prepared two samples of a mixture of NMR reference standards tetramethylbenzene (TMB) and tetrachloronitrobenzene (TCNB) at concentration levels of 200 mM and 10 mM. These “ready-to-use” samples were sent to participant laboratories, which performed analysis on their benchtop NMR equipment of different vendors and fields from 43 to 80 MHz. Raw data was reported back and further investigated by using different data analysis methods at BAM. After this very first qNMR comparison study of benchtop NMR spectrometers show promising results, following studies are planned to cover more parts of the qNMR process, e.g. sample preparation and weighing, but also data analysis, as commonly done in similar studies for high-field NMR spectroscopy in industry and metrology. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2019 KW - qNMR KW - Benchtop NMR KW - Interlaboratory Comparison PY - 2019 AN - OPUS4-47662 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy: A Versatile Tool for Automated Continuous-Flow Production of Chemicals and Pharmaceuticals N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short down-times between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. The advances of a fully automated NMR sensor were exploited, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as , e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. In future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - Global PAT Meeting Bayer AG CY - Berlin, Germany DA - 12.11.2019 KW - Process Analytical Technology KW - Reaction Monitoring KW - Online NMR Spectroscopy KW - CONSENS PY - 2019 AN - OPUS4-49602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maiwald, Michael T1 - The internet of things in the lab and in process - The digital transformation challenges for the laboratory 4.0 T1 - Das Internet of Things in Labor und Prozess - Herausforderungen des digitalen Wandels für das Labor 4.0 N2 - It is a fact that much of the time spent on analytical laboratory instrumentation these days goes into system maintenance. Digital transformation could give us more time again for creativity and our actual laboratory work – if we shape it the right way. N2 - Fakt ist: Einen Großteil der Zeit, der an analytischen Laborgeräten verbracht wird, nimmt heute die Systempflege in Anspruch. Der digitale Wandel kann uns endlich wieder mehr Zeit für Kreativität und die eigentliche Laborarbeit geben – wenn wir ihn richtig gestalten. KW - Lab of the Future KW - Digitalisation KW - Automation KW - Data Analysis KW - Instrument Communication KW - Labor der Zukunft KW - Digitale Transformation KW - Automatisierung KW - Gerätekommunikation PY - 2020 IS - 4 SP - 1 EP - 3 PB - Lumitos AG CY - Darmstadt AN - OPUS4-50618 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Isleyen, Alper A1 - Can, Suleyman Z. A1 - Cankur, Oktay A1 - Tunc, Murat A1 - Vogl, Jochen A1 - Koenig, Maren A1 - Horvat, Milena A1 - Jacimovic, Radojko A1 - Zuliani, Tea A1 - Fajon, Vesna A1 - Jotanovic, Aida A1 - Gaževic, Luka A1 - Milosevic, Milena A1 - Ochsenkuehn–Petropoulou, Maria A1 - Tsopelas, Fotis A1 - Lymberopoulou, Theopisti A1 - Tsakanika, Lamprini-Areti A1 - Serifi, Olga A1 - Ochsenkuehn, Klaus M. A1 - Bulska, Ewa A1 - Tomiak, Anna A1 - Kurek, Eliza A1 - Cakılbahçe, Zehra A1 - Aktas, Gokhan A1 - Altuntas, Hatice A1 - Basaran, Elif A1 - Kısacık, Barıs A1 - Gumus, Zeynep T1 - Certification of the total element mass fractions in UME EnvCRM 03 soil sample via a joint research project N2 - Soil certified reference material (CRM), UME EnvCRM 03 was produced by a collaborative approach among national metrology institutes, designated institutes and university research laboratories within the scope of the EMPIR project: Matrix Reference Materials for Environmental Analysis. This paper presents the sampling and processing methodology, homogeneity, stability, characterization campaign, the assignment of property values and their associated uncertainties in compliance with ISO 17034:2016. The material processing methodology involves blending a natural soil sample with a contaminated soil sample obtained by spiking elemental solutions for 8 elements (Cd, Co, Cu, Hg, Ni, Pb, Sb and Zn) to reach the level of warning risk monitoring values specified for metals and metalloids of soils in Europe. Comparative homogeneity and stability test data were obtained by two different institutes, ensuring the reliability and back up of the data. The certified values and associated expanded uncertainties for the total mass fractions of thirteen elements (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, V and Zn) are established. The developed CRM can be used for the development and validation of measurement procedures for the determination of the total mass fractions of elements in soil and also for quality control/assurance purposes. The developed CRM is the first example of a soil material originating from Türkiye. KW - Total element content KW - Soil KW - CRM KW - Certification KW - Environmental pollution monitoring PY - 2024 DO - https://doi.org/10.1007/s00769-024-01597-8 SN - 1432-0517 SP - 1 EP - 9 PB - Springer Science and Business Media LLC AN - OPUS4-59954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Temgoua, Ranil C.T. A1 - Dontsi, Fabiola T. A1 - Lebègue, Estelle A1 - Thobie-Gautier, Christine A1 - Tonlé, Ignas K. A1 - Boujtita, Mohammed T1 - Understanding the behavior of phenylurazole-tyrosine-click electrochemical reaction using hybrid electroanalytical techniques N2 - In this work, the electrochemical behavior of 4-phenylurazole (Ph-Ur) was studied and the latter was used as a molecular anchor for the electrochemical bioconjugation of tyrosine (Y). Cyclic voltammetry (CV) and controlled potential coulometry (CPC) allowed the in-situ generation of the PTAD (4-phenyl-3 H-1,2,4-triazole-3,5(4 H)-dione) species from phenylurazole on demand for tyrosine electrolabeling. The chemoselectivity of the reaction was studied with another amino acid (lysine, Lys) and no changes in Lys were observed. To evaluate the performance of tyrosine electrolabeling, coulometric analyses at controlled potentials were performed on solutions of phenylurazole and the phenylurazole-tyrosine mixture in different proportions (2:1, 1:1, and 1:2). The electrolysis of the phenylurazole-tyrosine mixture in the ratio (1:2) produced a charge of 2.07 C, very close to the theoretical value (1.93 C), with high reaction kinetics, a result obtained here for the first time. The products obtained were identified and characterized by liquid chromatography coupled to high-resolution electrospray ionization mass spectrometry (LC-HRMS and LC- HRMS2). Two products were formed from the click reactions, one of which was the majority. Another part of this work was to study the electrochemical degradation of the molecular anchor 4-phenylazole (Ph-Ur). Four stable degradation products of phenylurazole were identified (C7H9N2O, C6H8N, C6H8NO, C14H13N4O2) based on chromatographic profiles and mass spectrometry results. The charge generated during the electrolysis of phenylurazole (two-electron process) (2.85 C) is inconsistent with the theoretical or calculated charge (1.93 C), indicating that secondary/parasitic reactions occurred during the electrolysis of the latter. In conclusion, the electrochemically promoted click phenylurazole-tyrosine reactions give rise to click products with high reaction kinetics and yields in the (1:2) phenylurazole-tyrosine ratios, and the presence of side reactions is likely to affect the yield of the click phenylurazole-tyrosine reaction. KW - Clinical Biochemistry KW - Spectroscopy KW - Drug Discovery KW - Pharmaceutical Science KW - Analytical Chemistry PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599267 DO - https://doi.org/10.1016/j.jpba.2024.116147 VL - 245 SP - 1 EP - 8 PB - Elsevier BV AN - OPUS4-59926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herter, Sven-Oliver A1 - Koch, Matthias A1 - Haase, Hajo T1 - First Synthesis of Ergotamine-13CD3 and Ergotaminine-13CD3 from Unlabeled Ergotamine N2 - Ergot alkaloids (EAs) formed by Claviceps fungi are one of the most common food contaminants worldwide, affecting cereals such as rye, wheat, and barley. To accurately determine the level of contamination and to monitor EAs maximum levels set by the European Union, the six most common EAs (so-called priority EAs) and their corresponding epimers are quantified using high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). The quantification of EAs in complex food matrices without appropriate internal tandards is challenging but currently carried out in the standard method EN 7425:2021 due to their commercial unavailability. To address the need for isotopically labeled EAs, we focus on two semi-synthetic approaches for the synthesis of these reference standards. Therefore, we investigate the feasibility of the N6-demethylation of native ergotamine to yield norergotamine, which can subsequently be remethylated with an isotopically labeled methylating reagent, such as iodomethane (13CD3-I), to yield isotopically labeled ergotamine and its C8-epimer ergotaminine. Testing the isotopically labeled ergotamine/-inine against native ergotamine/-inine with HPLC coupled to high-resolution HR-MS/MS proved the structure of ergotamine-13CD3 and ergotaminine-13CD3. Thus, for the first time, we can describe their synthesis from unlabeled, native ergotamine. Furthermore, this approach is promising as a universal way to synthesize other isotopically labeled EAs. KW - Reference Material KW - HPLC-MS/MS KW - Mycotoxins KW - Standards KW - Organic Synthesis KW - Isotope PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600167 DO - https://doi.org/10.3390/toxins16040199 VL - 16 IS - 4 SP - 1 EP - 12 PB - MDPI AN - OPUS4-60016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Retzmann, Anika A1 - Faßbender, Sebastian A1 - Rosner, M. A1 - von der Au, Marcus A1 - Vogl, Jochen T1 - Performance of second generation ICP-TOFMS for (multi-)isotope ratio analysis: a case study on B, Sr and Pb and their isotope fractionation behavior during the measurements N2 - The performance of second generation ICP-TOFMS, equipped with a micro-channel plate (MCP) enabling multi-isotope detection, in terms of isotope ratio precision and instrumental isotopic fractionation (IIF) for (multi-)isotope ratio analysis was thoroughly assessed for B, Sr and Pb. Experimental isotope ratio precision of 0.14 % for 11B/10B intensity ratio, 0.15 % for 87Sr/86Sr intensity ratio and 0.07% for 208Pb/206Pb intensity ratio were obtained at high signal levels ($500 mg L−1) which is comparable to first generation ICP-TOFMS. The long-term stability of isotope ratios, measured over several hours and expressed as repeatability, is between 0.05 % and 1.8 % for B, Sr and Pb. The observed IIF per mass unit is negative for B (i.e., −11 % for 11B/10B) which is in accordance with measurements using sector field (MC) ICP-MS. But the observed IIF per mass unit is positive for Sr (i.e., 2 % for 87Sr/86Sr) and Pb (i.e., 4.5 % for 208Pb/206Pb) which is not in accordance with measurements using sector field (MC) ICP-MS. Furthermore, different IIFs per mass unit were observed for different isotope pairs of the same isotopic system (i.e., Sr, Pb) and adjacent isotopic systems (i.e., Pb vs. Tl). This and the observations from three-isotope plots for Sr and Pb show that ion formation, ion extraction, ion transmission, ion separation and ion detection in second generation ICP-TOFMS is subject to IIF that does not follow the known mass dependent fractionation laws and is possibly caused by mass independent fractionation and/or multiple (contradictory) fractionation processes with varying contributions. The non-mass dependent IIF behavior observed for second generation ICP TOFMS has profound consequences for the IIF correction of isotope raw data, including application of multi-isotope dilution mass spectrometry (IDMS) using ICP-TOFMS. Hence, only IIF correction models that correct also for mass independent fractionation are applicable to calculate reliable isotope ratios using second generation ICP-TOFMS. In the present study, reliable d11B values, and absolute B, Sr and Pb isotope ratios could be determined using the SSB approach in single-element solutions as well as in a mixture of B, Sr and Pb, where the isotopes were measured simultaneously. KW - ICP-TOFMS KW - Isotope delta value KW - Isotope amount ratio KW - Conventional isotope ratio KW - Instrumental isotope fractionation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582239 DO - https://doi.org/10.1039/d3ja00084b SN - 0267-9477 VL - 38 IS - 10 SP - 2144 EP - 2158 PB - Royal Society of Chemistry AN - OPUS4-58223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Kipphardt, Heinrich A1 - Richter, Silke A1 - Bremser, Wolfram A1 - Arvizu Torres, M. A1 - Lara Manzano, J. A1 - Buzoianu, M. A1 - Hill, S. A1 - Petrov, P. A1 - Goenaga-Infante, H. A1 - Sargent, M. A1 - Fisicaro, P. A1 - Labarraque, G. A1 - Zhou, T. A1 - Turk, G. C. A1 - Winchester, M. A1 - Miura, T. A1 - Methven, B. A1 - Sturgeon, R. A1 - Jährling, R. A1 - Rienitz, O. A1 - Mariassy, M. A1 - Hankova, Z. A1 - Sobina, E. A1 - Krylov, A. I. A1 - Kustikov, Y. A. A1 - Smirnov, V. V. T1 - Establishing comparability and compatibility in the purity assessment of high purity zinc as demonstrated by the CCQM-P149 intercomparison N2 - For the first time, an international comparison was conducted on the determination of the purity of a high purity element. Participants were free to choose any analytical approach appropriate for their institute’s applications and services. The material tested was a high purity zinc, which had earlier been assessed for homogeneity and previously used in CCQM-K72 for the determination of six defined metallic impurities. Either a direct metal assay of the Zn mass fraction was undertaken by EDTA titrimetry, or an indirect approach was used wherein all impurities, or at least the major ones, were determined and their sum subtracted from ideal purity of 100 %, or 1 kg/kg. Impurity assessment techniques included glow discharge mass spectrometry, inductively coupled plasma mass spectrometry and carrier gas hot extraction/combustion analysis. Up to 91 elemental impurities covering metals, non-metals and semi-metals/metalloids were quantified. Due to the lack of internal experience or experimental capabilities, some participants contracted external laboratories for specific analytical tasks, mainly for the analysis of non-metals. The reported purity, expressed as zinc mass fraction in the high purity zinc material, showed excellent agreement for all participants, with a relative standard deviation of 0.011 %. The calculated reference value, w(Zn) = 0.999 873 kg/kg, was assigned an asymmetric combined uncertainty of + 0.000025 kg/kg and – 0.000028 kg/kg. Comparability amongst participating metrology institutes is thus demonstrated for the purity determination of high purity metals which have no particular difficulties with their decomposition / dissolution process when solution-based analytical methods are used, or which do not have specific difficulties when direct analysis approaches are used. Nevertheless, further development is required in terms of uncertainty assessment, quantification of non-metals and the determination of purity of less pure elements and/or for those elements suffering difficulties with the decomposition process. KW - Purity assessment KW - Direct metal assay KW - Impurity assessment KW - Non-metal analysis KW - High-purity elements KW - SI-traceability PY - 2018 DO - https://doi.org/10.1088/1681-7575/aaa677 SN - 1681-7575 SN - 0026-1394 VL - 55 IS - 2 SP - 211 EP - 221 PB - Institute of Physics Publishing CY - Bristol AN - OPUS4-44257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Yi A1 - Danischewski, Julia A1 - Molnar, Brian A1 - Riedel, Jens A1 - Shelley, Jacob T1 - Manipulation of Gaseous Ions with Acoustic Fields at Atmospheric Pressure N2 - The ability to controllably move gaseous ions is an essential aspect of ion-based spectrometry (e.g., mass spectrometry and ion mobility spectrometry) as well as materials processing. At higher pressures, ion motion is largely governed by diffusion and multiple collisions with neutral gas molecules. Thus, high-pressure ion optics based on electrostatics require large fields, radio frequency drives, complicated geometries, and/or partially transmissive grids that become contaminated. Here, we demonstrate that low-power standing acoustic waves can be used to guide, block, focus, and separate beams of ions akin to electrostatic ion optics. Ions preferentially travel through the static-pressure regions (“nodes”) while neutral gas does not appear to be impacted by the acoustic field structure and continues along a straight trajectory. This acoustic ion manipulation (AIM) approach has broad implications for ion manipulation techniques at high pressure, while expanding our fundamental understanding of the behavior of ions in gases. KW - Ion mobility spectrometry KW - Acoustic KW - Mass spectrometry PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600704 DO - https://doi.org/10.1021/jacs.4c01224 SP - 1 EP - 6 PB - ACS Publications AN - OPUS4-60070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fiedler, Saskia A1 - Frenzel, Florian A1 - Würth, Christian A1 - Tavernaro, Isabella A1 - Grüne, M. A1 - Schweizer, S. A1 - Engel, A. A1 - Resch-Genger, Ute T1 - Interlaboratory Comparison on Absolute Photoluminescence Quantum Yield Measurements of Solid Light Converting Phosphors with Three Commercial Integrating Sphere Setups N2 - Scattering luminescent materials dispersed in liquid and solid matrices and luminescent powders are increasingly relevant for fundamental research and industry. Examples are luminescent nano- and microparticles and phosphors of different compositions in various matrices or incorporated into ceramics with applications in energy conversion, solid-state lighting, medical diagnostics, and security barcoding. The key parameter to characterize the performance of these materials is the photoluminescence/fluorescence quantum yield (Φf), i.e., the number of emitted photons per number of absorbed photons. To identify and quantify the sources of uncertainty of absolute measurements of Φf of scattering samples, the first interlaboratory comparison (ILC) of three laboratories from academia and industry was performed by following identical measurement protocols. Thereby, two types ofcommercial stand-alone integrating sphere setups with different illumination and detection geometries were utilized for measuring the Φf of transparent and scattering dye solutions and solid phosphors, namely, YAG:Ce optoceramics of varying surface roughness, used as converter materials for blue light emitting diodes. Special emphasis was dedicated to the influence of the measurement geometry, the optical properties of the blank utilized to determine the number of photons of the incident excitation light absorbed by the sample, and the sample-specific surface roughness. While the Φf values of the liquid samples matched between instruments, Φf measurements of the optoceramics with different blanks revealed substantial differences. The ILC results underline the importance of the measurement geometry, sample position, and blank for reliable Φf data of scattering the YAG:Ce optoceramics, with the blank’s optical properties accounting for uncertainties exceeding 20%. KW - Nano KW - Fluorescence KW - Reference material KW - Luminescence KW - Quantitative spectroscopy KW - Particle KW - Quantum yield KW - Quality assurance KW - Phosphor KW - Converter material KW - Lifetime KW - Interlaboratory comparison KW - Method KW - Uncertainty PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600945 DO - https://doi.org/10.1021/acs.analchem.4c00372 SN - 0003-2700 SP - 6730 EP - 6737 PB - ACS Publications AN - OPUS4-60094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hübner, Oskar A1 - Resch-Genger, Ute A1 - Wegner, Karl David A1 - Hoffmann, Kristin T1 - Lifetime Barcoding of Polystyrene Beads with Fluorescent Nanocrystals for Fluorescent Lifetime Detection in Flow Cytometry N2 - Multiplexed encoding schemes of nano- and micrometer sized polymer particles with fluorescent dyes or quantum dots (QDs) and their optical detection, are of increasing interest for applications in the life sciences, for example in flow cytometry. Almost all strategies utilizing fluorescence focus on spectrally distinguishable emission bands or colors and different intensity levels as fluorescence codes. In this work the goal is to perform multiplexing with encoding fluorophores with different fluorescence lifetimes (LTs). In comparison to the spectral multiplexing strategies this has the advantage, that the different fluorescence LT codes can be measured with the same excitation and emission wavelength, thus reducing instrumental costs. Moreover, LTs should not depend on emitter concentration. Unlike organic dyes, the LTs of which are typically <10ns, the fluorescence LTs of ternary semiconductor QDs which represent a “green” alternative to conventional Cd-containing QDs are in the range of several hundred ns, independent of oxygen concentration, and can be tuned to a certain extent by chemical composition and surface chemistry. This presents a time region that can barely be covered by other emitters that have either much shorter or longer lifetimes. In this project, different encoding strategies will be assessed, and the encoded particles will then be used for fluorescence assays for the analysis of several targets in parallel. Therefore, the encoded particles will be functionalized with different target-specific bioligands and read out with a specifically designed flow cytometer enabling time-resolved fluorescence detection. With this instrument, the particles will be discriminated by their fluorescence LTs in one detection channel while the analytes will be quantified by fluorescence labels in a second channel in the intensity domain. T2 - Tag der Chemie 2019 CY - Berlin, Germany DA - 11.07.2019 KW - Multiplexing KW - Lifetime KW - Bead KW - Flow cytometry KW - Fluorescence KW - Quantum dot KW - InP KW - AIS KW - Dye KW - Encoding KW - Barcoding KW - Assay KW - Method PY - 2019 AN - OPUS4-49722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wegner, Karl David A1 - Coro, A. A1 - Marquez, R. M. A1 - Le Guevel, X. A1 - Juarez, B. H. A1 - Resch-Genger, Ute T1 - Exploring the photoluminescence of gold NCs and Ag2S NPs to boost their SWIR emission N2 - Current challenges and objectives for non-invasive optical bioimaging are deep tissue penetration, high detection sensitivity, high spatial and temporal resolution, and fast data acquisition. A promising spectral window to tackle these challenges is the short-wave infrared (SWIR) ranging from 900 nm to 1700 nm where scattering, absorption, and autofluorescence of biological components are strongly reduced compared to the visible/NIR. At present, the best performing SWIR contrast agents are based on nanomaterials containing toxic heavy-metal ions like cadmium or lead, which raises great concerns for biological applications. Promising heavy-metal free nanoscale candidates are gold nanoclusters (AuNCs) and Ag2S nanoparticles (NPs). The photoluminescence (PL) of both types of nanomaterials is very sensitive to their size, composition of their surface ligand shell, and element composition, which provides an elegant handle to fine-tune their absorption and emission features and boost thereby the size of the signals recorded in bioimaging studies. Aiming for the development of SWIR contrast agents with optimum performance, we dived deeper into the photophysical processes occurring in these nanomaterials, thereby exploring in depth how the environment, surface ligand composition, and the incorporation of transition metals influence the optical properties of AuNCs and Ag2S NPs. We observed a strong enhancement of the SWIR emission of AuNCs upon exposure to different local environments (in solution, polymer, and in the solid state). Addition of metal ions such as Zn2+ to Ag2S based NPs led to a strong PL enhancement, yielding PL quantum yields of about 10% and thus making them highly suitable for non-invasive deep imaging of vascular networks and 3D fluid flow mapping. T2 - NaNaX 10 - Nanoscience with Nanocrystals CY - Klosterneuburg, Austria DA - 03.07.2023 KW - Quantum dots KW - Ag2S KW - Fluorescence KW - SWIR KW - Gold nanocluster KW - Nanomaterial KW - bioimaging PY - 2023 AN - OPUS4-58104 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wegner, Karl David A1 - Coro, A. A1 - Le Guevel, X. A1 - Juarez, B. H. A1 - Resch-Genger, Ute T1 - SWIR luminescent nanomaterials – key chemical parameters for bright probes for in vivo bioimaging N2 - A current challenge for studying physio-pathological phenomena and diseaserelated processes in living organisms with non-invasive optical bioimaging is the development of bright optical reporters that enable deep tissue penetration, a high detection sensitivity, and a high spatial and temporal resolution. The focus of this project are nanomaterials, which absorb and emit in the shortwave infrared (SWIR) between ~900–2500 nm where scattering, absorption, and autofluorescence of the tissue are strongly reduced compared to the visible and NIR. T2 - QD2024 - 12th International Conference on Quantum Dots CY - Munich, Germany DA - 18.03.2024 KW - Quantum dots KW - Advanced nanomaterials KW - Fluorescence KW - Quality assurance KW - Gold nanocluster KW - Shortwave infrared KW - Spectroscopy KW - Bioimaging PY - 2024 AN - OPUS4-59783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Pauli, J. A1 - Güttler, Arne A1 - Richter, Maria A1 - Fiedler, Saskia A1 - Frenzel, Florian A1 - Wegner, Karl David A1 - Würth, Christian T1 - Photoluminescence Quantum Yields of Luminescent Nanocrystals and Particles in the UV/vis/NIR/SWIR N2 - The rational design of functional luminescent materials such as semiconductor quantum dots and lanthanide-based upconversion nanoparticles, all photophysical and mechanistic studies, and the comparison of different emitters require accurate and quantitative photoluminescence measurements. Particularly the reliable determination of the key performance parameter photoluminescence quantum yield (f), the number of emitted per absorbed photons, and the brightness are of special importance for luminescence applications in the life and material sciences and nano(bio)photonics.[1] In this context, examples for absolute measurements of the photoluminescence quantum yields of UV/vis/NIR/SWIR emissive semiconductor quantum dots and rods, made from different materials, and spectrally shifting lanthanide upconversion nanocrystals with different surface chemistries in transparent matrices are presented including excitation wavelength and power density dependent studies utilizing integration sphere spectroscopy.[2,3] In addition, procedures for the absolute determination of the photoluminescence quantum yields of scattering dispersions of larger size quantum rods and differently sized inorganic particles have been developed as well as procedures for the characterization of solid luminescent nanomaterials such as different perovskites and YAG:Cer converter materials.[4] Thereby, challenges and pitfalls of f measurements in different wavelength regions including the SWIR and material-specific effects related to certain emitter classes are addressed, achievable uncertainties are quantified, and relative and absolute measurements of photoluminescence quantum yield measurements are compared to underline limitations of the former approach. Finally, a set of novel UV/vis/NIR quantum yield standards is presented including their certification with a complete uncertainty budget.[5] T2 - NANAX 10 CY - Klosterneuburg, Austria DA - 03.07.2023 KW - Fluorescence KW - Optical spectroscopy KW - Reference data KW - Traceability KW - NIR KW - Scattering KW - Reference material KW - Certification KW - Quality assurance KW - Dye KW - Reference product KW - SWIR KW - Nano KW - Particle KW - Perovskite KW - Integrating sphere spectroscopy KW - Quantum yield PY - 2023 AN - OPUS4-58238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Relling, Alexander A1 - Wegner, Karl David A1 - Niermann, L. A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute T1 - Copper doped AgInS2-ZnS QDs from a single-source-precursor N2 - Quaternary semiconductor nanocrystals like AgInS2-ZnS solid solution quantum dots (QDs) are a highly promising material for material science and biomedical applications due to their tunable photoluminescence (PL), their high quantum yields (QY), and their low cytotoxicity1. A red shift of the PL into the NIR and SWIR region could further increase their application potential. Copper doping has been proven to be a suitable approach for bathochromically shifting the PL of QDs2. The synthesis of copper doped AgInS2-ZnS QDs from a single-source-precursor should enable an easily scalable synthesis with high reproducibility. T2 - Summer School "Exciting nanostructures: characterizing advanced confined systems" CY - Bad Honnef, Germany DA - 18.07.2021 KW - Nanocrystals KW - Quantum dots KW - Doping KW - AgInS2 KW - Single-source-precursor PY - 2021 AN - OPUS4-53129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chazeau, E. A1 - Fabre, C. A1 - Privat, M. A1 - Godard, A. A1 - Racoeur, C. A1 - Bodio, E. A1 - Busser, B. A1 - Wegner, Karl David A1 - Sancey, L. A1 - Paul, C. A1 - Goze, C. T1 - Comparison of the In Vitro and In Vivo Behavior of a Series of NIR-II-Emitting Aza-BODIPYs Containing Different Water-Solubilizing Groups and Their Trastuzumab Antibody Conjugates N2 - The development of new fluorescent organic probes effective in the NIR-II region is currently a fast-growing field and represents a challenge in the domain of medical imaging. In this study, we have designed and synthesized an innovative series of aza-boron dipyrromethenes emitting in the NIR-II region. We have investigated the effect of different water-solubilizing groups not only on the photophysical properties of the compounds but also on their in vitro and in vivo performance after bioconjugation to the antibody trastuzumab. Remarkably, we discovered that the most lipophilic compound unexpectedly displayed the most favorable in vivo properties after bioconjugation. This underlines the profound influence that the fluorophore functionalization approach can have on the efficiency of the resulting imaging agent. KW - NIR-II KW - In vivo imaging KW - Fluorescence KW - Spectroscopy KW - Antibody conjugates PY - 2024 DO - https://doi.org/10.1021/acs.jmedchem.3c02139 SN - 1520-4804 VL - 67 IS - 5 SP - 3679 EP - 3691 PB - ACS Publications CY - Washington, DC AN - OPUS4-59607 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -