TY - CONF A1 - Raysyan, Anna T1 - A fast dipstick immunoassay for the determination of DCF in the breast milk N2 - Diclofenac (DCF) is a non-steroidal anti-inflammatory drug (NSAID) with analgetic, anti-inflammatory, and antipyretic properties. The mechanism of action of diclofenac, like that of other NSAIDs, involves inhibition of cyclooxygenase (COX-1 and COX-2). Another pharmacological effect is preventing of prostaglandin synthesis in vitro. Prostaglandins are mediators of inflammation, because diclofenac is an inhibitor of prostaglandin synthesis. A method has been developed to analyse for diclofenac (DCF) in the milk. T2 - BIONNALE Speed Lecture Award 2018 CY - Berlin, Germany DA - 20.06.2018 KW - Milk KW - DCF KW - Immunoassay PY - 2018 AN - OPUS4-46753 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Langenhan, Jennifer A1 - Jaeger, Carsten A1 - Baum, K. A1 - Simon, M. A1 - Lisec, Jan T1 - A Flexible Tool to Correct Superimposed Mass Isotopologue Distributions in GC‐APCI‐MS Flux Experiments N2 - The investigation of metabolic fluxes and metabolite distributions within cells by means of tracer molecules is a valuable tool to unravel the complexity of biological systems. Technological advances in mass spectrometry (MS) technology such as atmospheric pressure chemical ionization (APCI) coupled with high resolution (HR), not only allows for highly sensitive analyses but also broadens the usefulness of tracer‐based experiments, as interesting signals can be annotated de novo when not yet present in a compound library. However, several effects in the APCI ion source, i.e., fragmentation and rearrangement, lead to superimposed mass isotopologue distributions (MID) within the mass spectra, which need to be corrected during data evaluation as they will impair enrichment calculation otherwise. Here, we present and evaluate a novel software tool to automatically perform such corrections. We discuss the different effects, explain the implemented algorithm, and show its application on several experimental datasets. This adjustable tool is available as an R package from CRAN. KW - Mass Spectrometry KW - Isotopologue Distribution KW - Metabolic Flux KW - R package PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547318 DO - https://doi.org/10.3390/metabo12050408 VL - 12 IS - 5 SP - 1 EP - 10 PB - MDPI AN - OPUS4-54731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wasmer, Paul A1 - Krome, Fabian A1 - Bulling, Jannis A1 - Prager, Jens T1 - A fluid model for the simulation of fluid-structure interaction in the scaled Boundary finite element method for prismatic Structures N2 - The Scaled Boundary Finite Element Method (SBFEM) for prismatic structures is an efficient method for the simulation of acoustic behavior. Hence a further development of the method is of great interest. The wave propagation can be calculated for isotropic and anisotropic materials in solids. As for many applications the acoustic behavior in fluids and the behavior in case of fluid-structure interaction (FSI) is subject of research, the implementation of a fluid model in SBFEM for prismatic structures is needed. In case of FSI the coupling between fluid and solid domains can be performed without additional effort when describing both domains in the same variables. Hence a displacement-based fluid description is used. As the discretized formulation leads to spurious modes, a penalty method to suppress the unphysical behavior is chosen. To validate the derived model a comparison with analytical solutions of purely fluid domains is made. As to verify that in case of FSI the model shows the right behavior, dispersion curves of water-filled pipes are calculated and compared to results obtained with Comsol. T2 - 89th GAMM Annual Meeting CY - Munich, Germany DA - 19.03.2018 KW - Scaled Boundary Finite Element Method KW - Fluid-Structure Interaction KW - Penalty Parameter PY - 2018 AN - OPUS4-45260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wasmer, Paul A1 - Krome, Fabian A1 - Bulling, Jannis A1 - Prager, Jens T1 - A fluid model for the simulation of fluid‐structure interaction in the Scaled Boundary Finite Element Method for prismatic structures N2 - The Scaled Boundary Finite Element Method is known as an efficient method for the simulation of ultrasonic wave propagation. As to investigate acoustic wave behavior in case of fluid‐structure interaction, a fluid model is implemented in the SBFEM for prismatic structures. To omit coupling terms a displacement‐based formulation is used. Spurious modes, which occur in the solution, are suppressed using a penalty parameter. To verify this formulation dispersion curves obtained with Comsol Multiphysics are compared to results of SBFEM. The results of both methods are in very good agreement T2 - GAMM 2018 CY - Munich, Germany DA - 19.03.2018 KW - Scaled Boundary Finite Element Method KW - Penalty Parameter KW - Fluid-Structure Interaction KW - Guided Waves PY - 2018 DO - https://doi.org/10.1002/pamm.201800139 VL - 18 IS - 1 SP - e201800139 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-47063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lange, M. A. A1 - Khan, I. A1 - Opitz, P. A1 - Hartmann, J: A1 - Ashraf, M. A1 - Qurashi, A. A1 - Prädel, L. A1 - Panthöfer, M. A1 - Cossmer, Antje A1 - Pfeifer, Jens A1 - Simon, Fabian A1 - von der Au, Marcus A1 - Meermann, Björn A1 - Mondeshki, M. A1 - Tahir, M. N. A1 - Tremel, W. T1 - A Generalized Method for High-Speed Fluorination of Metal Oxides by Spark Plasma Sintering Yields Ta3O7F and TaO2F with High Photocatalytic Activity for Oxygen Evolution from Water N2 - A general method to carry out the fluorination of metal oxides with poly(tetrafluoroethylene) (PTFE, Teflon) waste by spark plasma sintering (SPS) on a minute scale with Teflon is reported. The potential of this new approach is highlighted by the following results. i) The tantalum oxyfluorides Ta3O7F and TaO2F are obtained from plastic scrap without using toxic or caustic chemicals for fluorination. ii) Short reaction times (minutes rather than days) reduce the process time the energy costs by almost three orders of magnitude. iii) The oxyfluorides Ta3O7F and TaO2F are produced in gram amounts of nanoparticles. Their synthesis can be upscaled to the kg range with industrial sintering equipment. iv) SPS processing changes the catalytic properties: while conventionally prepared Ta3O7F and TaO2F show little catalytic activity, SPS-prepared Ta3O7F and TaO2F exhibit high activity for photocatalytic oxygen evolution, reaching photoconversion efficiencies up to 24.7% and applied bias to photoconversion values of 0.86%. This study shows that the materials properties are dictated by the processing which poses new challenges to understand and predict the underlying factors. KW - Fluorination KW - Oxygen evolution reaction KW - Photocatalysis KW - Spark plasma sintering KW - Tantalum oxyfluorides PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524329 DO - https://doi.org/10.1002/adma.202007434 VL - 23 IS - 20 SP - 7434 PB - Wiley‐VCH GmbH AN - OPUS4-52432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bosc-Bierne, Gaby T1 - A generic, cost-efficient HPLC-HRMS method for quality control of peptide pools N2 - Synthetic peptide pools are used in antigen-specific T-cell assays, which are an important part in vaccine and immunotherapeutic clinical trials. As the analytical characterization is challenging due to the similarity of the single peptides or is expensive due to isotope labeled standards, usually only a pre-characterization of the single peptides is performed. However, a regular quality control of the peptide mix would be highly desirable. Therefore, a cost-efficient high performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS) method for quality control of a model peptide pool is developed. Peptides were synthesized using peptides&elephants proprietary libraries of individual peptides (LIPS) technology and purified by reversed-phase chromatography to > 90% each. The lyophilized single peptides were combined to a model peptide pool and analyzed by reversed-phase high-performance capillary liquid chromatography coupled to an orbitrap mass spectrometer. Separation was performed on a capillary reversed phase column (2 μm, ID x L 300 μm x 150 mm) with a linear gradient of acetonitrile + 0,05% trifluoroacetic acid. After optimizing the injection mode, the gradient elution, the temperature and the additives a model peptide pool was separated. The extracted ion chromatogram (XIC) was studied to confirm the exact masses. By combination of capillary HPLC and HRMS a new cost-efficient quality control method could be developed for the separation and identification of complex synthetic peptide pools. T2 - 5th European Congress of Immunology CY - Amsterdam, The Netherlands DA - 02.09.2018 KW - Peptide pools KW - Quality control KW - LC-MS PY - 2018 AN - OPUS4-45858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lauer, Franziska A1 - Diehn, Sabrina A1 - Weidner, Steffen A1 - Kneipp, Janina T1 - A graphical user interface for a fast multivariate classification of MALDI-TOF MS data of pollen grains N2 - The common characterization and identification of pollen is a time-consuming task that mainly relies on microscopic determination of the genus-specific pollen morphology. A variety of spectroscopic and spectrometric approaches have been proposed to develop a fast and reliable pollen identification using specific molecular information. Amongst them, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) shows a high potential for the successful investigation of such complex biological samples. Based on optimized MALDI sample preparation using conductive carbon tape, the application of multivariate statistics (e.g. principal components analysis, PCA) yields an enormous improvement concerning taxonomic classification of pollen species compared to common microscopic techniques. Since multivariate evaluation of the recorded mass spectra is of vital importance for classification, it’s helpful to implement the applied sequence of standard Matlab functions into a graphical user interface (GUI). In this presentation, a stand-alone application (GUI) is shown, which provides multiple functions to perform fast multivariate analysis on multiple datasets. The use of a GUI enables a first overview on the measured dataset, conducts spectral pretreatment and can give classification information based on HCA and PCA evaluation. Moreover, it can be used to improve fast spectral classification and supports the development of a simple routine method to identify pollen based on mass spectrometry. T2 - 12. Interdisziplinäres Doktorandenseminar, GDCh AK Prozessanalytik CY - BAM, AH, Berlin, Germany DA - 25.03.2018 KW - MALDI KW - GUI KW - Pollen PY - 2018 AN - OPUS4-44661 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kervarec, M.-C. A1 - Kemnitz, E. A1 - Scholz, G. A1 - Rudic, S. A1 - Jäger, Christian A1 - Braun, T. A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - A HF Loaded Lewis-Acidic Aluminium Chlorofluoride for Hydrofluorination Reactions N2 - The very strong Lewis acid aluminium chlorofluo-ride (ACF) was loaded with anhydrous HF. The interactionbetween the surface of the catalyst and HF was investigatedusing a variety of characterization methods, which revealed he formation of polyfluorides. Moreover, the reactivity ofthe HF-loaded ACF towards the hydrofluorination of alkyneswas studied. KW - Aluminium KW - HF KW - Hydrofluorination KW - Metal fluorides PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508360 DO - https://doi.org/10.1002/chem.202001627 VL - 26 SP - 1 PB - Wiley Online Libary AN - OPUS4-50836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bulling, Jannis A1 - Gravenkamp, H. A1 - Birk, C. T1 - A high-order finite element technique with automatic treatment of stress singularities by semi-analytical enrichment N2 - This paper presents an approach to the automatic enrichment of finite elements in the vicinity of a stress singularity. The enrichment consists of semi-analytical singular modes constructed using the Scaled Boundary Finite Element Method (SBFEM). In contrast to analytical methods, the SBFEM provides modes for inhomogeneous and anisotropic materials without additional effort. The finite element basis can be of arbitrary order and remains unaltered by the enrichment. The approach requires enrichment in only one layer of elements around a node. Due to the compatibility of SBFEM with FEM, there is no Need for transitional elements, and there are no parasitic terms. The approach is tested for several benchmark problems. The stress intensity factors are computed based on techniques inspired by the SBFEM. The proposed procedure is compared to a Standard finite element implementation and shows a significant improvement in the error of the displacement field for problems involving singular stresses. KW - Enriched finite element method KW - Scaled boundary finite element method KW - Stress intensity factors KW - Singular stress PY - 2019 DO - https://doi.org/10.1016/j.cma.2019.06.025 VL - 355 SP - 135 EP - 156 PB - Elsevier B.V. AN - OPUS4-48979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Chambers, Aaron P. A. A1 - Breßler, Ingo T1 - A holistic experiment chain for scattering-powered materials science investigations N2 - In our (dramatically understaffed) X-ray scattering laboratory, developing a systematic, holistic methodology1 let us provide scattering and diffraction information for more than 2100 samples for 200+ projects led by 120+ collaborators over the last five years. Combined with universal, automat-ed data correction pipelines, as well as our analysis and simulation software, this led to more than 40 papers2 in the last 5 years with just over 2 full-time staff members. While this approach greatly improved the consistency of the results, the consistency of the samples and sample series provided by the users was less reliable nor necessarily reproducible. To address this issue, we built an EPICS-controlled, modular synthesis platform to add to our laboratory. To date, this has prepared over 1200 additional (Metal-Organic Framework) samples for us to meas-ure, analyse and catalogue. By virtue of the automation, the synthesis of these samples is automat-ically documented in excruciating detail, preparing them for upload and exploitation in large-scale materials databases alongside the morphological results obtained from the automated X-ray scat-tering analysis. Having developed these proof-of-concepts, we find that the consistency of results are greatly im-proved by virtue of their reproducibility, hopefully adding to the reliability of the scientific findings as well. Additionally, the nature of the experiments has changed greatly, with much more emphasis on preparation and careful planning. This talk will discuss the advantages and disadvantages of this highly integrated approach and will touch upon upcoming developments. T2 - canSAS-XIII CY - Grenoble, France DA - 16.10.2023 KW - Methodology KW - Lab automation KW - X-ray scattering KW - Automated synthesis KW - Data stewardship KW - Holistic experimental procedures KW - Scicat PY - 2023 AN - OPUS4-58643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - A Long Way of Plasma Modeling: Personal Experience N2 - Modeling is an important tool for understanding a physical phenomenon. It helps to interpret results of experiments and optimize experimental parameters for obtaining a desirable result. Modeling laser induced plasma is beneficial for many scientific and industrial fields, e.g., analytical chemistry, pulsed laser deposition, plasma enhanced chemical vapor deposition, laser welding, additive manufacturing etc. In this presentation, a personal experience in development of a physical model of laser induced plasma will be given in a chronological sequence starting from early 2000th and until now. Over the time, the model evolved from its simple analytical form that described plasma emission spectra to its current numerical form that describes plasma dynamics, chemistry, and interaction with a substrate surface. Several examples will be given for the application of the model to practical problems such as spectroscopic chemical analysis, plasma enhanced chemical vapor deposition, and surface modification by laser ablation. T2 - XII World Conference on Laser Induced Breakdown Spectroscopy CY - Bari, Italy DA - 05.09.2022 KW - Laser induced plasma KW - CFD computational fluid dynamic KW - Plasma modeling KW - Plasma chemistry PY - 2022 AN - OPUS4-55669 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Charmi, Amir A1 - Mustapha, Samir A1 - Yilmaz, Bengisu A1 - Heimann, Jan A1 - Prager, Jens T1 - A Machine Learning Based-Guided Wave Approach for Damage Detection and Assessment in Composite Overwrapped Pressure Vessels N2 - The applications of composite overwrapped pressure vessels (COPVs) in extreme conditions, such as storing hydrogen gases at very high pressure, impose new requirements related to the system's integrity and safety. The development of a structural health monitoring (SHM) system that allows for continuous monitoring of the COPVs provides rich information about the structural integrity of the component. Furthermore, the collected data can be used for different purposes such as increasing the periodic inspection intervals, providing a remaining lifetime prognosis, and also ensuring optimal operating conditions. Ultimately this information can be complementary to the development of the envisioned digital twin of the monitored COPVs. Guided waves (GWs) are preferred to be used in continuous SHM given their ability to travel in complex structures for long distances. However, obtained GW signals are complex and require advanced processing techniques. Machine learning (ML) is increasingly utilized as the main part of the processing pipeline to automatically detect anomalies in the system's integrity. Hence, in this study, we are scrutinizing the potential of using ML to provide continuous monitoring of COPVs based on ultrasonic GW data. Data is collected from a network of sensors consisting of fifteen Piezoelectric (PZT) wafers that were surface mounted on the COPV. Two ML algorithms are used in the automated evaluation procedure (i) a long short-term memory (LSTM) autoencoder for anomaly detection (defects/impact), and (ii) a convolutional neural network (CNN) model for feature extraction and classification of the artificial damage sizes and locations. Additional data augmentation steps are introduced such as modification and addition of random noise to original signals to enhance the model's robustness to uncertainties. Overall, it was shown that the ML algorithms used were able to detect and classify the simulated damage with high accuracy. T2 - 13th European Conference on Non-Destructive Testing (ECNDT) 2023 CY - Lisbon, Portugal DA - 03.07.2023 KW - Machine learning KW - Structural health monitoring KW - COPV KW - Guided waves KW - Damage localization PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-590789 DO - https://doi.org/10.58286/28079 SN - 2941-4989 VL - 1 IS - 1 SP - 1 EP - 6 PB - NDT.net CY - Mayen AN - OPUS4-59078 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Kovačič, A. A1 - Steinhäuser, Lorin A1 - Heath, E. A1 - Lardy-Fontan, S. T1 - A method for monitoring estrogens in whole surface waters by GC-MS/MS N2 - Natural and synthetic estrogens are key endocrine-disrupting chemicals. Despite occurring at ultra-trace levels (below ng L-1), it is believed that they are contributing to an increase in feminized fish and other endocrine disruptive effects, and hence, their inclusion in the Watch list was not unexpected. One of the main sources ofestrogens to surface waters is wastewater effluent. Once in surface waters, they can partition into different compartments, i.e., water and suspended particulate matter. For this reason, there is an urgent need for a methodology to monitor estrogen levels below the environmental quality standards (EQS) set by the Water Framework Directive requirements. In this study, a precise and accurate gas chromatography-mass spectrometry method (GC-MS/MS) for the analysis of estrone (E1), 17β-estradiol (17β-E2), 17α-estradiol (17α- E2), 17-alpha-ethinylestradiol (EE2), and estriol (E3) in whole water samples with ng L-1 limit of quantification (LOQ) was developed and validated in accordance with CEN/TS 16800:2020 guidelines. T2 - IMSC 2022 CY - Maastricht, Netherlands DA - 27.08.2022 KW - EDC KW - WFD KW - GC-MS PY - 2022 AN - OPUS4-57097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nutsch, A. A1 - Dill, S. A1 - Kamleitner, I. A1 - Sehorz, A. A1 - Schwarzenberger, M. A1 - Streeck, C. A1 - Beckhoff, B. A1 - Merz, H. A1 - Recknagel, Sebastian T1 - A Methodology to Obtain Traceability and Validation of Calibration Samples for Thin Metal Alloy Layers for X-Ray Fluorescence Tools N2 - Statistic process control as well as process capability demand for calibrated determination of layer thicknesses in various industries, e.g. automotive, aerospace, microelectronics manufacturing. Calibration requires well know and well characterized samples. A calibration laboratory accredited according to DIN EN ISO 17025 has the objective to distribute standards traceable to SI units to industrial laboratories for quality control of manufacturing of various products. Especially, the thickness determination of thin metallic coatings e.g. from galvanic processes or layer deposition using X-Ray Fluorescence can be significantly improved by customized calibration samples. This is essential as the measurement uncertainty directly correlates to the capability performing reliable control of processes with high yield. For calibration laboratories, the validation of results using round robins and the direct comparison to national metrology institutes is a prerequisite to demonstrate the competence to perform calibration services. In this paper a strategy to obtain traceability and validation for thin alloy layers as well as first results are presented. The combined use of the accredited method for determination of mass per area from measurement of mass and area combined with standard free X-Ray Fluorescence as well as chemical analysis of dissolved samples with thin layers is deployed for material systems as NixZn1-x as well as NixP1-x. The obtained results are compared to reference free X-Ray Fluorescence at the BESSY II laboratories of Physikalisch-Technische Bundesanstalt. An excellent agreement of the obtained measured values as mass per unit area and alloy concentrations from the different applied methods within the measurement uncertainty was observed for NixP1-x showing the successful performed traceability of the calibration samples to SI units in combination with a validation of results by national metrology institutes and the round robin approach. T2 - European Conference on X-Ray Spectrometry CY - Ljubljana, Slowenia DA - 24.06.2018 KW - Traceability KW - Thin metal alloy layers KW - X-ray fluorescence PY - 2018 AN - OPUS4-45317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hildebrandt, L. A1 - von der Au, Marcus A1 - Zimmermann, T. A1 - Reese, A. A1 - Ludwig, J. A1 - Pröfrock, D. T1 - A metrologically traceable protocol for the quantification of trace metals in different types of microplastic N2 - The presence of microplastic (MP) particles in aquatic environments raised concern About possible enrichment of organic and inorganic pollutants due to their specific surface and chemical properties. In particular the role of metals within this context is still poorly understood. Therefore, the aim of this work was to develop a fully validated acid digestion protocol for metal analysis in different polymers, which is a prerequisite to study such interactions. The proposed digestion protocol was validated using six different certified reference materials in the microplastic size range consisting of polyethylene, polypropylene, acrylonitrile butadiene styrene and polyvinyl chloride. As ICP-MS/MS enabled time-efficient, sensitive and robust analysis of 56 metals in one measurement, the method was suitable to provide mass fractions for a multitude of other elements beside the certified ones (As, Cd, Cr, Hg, Pb, Sb, Sn and Zn). Three different microwaves, different acid mixtures as well as different temperatures in combination with different hold times were tested for optimization purposes. With the exception of Cr in acrylonitrile butadiene styrene, recovery rates obtained using the optimized protocol for all six certified reference materials fell within a range from 95.9% ± 2.7% to 112% ± 7%. Subsequent optimization further enhanced both precision and recoveries ranging from 103% ± 5% to 107 ± 4% (U; k = 2 (n = 3)) for all certified metals (incl. Cr) in acrylonitrile butadiene styrene. The results clearly show the analytical challenges that come along with metal analysis in chemically resistant plastics. Addressing specific analysis Tools for different sorption scenarios and processes as well as the underlying kinetics was beyond this study’s scope. However, the future application of the two recommended thoroughly validated total acid digestion protocols as a first step in the direction of harmonization of metal analysis in/on MP will enhance the significance and comparability of the generated data. It will contribute to a better understanding of the role of MP as vector for trace metals in the environment. KW - Microplatic KW - Digestion KW - Analytical Chemistry PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510727 DO - https://doi.org/10.1371/journal.pone.0236120 VL - 15 IS - 7 SP - e0236120 AN - OPUS4-51072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Landis, E. A1 - Hassefras, Emiel A1 - Oesch, Tyler A1 - Niederleithinger, Ernst T1 - A Microstructural Basis for Diffuse Ultrasound in Concrete N2 - Attenuation of ultrasonic signals in concrete has the potential to carry much information about the microstructure of the material. In this work a series of concrete specimens of varying porosities and pore size distributions were internally imaged with x-ray computed tomography (CT), and then subsequently examined with throughtransmission ultrasound. The CT images were used to quantify both capillary porosity of cement paste as well as internal interfaces that are likely to produce elastic wave scattering. Ultrasound signals were represented as a diffusion process such that absorption and scattering attenuation could be isolated. As implemented, the diffusion model was a poor predictor of capillary porosity, while diffusivity was a reasonable predictor of scattering interfaces. Diffusivity was found to scale extremely well with small scale porosity, which made it a good predictor of compressive strength. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Concrete KW - X-ray tomography KW - Ultrasound PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563371 UR - https://www.ndt.net/article/ndtce2022/paper/61592_manuscript.pdf SP - 1 EP - 4 PB - NDT.net AN - OPUS4-56337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tschöke, K. A1 - Mueller, I. A1 - Memmolo, V. A1 - Sridaran Venkat, R. A1 - Golub, M. A1 - Eremin, A. A1 - Moix-Bonet, M. A1 - Möllenhoff, K. A1 - Lugovtsova, Yevgeniya A1 - Moll, J. A1 - Freitag, S. ED - Rizzo, P. ED - Milazzo, A. T1 - A Model-Assisted Case Study Using Data from Open Guided Waves to Evaluate the Performance of Guided Wave-Based Structural Health Monitoring Systems N2 - Reliability assessment of Structural Health Monitoring (SHM) systems poses new challenges pushing the research community to address many questions which are still open. For guided wave-based SHM it is not possible to evaluate the system performance without taking into account the target structure and applied system parameters. This range of variables would result in countless measurements. Factors like environmental conditions, structural dependencies and wave characteristics demand novel solutions for performance analysis of SHM systems compared to those relying on classical non-destructive evaluation. Such novel approaches typically require model-assisted investigations which may not only help to explain and understand performance assessment results but also enable complete studies without costly experiments. Within this contribution, a multi input multi output approach using a sparse transducer array permanently installed on a composite structure to excite and sense guided waves is considered. Firstly, the method and the analysis of path-based performance assessment are presented considering an open-access dataset from the Open Guided Wave platform. Then, a performance analysis of a guided wave-based SHM system using Probability of Detection is presented. To explain some unexpected results, the model-assisted investigations are used to understand the physical phenomena of wave propagation in the test specimen including the interaction with damage. Finally, issues and future steps in SHM systems’ performance assessment and their development are discussed. T2 - 10th European Workshop on Structural Health Monitoring (EWSHM 2022) CY - Palermo, Italy DA - 04.07.2022 KW - Performance assessment KW - Ultrasonic Guided Waves KW - Open Guided Waves Platform PY - 2022 SN - 978-3-031-07257-4 DO - https://doi.org/10.1007/978-3-031-07258-1 SN - 2366-2557 VL - 2 SP - 938 EP - 944 PB - Springer CY - Cham, Switzerland AN - OPUS4-55270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koch, Claudia T1 - A Modern Quality Infrastructure: Digital and Networked N2 - The presentation provides an overview and introduction to the need and drivers for the digital transformation of the quality infrastructure (QI). It illustrates the tools and processes that are the fundation of a digital QI and how the initiatve QI-Digital aims at developing accordant solutions. Special emphasis is given to the pilot projects at BAM. T2 - Visit of Indian delegation at BAM hosted by GIZ and BMWK CY - Berlin, Germany DA - 24.04.2023 KW - Quality Infrastructure KW - Conformity Assessment KW - Quality-X KW - Smart standard KW - Additive manufacturing KW - Hydrogen fueling station KW - Digitalization KW - Digital certificate PY - 2023 AN - OPUS4-58119 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koch, Claudia T1 - A Modern Quality Infrastructure: Digital and Networked N2 - Introduction to the initiative QI-Digital and the BAM pilot projects, especially hydrogen fueling station, that seek to develop solutions for a modern and digital Quality Infrastructure (QI). T2 - Meeting mit Korea Delegation (Motie RHS Projekt) CY - Online meeting DA - 28.02.2023 KW - Quality Infrastructure KW - Conformity Assessment KW - Quality-X KW - Smart standard KW - Additive manufacturing KW - Hydrogen fueling station KW - Digitalization KW - Digital certificate PY - 2023 AN - OPUS4-58120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Nirmalananthan-Budau, Nithiya A1 - Scholtz, Lena A1 - Resch-Genger, Ute T1 - A Multimodal Approach to Quantify Surface Functional Groups on Nanomaterials for Safe and Sustainable by Design N2 - Engineered nanomaterials (NM) with their large surface-to-volume ratios and their for some materials observed size-dependent functional properties are of increasing relevance for current and future developments in various fields such as medical and pharmaceutical industry, computing and electronics or food and consumer products. The performance and safety of NM are determined by the sum of their intrinsic physicochemical properties. Especially, the particle surface chemistry, which is largely controlled by the chemical nature and density of functional groups (FG) and ligands, is an important key driver for NM performance, stability, and processibility as well as the interaction of NM with the environment. Thus, methods for FG quantification can foster the sustainable development of functional and safe(r) NM. Aiming at the development of simple, versatile, and multimodal tools for the quantification of many bioanalytically relevant FG and ligands, we investigated and compared various analytical methods commonly used for FG quantification. This includes electrochemical titration methods, dye-based optical assays, and other instrumental analytical techniques such as nuclear magnetic resonance and thermal analysis methods. The potential of our multimodal approach for FG quantification was demonstrated for commercial and custom-made polymeric and silica particles of varying FG, used as optical pH sensors. In the future, our strategy can contribute to establish multi-method characterization strategies to provide a more detailed picture of the structure-properties relationship. T2 - NanoSAFE & NanoSafety Cluster 2023 CY - Grenoble, France DA - 05.06.2023 KW - Engineered Nanomaterials KW - Safe-by-Design KW - Sustainable-by-Design KW - Surface Group Analysis KW - Silica and Polystyrene Particles KW - Surface Modification KW - Dye KW - Optical Spectroscopy KW - Quantitative NMR KW - Electrochemical Titration KW - Functionalized Nanomaterials KW - Nanosafety PY - 2023 AN - OPUS4-59126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Nirmalananthan-Budau, Nithiya A1 - Di Giacomo, Bruno A1 - Srivastava, Priyanka A1 - Scholtz, Lena A1 - Resch-Genger, Ute T1 - A Multimodal Approach to Quantify Surface Functional Groups and Ligands on Amorphous Silica Nanoparticles N2 - Nowadays amorphous silica nanoparticles (SiO2-NP) are one of the most abundant engineered nanomaterials, that are highly stable and can be easily produced on a large scale at low cost. Surface functionalized SiO2-NP are of great interest in the life and material sciences, as they can be used e.g. as drug carriers, fluorescent sensors, and multimodal labels in bioanalytical assays and imaging applications. Their performance in such applications depends not only on particle size, size distribution, and morphology, but also on surface chemistry, i.e. the total number of surface functional groups (FG) and the number of FG accessible for subsequent functionalization with ligands or biomolecules, which in turn determines surface charge, colloidal stability, biocompatibility, and toxicity. Aiming at the development of simple, versatile, and multimodal tools for the quantification of many bioanalytically relevant FG and ligands, we investigated and compared various analytical methods commonly used for FG quantification. This includes electrochemical titration methods, dye-based optical assays, and other instrumental analytical techniques such as nuclear magnetic resonance and thermal analysis methods. The potential of our multimodal approach for FG quantification was demonstrated for commercial and custom-made silica particles of varying FG, showing not only an influence of the synthesis methods on the number of FG but also on the performance. In the future, our strategy can contribute to establish multi-method characterization strategies to provide a more detailed picture of the structure-properties relationship. T2 - Advanced Materials Safety 2023 CY - Saarbrücken, Germany DA - 08.11.2023 KW - Amorphous silica particles KW - Surface group analysis KW - Ligands KW - Reference material KW - Optical spectroscopy KW - Quantitative NMR KW - Optical assays KW - Titration KW - Engineered nanomaterials KW - Advanced Materials PY - 2023 AN - OPUS4-59124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Fritsch, Tobias T1 - A Multiscale Analysis of Additively Manufactured Lattice Structures N2 - Additive Manufacturing (AM) in terms of laser powder-bed fusion (L-PBF) offers new prospects regarding the design of parts and enables therefore the production of lattice structures. These lattice structures shall be implemented in various industrial applications (e.g. gas turbines) for reasons of material savings or cooling channels. However, internal defects, residual stress, and structural deviations from the nominal geometry are unavoidable. In this work, the structural integrity of lattice structures manufactured by means of L-PBF was non-destructively investigated on a multiscale approach. A workflow for quantitative 3D powder analysis in terms of particle size, particle shape, particle porosity, inter-particle distance and packing density was established. Synchrotron computed tomography (CT) was used to correlate the packing density with the particle size and particle shape. It was also observed that at least about 50% of the powder porosity was released during production of the struts. Struts are the component of lattice structures and were investigated by means of laboratory CT. The focus was on the influence of the build angle on part porosity and surface quality. The surface topography analysis was advanced by the quantitative characterisation of re-entrant surface features. This characterisation was compared with conventional surface parameters showing their complementary information, but also the need for AM specific surface parameters. The mechanical behaviour of the lattice structure was investigated with in-situ CT under compression and successive digital volume correlation (DVC). The Deformation was found to be knot-dominated, and therefore the lattice folds unit cell layer wise. The residual stress was determined experimentally for the first time in such lattice structures. Neutron diffraction was used for the non-destructive 3D stress investigation. The principal stress directions and values were determined in dependence of the number of measured directions. While a significant uni-axial stress state was found in the strut, a more hydrostatic stress state was found in the knot. In both cases, strut and knot, seven directions were at least needed to find reliable principal stress directions. KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress KW - Surface roughness analysis KW - Computed tomography PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-470418 DO - https://doi.org/10.25932/publishup-47041 SP - 1 EP - 97 PB - Universitätsbibliothek Potsdam CY - Potsdam AN - OPUS4-53476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - A new approach of using polyethylene frits for the quantification of sulphur in copper metals by isotope dilution LA-ICP-MS N2 - For the first time polyethylene (PE) frits were used to quantify sulphur in copper metal and its alloys by isotope dilution combined with LA-ICP-MS: an alternative approach for sample preparation. The properties of the PE frit meet the requirements for isotope dilution LA-ICPMS which are porous material, thermal and chemical resistance and high absorption efficiency. The breakthrough, however, as a support material, is the low sulphur blank, which is only two times of the gas flow blank (2.3-4.0 x 10⁴ cps). Additionally, the porosity of the frit was considered, as it directly affects the absorption efficiency for the sample solution, which is present in the cavities of the frit. The absorption efficiency was studied by loading sulphur standards with varying sulphur amounts (0 - 80 µg S) onto the frits. The remaining sulphur which was not absorbed by the frit was rinsed off and was measured by ICP-MS. This indirect method shows that more than 99.5 % of the loaded sulphur was absorbed by the frit. The so prepared frits with increasing sulphur amount were measured by LA-ICP-MS showing a good linearity between 0 µg S and 40 µg S with a coefficient of determination, r2 of 0.9987 and a sensitivity of 3.4x10⁴ cps µgˉ¹ for 32S. Three copper reference materials produced by BAM (BAM-M376a, BAM-228 and BAM-227) were selected to develop and validate the LA-ICP-IDMS procedure. The IDMS technique was applied to these samples as follows: the samples were spiked, dissolved, digested and then the digested solution was absorbed on the frits. The dried frit samples were then analyzed by LA-ICP-IDMS and it could be demonstrated that the sample solution dispersed on the frits did not influence the 32S/34S ratio significantly even though the sulphur intensities were fluctuating along the scan lines. Relative standard deviations of the isotope ratios were below 5 % in average between 3 lines (except for the pure spike solution and procedure blank). The measurement results were validated by comparing them with the results obtained by conventional ICP-IDMS. Plotting the mass fraction of sulphur in copper obtained by LA-ICP-IDMS versus those obtained by ICP-IDMS yields a linear curve with a correlation coefficient of 0.9999 showing a strong agreement between both techniques. The metrological traceability to the SI for the mass fraction of sulphur in copper is established by an unbroken chain of comparisons, each accompanied by an uncertainty budget. Thus, the measurement results are considered reliable, acceptable and comparable within the stated measurement uncertainty. The metrological traceability chain from the kg down to the final mass fraction in the samples obtained by LA-ICP-IDMS is illustrated in this presentation. T2 - ESAS & CANAS 2018 CY - Berlin, Germany DA - 20.03.2018 KW - Laser ablation KW - Isotope dilution mass spectrometry KW - SI traceability KW - Measurement uncertainty PY - 2018 AN - OPUS4-44641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - A new approach of using polyethylene frits for the quantification of sulphur in copper metals by isotope dilution LA-ICP-MS and comparison with conventional IDMS techniques N2 - Polyethylene (PE) frits were used to quantify sulphur in copper and its alloys by isotope dilution combined with LA-ICP-MS as an alternative approach to conventional sample preparation: the copper samples were spiked, the spiked samples were dissolved, the resulting solutions were absorbed in the PE frits and finally the PE frits were analysed by LA-ICP-MS. A prerequisite for such a support material is a low sulphur blank and thus PE was selected for this purpose. The absorption efficiency of the PE frits was studied for varying sulphur amounts ranging from 2 mg S to 80 mg S showing that more than 99.5% of the loaded sulphur was absorbed by the frit. The so prepared PE frits were measured by LA-ICP-MS and yielded a good linearity (R2 ¼ 0.999) for the sulphur ion intensities corresponding to sulphur amounts up to 40 mg S; the associated sensitivity is approximately 3.4 x 10⁴ cps μg⁻¹ for ³²S. For the validation of the developed procedure the reference materials BAM-M376a, BAM-228 and BAM-227 were applied such that 2 μg S, 5 μg S and 11 μg S were absorbed in the PE frits, respectively. These samples were pre-quantified for the adsorbed sulphur amount by external calibration LA-ICP-MS yielding sulphur amounts of 0.9 μg, 5.1 μg and 8.5 μg (quantified for ³²S only), respectively. Relative Standard deviations of the isotope ratios were below 5% in average (n ¼ 3 lines) in all cases (except for the pure spike solution). These samples were then analysed by LA-ICP-IDMS and the measurement results were validated by comparing them with the results obtained by conventional ICP-IDMS. The obtained relative expanded measurement uncertainties ranged between 10% and 26%. Pearson's coefficient was used to express the correlation between both techniques; the obtained value was 0.999 demonstrating a strong correlation. Contrary to most published LA-ICP-IDMS procedures, the developed procedure enables SI-traceability for the measurement results. The metrological traceability to the SI for the sulphur mass fractions in copper was established by an unbroken chain of comparisons, each accompanied by an uncertainty budget. Thus, the measurement results are considered reliable, acceptable and comparable within the stated measurement uncertainty. The metrological traceability chain from the kg down to mass fraction in the samples obtained by LA-ICP-IDMS is presented as well. KW - Laser ablation KW - IDMS KW - Traceability KW - Uncertainty KW - Purity PY - 2018 DO - https://doi.org/10.1039/c8ja00116b SN - 0267-9477 SN - 1364-5544 VL - 33 IS - 9 SP - 1506 EP - 1517 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-45899 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulow, Anicó A1 - Witte, S. A1 - Beyer, S. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Riesemeier, H. A1 - Streli, C. T1 - A new experimental setup for time- and laterally-resolved X-ray absorption fine structure spectroscopy in a 'single shot' N2 - In this work, a new setup for dispersive XAFS measurements is presented. This reproducible and scanningfree setup yields both time- and laterally-resolved XAFS experiments in a ‘single-shot’. It allows a straightforward adjustment for probing different elements covering many relevant applications in materials science. An incoming energetic broadband beam is diffracted by a Si (111) crystal after passing through the sample and collected by an area sensitive detector. Depending on the energy range of the incoming beam, XANES and/or EXAFS spectra can be recorded with a time resolution down to 1 s. The feasibility of this setup was demonstrated at the BAMline at BESSY II (Berlin, Germany) with reference Fe and Cu foils and the results are hereby presented and discussed. Additionally, an application where time resolution on the second scale is required is briefly evaluated. The presented example concerns studying early stages of zinc(II)2-methylimidazolate (ZIF-8) crystallization. This is particularly important for biomedical applications. KW - X-ray spectroscopy KW - X-ray absorption fine structure KW - Time-resolved KW - Laterally-resolved KW - Experimental setup PY - 2019 DO - https://doi.org/10.1039/c8ja00313k SN - 0267-9477 SN - 1364-5544 VL - 34 IS - 1 SP - 239 EP - 246 PB - Royal Society of Chemistry CY - London AN - OPUS4-47207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Bütefisch, S. A1 - Busch, I. A1 - Passiu, C. A1 - Rossi, A. A1 - Unger, Wolfgang T1 - A new reference material for the determination of the Field of View of Small Area XPS N2 - Small Area Photoelectron Spectroscopy (XPS) is a powerful tool for investigating small surface features. It is often unclear, if the signal in the spectrum is an unwanted contamination of the Field of View (FoV) or is it originated from outside. The reason is, that XPS-spectra are affected by beam shapes. Scheithauer proposed to measure Pt apertures of different diameters and normalize the Pt4f count rate by a second measurement on the Pt metal. New reference materials were developed and tested in the VAMAS TWA2 A22 Project. T2 - ECASIA 2019 CY - Dresden, Germany DA - 15.09.2019 KW - Reference material KW - Small Area XPS KW - Selected Area XPS KW - Small Spot XPS KW - Field of Analysis PY - 2019 AN - OPUS4-49236 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Choi, Youngeun A1 - Schmidt, Carsten A1 - Tinnefeld, Philip A1 - Bald, Ilko A1 - Roedinger, Stefan T1 - A new reporter design based on DNA origami nanostructures for quantification of short oligonucleotides using microbeads N2 - The DNA origami technique has great potential for the development of brighter and more sensitive reporters for fluorescence based detection schemes such as a microbead-based assay in diagnostic applications. The nanostructures can be programmed to include multiple dye molecules to enhance the measured signal as well as multiple probe strands to increase the binding strength of the target oligonucleotide to these nanostructures. Here we present a proof-of-concept study to quantify short oligonucleotides by developing a novel DNA origami based reporter system, combined with planar microbead assays. Analysis of the assays using the VideoScan digital imaging platform showed DNA origami to be a more suitable reporter candidate for quantification of the target oligonucleotides at lower concentrations than a conventional reporter that consists of one dye molecule attached to a single stranded DNA. Efforts have been made to conduct multiplexed analysis of different targets as well as to enhance fluorescence signals obtained from the reporters. We therefore believe that the quantification of short oligonucleotides that exist in low copy numbers is achieved in a better way with the DNA origami nanostructures as reporters. KW - Origami KW - Nanostructures KW - Microbeads KW - DNA origami KW - Oligonucleotides PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-476443 DO - https://doi.org/10.1038/s41598-019-41136-x SN - 2045-2322 VL - 9 SP - 4769, 1 EP - 8 PB - Nature AN - OPUS4-47644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Recknagel, Sebastian A1 - Hoffmann, V. A1 - Weiher, N. A1 - Brixius, Th. A1 - Schlothmann, B.-J. T1 - A new set of zinc based calibration samples for GD-OES N2 - The analysis of Zinc layers on Iron sheets is one of the most essential application of Glow Discharge - Optical Emission Spectrometry (GD-OES). Since the year 2000 for this application calibration of GD-OES instruments mostly included the set of the six calibration samples CZ 2009-CZ 2014 from CKD. These CRMs are no longer available. Furthermore, in this application the analysis of Al and Mg became essential. To overcome this lack of calibration materials, the working group VDEh FA II.47 decided to organize the production and characterization of a new set of certified reference materials. T2 - BERM CY - Berlin, Germany DA - 23.09.2018 KW - GD-OES KW - CRM KW - Zinc PY - 2018 AN - OPUS4-46718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Recknagel, Sebastian A1 - Hoffmann, V. A1 - Weiher, N. A1 - Brixius, Th. A1 - Schlothmann, B.-J. T1 - A new set of zinc based calibration samples for GD-OES N2 - The analysis of Zinc layers on Iron sheets is one of the most essential application of Glow Discharge - Optical Emission Spectrometry (GD-OES). Since the year 2000 for this application calibration of GD-OES instruments mostly included the set of the six calibration samples CZ 2009-CZ 2014 from CKD. These CRMs are no longer available. Furthermore, in this application the analysis of Al and Mg became essential. To overcome this lack of calibration materials, the working group VDEh FA II.47 decided to organize the production and characterization of a new set of certified reference materials. T2 - 4th International Glow Discharge Spectroscopy Symposium CY - Berlin, Germany DA - 15.04.2018 KW - GD-OES KW - CRM KW - Zinc PY - 2018 AN - OPUS4-46719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Colini, Claudia A1 - Shevchuk, I. A1 - Huskin, K. A. A1 - Rabin, Ira A1 - Hahn, Oliver ED - Quenzer, J. B. T1 - A New Standard Protocol for Identification of Writing Media N2 - Our standard protocol for the characterisation of writing materials within advanced manuscript studies has been successfully used to investigate manuscripts written with a pure ink on a homogeneous writing surface. However, this protocol is inadequate for analysing documents penned in mixed inks. We present here the advantages and limitations of the improved version of the protocol, which now includes imaging further into the infrared region (1100−1700 nm). KW - Archaeometry KW - Manuscripts KW - Non-destructive testing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543454 SN - 978-3-11-074545-0 DO - https://doi.org/10.1515/9783110753301-009 VL - 25 SP - 161 EP - 182 PB - Walter de Gruyter GmbH CY - Berlin/Boston AN - OPUS4-54345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ruhe, L. A1 - Ickert, Stefanie A1 - Beck, S. A1 - Linscheid, M. W. T1 - A new strategy for metal labeling of glycan structures in antibodies N2 - Quantitative analysis of complex proteins is a challenging task in modern bioanalytical chemistry. Commonly available isotope labels are still suffering from limitations and drawbacks, whereas new metal labels open numerous possibilities in mass spectrometric analyses. In this work, we have developed a newmetal labeling strategy to tag glycan structures of proteins, more particularly antibodies. The oligosaccharide glycans were selectively trimmed to the last N-acetylglucosamine to which an artificial azide containing galactose residue was bound. This azide can be used for subsequent cycloaddition of an alkyne. Therefore, we developed a lanthanide-containing macrocyclic reagent to selectively connect to this azido galactose. In summary, the glycan structures of an antibody can be labeled with a metal functionality using this approach. Furthermore, the functionality of the antibodies can be fully maintained by labeling the Fc glycans instead of using labeling reagents that target amino or thiol groups. This approach enables the possibility of using elemental, besides molecular mass spectrometry, for quantitative analyses or imaging experiments of antibodies in complex biological samples. KW - Antibody KW - Metal labeling KW - Glycans KW - DOTA KW - Lanthanide PY - 2018 DO - https://doi.org/10.1007/s00216-017-0683-1 SN - 1618-2650 SN - 1618-2642 VL - 410 IS - 1 SP - 21 EP - 25 PB - Springer AN - OPUS4-44000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nickl, Philip A1 - Hilal, T. A1 - Olal, D. A1 - Donskyi, Ievgen A1 - Radnik, Jörg A1 - Ludwig, K. A1 - Haag, R. T1 - A New Support Film for Cryo Electron Microscopy Protein Structure Analysis Based on Covalently Functionalized Graphene N2 - Protein adsorption at the air–water interface is a serious problem in cryogenic electron microscopy (cryoEM) as it restricts particle orientations in the vitrified ice-film and promotes protein denaturation. To address this issue, the preparation of a graphene-based modified support film for coverage of conventional holey carbon transmission electron microscopy (TEM) grids is presented. The chemical modification of graphene sheets enables the universal covalent anchoring of unmodified proteins via inherent surface-exposed lysine or cysteine residues in a one-step reaction. Langmuir–Blodgett (LB) trough approach is applied for deposition of functionalized graphene sheets onto commercially available holey carbon TEM grids. The application of the modified TEM grids in single particle analysis (SPA) shows high protein binding to the surface of the graphene-based support film. Suitability for high resolution structure determination is confirmed by SPA of apoferritin. Prevention of protein denaturation at the air–water interface and improvement of particle orientations is shown using human 20S proteasome, demonstrating the potential of the support film for structural biology. KW - Functionalized graphene KW - Transmission electron microsocpy KW - Protein structure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-566443 DO - https://doi.org/10.1002/smll.202205932 SN - 1613-6810 SP - 2205932 PB - Wiley VCH AN - OPUS4-56644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Bütefisch, S. A1 - Busch, I. A1 - Weimann, T. A1 - Passiu, C. A1 - Rossi, A. A1 - Unger, Wolfgang T1 - A new test specimen for the determination of the field of view of small-area X-ray photoelectron spectrometers N2 - Small-area/spot photoelectron spectroscopy (SAXPS) is a powerful tool for the investigation of small surface features like microstructures of electronic devices, sensors or other functional surfaces, and so forth. For evaluating the quality of such microstructures, it is often crucial to know whether a small signal in a spectrum is an unwanted contamination of the field of view (FoV), defined by the instrument settings, or it originated from outside. To address this issue, the d80/20 parameter of a line scan across a chemical edge is often used. However, the typical d80/20 parameter does not give information on contributions from the long tails of the X-ray beam intensity distribution or the electron-optical system as defined by apertures. In the VAMAS TWA2 A22 project “Applying planar, patterned, multi-metallic samples to assess the impact of analysis area in surface-chemical analysis,” new test specimen was developed and tested. The here presented testing material consists of a silicon wafer substrate with an Au-film and embedded Cr circular and square spots with decreasing dimensions from 200 μm down to 5 μm. The spot sizes are traceable to the length unit due to size measurements with a metrological SEM. For the evaluation of the FoV, we determined the Au4f intensities measured with the center of the FoV aligned with the center of the spot and normalized to the Au4f intensity determined on the Au-film. With this test specimen, it was possible to characterize, as an example, the FoV of a Kratos AXIS Ultra DLD XPS instrument. T2 - ECASIA 2019 CY - Dresden, Germany DA - 15.09.2019 KW - Field of view KW - Reference material KW - Selected area XPS KW - Small-area XPS KW - Small-spot XPS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509902 DO - https://doi.org/10.1002/sia.6831 SN - 1096-9918 VL - 52 IS - 12 SP - 890 EP - 894 PB - John Wiley & Sons Ltd AN - OPUS4-50990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kowarik, Stefan A1 - Bogula, A1 - Boitano, A1 - Carla, A1 - Pithan, A1 - Schafer, A1 - Wilming, A1 - Zykov, A1 - Pithan, T1 - A novel 3D printed radial collimator for x-ray diffraction N2 - We demonstrate the use of a 3D printed radial collimator in X-ray powder diffraction and surface sensitive grazing incidence X-ray diffraction. We find a significant improvement in the overall Signal to background ratio of up to 100 and a suppression of more than a factor 3⋅10⁵ for undesirable Bragg reflections generated by the X-ray “transparent” windows of the sample environment. The background reduction and the removal of the high intensity signals from the windows, which limit the detector’s dynamic range, enable significantly higher sensitivity in experiments within sample environments such as vacuum chambers and gas- or liquid-cells. Details of the additively manufactured steel collimator geometry, alignment strategies using X-ray fluorescence, and data analysis are also briefly discussed. The flexibility and affordability of 3D prints enable designs optimized for specific detectors and sample environments, without compromising the degrees of freedom of the diffractometer. KW - 3D printing PY - 2019 DO - https://doi.org/10.1063/1.5063520 SN - 0034-6748 VL - 90 IS - 3 SP - 035102, 1 EP - 8 PB - AIP AN - OPUS4-48171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Pérez Alonso, M. A1 - Albarrán Sanz, J. A1 - Dinkel, M. A1 - Heckel, Thomas A1 - Kotschate, Daniel A1 - Cabeza, Sandra A1 - Senaneuch, J. A1 - Heikkila, I. A1 - Toscanelli, O. T1 - A novel approach for rating fatigue-initiating inclusions in highly demanding steel (INCAFAT) N2 - INCAFAT project aimed to improve existing fatigue damage models by establishing the most suitable combination of measurement techniques to characterise harmful inclusion populations in highly demanding steels. The different inclusion assessments carried out confirm that, chemical composition, secondary metallurgy and manufacturing route affect content, nature, size and shape of inclusions. According to the FEM model, inclusions produce an alteration of the stress field in their surrounding region, which can promote a fatigue failure. Experimental work on fatigue testing has demonstrated that depending on the stressed direction fatigue failures in highly demanding steels could be produced by different types of inclusions. Fractography analyses confirmed that meso-inclusions harmful in fatigue cannot be rated by standard methods, nor 10 MHz ultrasonic testing (macro) or micro-cleanness assessments. The necessity of rating these meso-inclusions has led to critical evaluation of Extreme Value Analysis according to ASTM E2283-08 and the development of high frequency immersion ultrasonic testing. EVA methodology based on inclusion width can be applied reliably when principal stress is parallel to the rolling direction. On the contrary, if inclusions are testing in the elongated directions its fails. On the other hand, the guidelines and recommendations for high frequency ultrasonic testing have been compiled in a new European standard draft. This method based on focal beam probes and high-resolution devices is able to provide information on meso-inclusion distribution. KW - Material characterisation KW - Non-destructive testing KW - Ultrasonic testing KW - Cleanliness PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479219 UR - https://publications.europa.eu/en/publication-detail/-/publication/6bd25206-316a-11e8-b5fe-01aa75ed71a1/language-en/format-PDF/source-68610160 SN - 978-92-79-76985-6 DO - https://doi.org/10.2777/473350 SN - 1831-9424 SN - 1018-5593 SP - 1 EP - 154 AN - OPUS4-47921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tsamos, Athanasios A1 - Evsevleev, Sergei A1 - Fioresi, R. A1 - Faglioni, F. A1 - Bruno, Giovanni T1 - A novel iterative algorithm to improve segmentations with deep convolutional neural networks trained with synthetic X-ray computed tomography data (i.S.Sy.Da.T.A) N2 - We propose a novel iterative segmentation algorithm (i.S.Sy.Da.T.A: Iterative Segmentation Synthetic Data Training Algorithm) employing Deep Convolutional Neural Networks and synthetic training data for X-ray tomographic reconstructions of complex microstructures. In our method, we reinforce the synthetic training data with experimental XCT datasets that were automatically segmented in the previous iteration. This strategy produces better segmentations in successive iterations. We test our algorithm with experimental XCT re constructions of a 6-phase Al-Si Matrix Composite reinforced with ceramic fibers and particles. We perform the analysis in 3D with a special network architecture that demonstrates good generalization with synthetic training data. We show that our iterative algorithm returns better segmentations compared to the standard single training approach. More specifically, phases possessing similar attenuation coefficients can be better segmented: for Al2O3 fibers, SiC particles, and Intermetallics, we see an increase of the Dice score with respect to the classic approach: from 0.49 to 0.54, from 0.66 to 0.72, and from 0.55 to 0.66 respectively. Furthermore, the overall Dice score increases from 0.77 to 0.79. The methods presented in this work are also applicable to other materials and imaging techniques. KW - Metal matrix composites (MMC) KW - Multi-phase materials KW - 3D imaging KW - Dice score KW - Automatic segmentation KW - Deep convolutional neural network (DCNN) KW - Modified U-net architectures PY - 2023 DO - https://doi.org/10.1016/j.commatsci.2023.112112 SN - 0927-0256 VL - 223 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-57482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bayerlein, Bernd A1 - Hanke, T. A1 - Muth, Thilo A1 - Riedel, Jens A1 - Schilling, Markus A1 - Schweizer, C. A1 - Skrotzki, Birgit A1 - Todor, A. A1 - Moreno Torres, Benjami A1 - Unger, Jörg F. A1 - Völker, Christoph A1 - Olbricht, Jürgen T1 - A Perspective on Digital Knowledge Representation in Materials Science and Engineering N2 - The amount of data generated worldwide is constantly increasing. These data come from a wide variety of sources and systems, are processed differently, have a multitude of formats, and are stored in an untraceable and unstructured manner, predominantly in natural language in data silos. This problem can be equally applied to the heterogeneous research data from materials science and engineering. In this domain, ways and solutions are increasingly being generated to smartly link material data together with their contextual information in a uniform and well-structured manner on platforms, thus making them discoverable, retrievable, and reusable for research and industry. Ontologies play a key role in this context. They enable the sustainable representation of expert knowledge and the semantically structured filling of databases with computer-processable data triples. In this perspective article, we present the project initiative Materials-open-Laboratory (Mat-o-Lab) that aims to provide a collaborative environment for domain experts to digitize their research results and processes and make them fit for data-driven materials research and development. The overarching challenge is to generate connection points to further link data from other domains to harness the promised potential of big materials data and harvest new knowledge. KW - Data infrastructures KW - Digital representations KW - Digital workflows KW - Knowledge graphs KW - Materials informatics KW - Ontologies KW - Vocabulary providers PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546729 DO - https://doi.org/10.1002/adem.202101176 SN - 1438-1656 SP - 1 EP - 14 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-54672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eisenreich, F. A1 - Kathan, M. A1 - Dallmann, A. A1 - Ihrig, S. P. A1 - Schwaar, Timm A1 - Schmidt, B. M. A1 - Hecht, S. T1 - A photoswitchable catalyst system for remote-controlled (co)polymerization in situ N2 - The fundamental properties of a polymeric material are ultimately governed by its structure, which mainly relies on monomercomposition and connection, topology, chain length, and polydispersity. Thus far, these structural characteristics are typicallyset ex situ by the specific polymerization procedure, eventually limiting the future design space for the creation of moresophisticated polymers. Herein, we report on a single photoswitchable catalyst system, which enables in situ remote controlover the ring-opening polymerization of l-lactide and further allows regulation of the incorporation of trimethylene carbonateand δ -valerolactone monomers in copolymerizations. By implementing a phenol moiety into a diarylethene-type structure,we exploit light-induced keto–enol tautomerism to switch the hydrogen-bonding-mediated monomer activation reversiblyON and OFF. This general and versatile principle allows for exquisite external modulation of ground-state catalysis of a livingpolymerization process in a closed system by ultraviolet and visible light and should thereby facilitate the generation of newpolymer structures. KW - Polymers PY - 2018 DO - https://doi.org/10.1038/s41929-018-0091-8 SN - 2520-1158 VL - 1 IS - 7 SP - 516 EP - 522 PB - Nature CY - London AN - OPUS4-45407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fontoura Barroso, Daniel A1 - Epple, Niklas A1 - Niederleithinger, Ernst T1 - A Portable Low-Cost Ultrasound Measurement Device for Concrete Monitoring N2 - This paper describes a new ultrasonic measuring device called “W-Box”. It was developed based on the requirements of the DFG Forschergruppe (research unit) CoDA for a portable device for monitoring of concrete specimens, models and actual structures using embedded ultrasonic transducers as well as temperature and humidity sensors. The W-Box can send ultrasonic pulses with a variable frequency of 50–100 kHz to one selectable transducer and records signals from up to 75 multiplexed channels with a sample rate of 1 MHz and a resolution of 14 bits. In addition, it measures temperature and humidity with high accuracy, adjustable amplification, restarts automatically after a power failure and can be fully controlled remotely. The measured data are automatically stored locally on-site data quality checks and transferred to remote servers. The comparison of the W-Box with a laboratory setup using commercial devices proves that it is equally reliable and precise, at much lower cost. The W-Box also shows that their measurement capacities, with the used embedded ultrasonic transducers, can reach above 6 m in concrete. KW - Low-cost KW - Coda wave interferometry KW - Ultrasound KW - IoT KW - Non-destructive testing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546756 DO - https://doi.org/10.3390/inventions6020036 SN - 2411-5134 VL - 6 IS - 2 SP - 1 EP - 17 PB - MDPI CY - Basel, Switzerland AN - OPUS4-54675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lardy-Fontan, S. A1 - Piechotta, Christian A1 - Heath, E. A1 - Perkola, N. A1 - Balzamo, S. A1 - Cotman, M. A1 - Gökcen, T. A1 - Gardia-Parège, C. A1 - Budzinski, H. A1 - Lalère, B. T1 - A project to deliver reliable measurements of estrogens for better monitoring survey and risks assessments N2 - Monitoring programs should generate high-quality data on the concentrations of substances and other pollutants in the aquatic environment to enable reliable risk assessment. Furthermore, the need for comparability over space and time is critical for analysis of trends and evaluation of restoration of natural environment. Additionally, research work and exercises at the European level have highlighted that reliable measurements of estrogenic substances at the PNEC level are still challenging to achieve. The project EDC-WFD “Metrology for monitoring endocrine disrupting compounds under the EU Water Framework Directive” aims to develop traceable analytical methods for determining endocrine disrupting compounds and their effects, with a specific focus on three estrogens of the first watch list (17-beta-estradiol (17βE2), 17-alpha-ethinylestradiol (EE2), and estrone (E1)). Estrogens 17-alpha-estradiol (17aE2) and estriol (E3) will be included to demonstrate the reliability of the developed methods - Mass Spectrometry based method and effect-based methods (EBM) - and to support the requirements of Directive 2013/39/EC, Directive 2009/90/EC and Commission Implementation Decision (EU) 2018/840, hence improving the comparability and compatibility of measurement results within Europe. During the EDC-WFD project four EBM will be deeply investigated in order to improve their rationale use and their support in water quality assessment. T2 - Eurachem Workshop - Uncertainty from sampling and analysis for accredited laboratories CY - Berlin, Germany DA - 19.11.2019 KW - MS based method KW - Estrogens KW - Reliable measurements KW - Comparability KW - Effect based Method PY - 2019 AN - OPUS4-49738 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lardy-Fontan, S. A1 - Piechotta, Christian A1 - Heath, E. A1 - Perkola, N. A1 - Balzamo, S. A1 - Cotman, M. A1 - Gökcen, T. A1 - Gardia-Parège, C. A1 - Budzinski, H. A1 - Lalère, B. T1 - A project to deliver reliable measurements of estrogens for better monitoring survey and risks assessments N2 - Monitoring programs should generate high-quality data on the concentrations of substances and other pollutants in the aquatic environment to enable reliable risk assessment. Furthermore, the need for comparability over space and time is critical for analysis of trends and evaluation of restoration of natural environment. Additionally, research work and exercises at the European level have highlighted that reliable measurements of estrogenic substances at the PNEC level are still challenging to achieve. The project EDC-WFD “Metrology for monitoring endocrine disrupting compounds under the EU Water Framework Directive” aims to develop traceable analytical methods for determining endocrine disrupting compounds and their effects, with a specific focus on three estrogens of the first watch list (17-beta-estradiol (17βE2), 17-alpha-ethinylestradiol (EE2), and estrone (E1)). Estrogens 17-alpha-estradiol (17aE2) and estriol (E3) will be included to demonstrate the reliability of the developed methods - Mass Spectrometry based method and effect-based methods (EBM) - and to support the requirements of Directive 2013/39/EC, Directive 2009/90/EC and Commission Implementation Decision (EU) 2018/840, hence improving the comparability and compatibility of measurement results within Europe. During the EDC-WFD project four EBM will be deeply investigated in order to improve their rationale use and their support in water quality assessment. T2 - ICRAPHE - Second International Conference on Risk Assessment of Pharmaceuticals in the Environment CY - Barcelona, Spanien DA - 28.11.2019 KW - Estrogens KW - Effect based Method KW - Comparability KW - Reliable measurements KW - MS based method PY - 2019 AN - OPUS4-49739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiesner, Yosri A1 - Bednarz, Marius A1 - Braun, Ulrike A1 - Bannick, Claus Gerhard A1 - Ricking, Mathias A1 - Altmann, Korinna T1 - A promising approach to monitor microplastic masses in composts N2 - Inputs of plastic impurities into the environment via the application of fertilizers are regulated in Germany and the EU by means of ordinances. Robust and fast analytical methods are the basis of legal regulations. Currently, only macro- and large microplastic contents (>1 mm) are measured. Microplastics (1–1,000 µm), are not yet monitored. Thermal analytical methods are suitable for this purpose, which can determine the mass content and can also be operated fully automatically in routine mode. Thermal extraction desorption-gas chromatography/mass spectrometry (TED-GC/MS) allows the identification of polymers and the determination of mass contents in solid samples from natural environments. In accordance with the German or European Commission (EC) Fertiliser Ordinance, composting plants should be monitored for microplastic particles with this method in the future. In this context a compost plant was sampled. At the end of the rotting process, the compost was sieved and separated in a coarse (>1 mm) and a fine fraction (<1 mm). The fine fraction was processed using density separation comparing NaCl and NaI as possible salt alternative and screened for microplastic masses by TED-GC/MS with additional validation and quality assurance experiments. With TED-GC/MS total microplastics mass contents of 1.1–3.0 μg/mg in finished compost could be detected with polyethylene mainly. What differs much to the total mass of plastics in the coarse fraction with up to 60 μg/mg, which were visually searched, identified via ATR-FTIR and gravimetrically weighted. KW - Microplastics KW - TED-GC/MS KW - Compost KW - Monitoring KW - Soil PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586688 DO - https://doi.org/10.3389/fenvc.2023.1281558 SN - 2673-4486 VL - 4 SP - 1 EP - 12 PB - Frontiers Media CY - Lausanne AN - OPUS4-58668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - A quick intro to our NeXus format… N2 - A brief introduction is given into our data collection and organization procedure, and why we have settled on the HDF5-based NeXus format for describing experimental data. The links between NeXus and the SciCat data catalog is also provided, showing how the NeXus metadata is automatically added as searchable metadata in the catalog. T2 - NFDI NeXus Workshop CY - Online meeting DA - 17.03.2022 KW - Data management KW - Measurement organization KW - Measurement data KW - NFDI KW - FAIR KW - Open access KW - Data mining KW - Data tagging KW - Automated data tagging PY - 2022 AN - OPUS4-54823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ecke, Alexander A1 - Westphalen, Tanja A1 - Hornung, J. A1 - Voetz, M. A1 - Schneider, Rudolf T1 - A rapid magnetic bead-based immunoassay for sensitive determination of diclofenac N2 - Increasing contamination of environmental waters with pharmaceuticals represents an emerging threat for the drinking water quality and safety. In this regard, fast and reliable analytical methods are required to allow quick countermeasures in case of contamination. Here, we report the development of a magnetic bead-based immunoassay (MBBA) for the fast and cost-effective determination of the analgesic diclofenac (DCF) in water samples, based on diclofenac-coupled magnetic beads and a robust monoclonal anti-DCF antibody. A novel synthetic strategy for preparation of the beads resulted in an assay that enabled for the determination of diclofenac with a significantly lower limit of detection (400 ng/L) than the respective enzyme-linked immunosorbent assay (ELISA). With shorter incubation times and only one manual washing step required, the assay demands for remarkably shorter time to result (< 45 min) and less equipment than ELISA. Evaluation of assay precision and accuracy with a series of spiked water samples yielded results with low to moderate intra- and inter-assay variations and in good agreement with LC–MS/MS reference analysis. The assay principle can be transferred to other, e.g., microfluidic, formats, as well as applied to other analytes and may replace ELISA as the standard immunochemical method. KW - Immunoassay KW - Magnetic beads KW - Diclofenac KW - Water analysis KW - LC-MS/MS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542346 DO - https://doi.org/10.1007/s00216-021-03778-7 SN - 1618-2650 VL - 414 SP - 1563 EP - 1573 PB - Springer CY - Heidelberg AN - OPUS4-54234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lehmann, Paula A1 - Carl, Peter A1 - Schneider, Rudolf T1 - A Rapid Test for Leaching Studies of Biocides from Building Materials N2 - Regardless of its ban in agricultural use, the triazine derivative terbutryn is still used as a biocide against biofouling in building materials, such as façade colors and roof tiles. From there, it is washed off and may contaminate soil and surface waters, where it shows ecotoxicological behavior. For understanding of these leaching processes, analytical methods that can detect terbutryn in traces are necessary. In contrast to separation methods (Gas (GC) or liquid chromatography (LC)) coupled to mass spectrometry (MS), enzyme immunoassays (EIAs) have proven to be adequate tools for environmental monitoring. Compared to GC-or LC-MS, they are cheap, require only limited time and experimental expertise and enable high throughput. For quantification of terbutryn, EIAs have been established, with a limit of detection (LOD) of 50 ng L-1. For leaching experiments however, a lower LOD would be advantageous. For detection of terbutryn we developed a direct competitive ELISA based on a monoclonal antibody: Terbutryn and an enzyme-terbutryn conjugate (“tracer”) compete for the binding sites of the immobilized antibody. The bound tracer converts a colourless substrate into a blue-coloured product, which can be detected via spectrophotometry. For quantification of terbutryn, a sigmoidal calibration curve is used. For establishing of the EIA, a new tracer based on a terbutryn surrogate (“hapten”) was synthesized. After optimization of the experimental conditions, the immunoassay exhibited a more than ten-fold increased sensitivity (LOD: 3 ng L-1), high stability against sample compounds (Ca2+, NaCl) and lower cross-reactivities against structurally related compounds, than reported before. Analysis of spiked samples was possible with high precision (inter-assay CV: < 10 %) and accuracy (recoveries from spiked samples: 89 % ± 10%). We therefore propose it as quick and reliable method for leaching studies of terbutryn out of building materials. T2 - Adlershofer Forschungsforum CY - Berlin, Germany DA - 11.11.2019 KW - ELISA KW - Terbutryne KW - Hapten Immunoassay KW - Triazine herbicide PY - 2019 AN - OPUS4-49595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markötter, Henning A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Evsevleev, Sergei A1 - Arlt, T. A1 - Ulbricht, Alexander A1 - Dayani, Shahabeddin A1 - Bruno, Giovanni T1 - A Review of X-Ray Imaging at the BAMline (BESSY II) N2 - The hard X-ray beamline BAMline at BESSY II (Berlin, Germany) has now been in service for 20 years. Several improvements have been implemented in this time, and this review provides an overview of the imaging methods available at the BAMline. Besides classic full-field synchrotron X-ray computed tomography (SXCT), also absorption edge CT, synchrotron X-ray refraction radiography (SXRR), and synchrotron X-ray refraction tomography (SXRCT) are used for imaging. Moreover, virtually any of those techniques are currently coupled in situ or operando with ancillary equipment such as load rigs, furnaces, or potentiostats. Each of the available techniques is explained and both the current and the potential usage are described with corresponding examples. The potential use is manifold, the examples cover organic materials, composite materials, energy-related materials, biological samples, and materials related to additive manufacturing. The article includes published examples as well as some unpublished applications. KW - Material science KW - Radiography KW - Refraction KW - Tomography KW - X-ray imaging PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572417 DO - https://doi.org/10.1002/adem.202201034 SN - 1438-1656 SP - 1 EP - 22 PB - Wiley VHC-Verlag AN - OPUS4-57241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Abraham, O. A1 - Larose, E. T1 - A review on ultrasonic monitoring of concrete: coda wave interferometry and beyond N2 - The propagation of ultrasonic waves in concrete is affected by its micro- and macro-structure, geometry and properties as well as external influences as stress, temperature or moisture. In addition, age and degradation have a strong influence. Therefore, Ultrasound has been used to monitor concrete samples and structures since decades. However, early applications using conventional techniques as time-of flight or changes in amplitudes have been limited to detect changes in a late stage close to serviceability or ultimate load states. Around 2000, several new, more sensitive techniques adopted from geophysics or other field of material sciences have been introduced to research in ultrasonic monitoring of concrete. The most discussed methodologies are coda wave interferometry, a technique which allows to detect very subtle changes from repeated ultrasonic measurements. Nonlinear acoustic techniques help to identify e. g. cracks even in an inhomogeneous background. Both techniques can be combined. This paper reviews methods and results achieved so far on the laboratory scale and with full scale models the directions for future research and application is given as well. T2 - QNDE 2019 CY - Portland, OR, USA DA - 14.07.2019 KW - Ultrasound KW - Coda wave interferometry KW - Concrete KW - Nonlinear KW - Monitoring PY - 2019 AN - OPUS4-48688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Abraham, Odile A1 - Larose, Eric T1 - A review on ultrasonic monitoring of concrete: coda wave interferometry and beyond N2 - The propagation of ultrasonic waves in concrete is affected by its micro- and macro-structure, geometry and properties as well as external influences as stress, temperature or moisture. In addition, age and degradation have a strong influence. Therefore, Ultrasound has been used to monitor concrete samples and structures since decades. However, early applications using conventional techniques as time-of flight or changes in amplitudes have been limited to detect changes in a late stage close to serviceability or ultimate load states. Around 2000, several new, more sensitive techniques adopted from geophysics or other field of material sciences have been introduced to research in ultrasonic monitoring of concrete. The most discussed methodologies are coda wave interferometry, a technique which allows to detect very subtle changes from repeated ultrasonic measurements. Nonlinear acoustic techniques help to identify e. g. cracks even in an inhomogeneous background. Both techniques can be combined. This paper reviews methods and results achieved so far on the laboratory scale and with full scale models the directions for future research and application is given as well. T2 - QNDE 2019 CY - Portland, OR, USA DA - 14.07.2019 KW - Ultrasound KW - Coda wave interferometry KW - Concrete KW - Nonlinear KW - Monitoring PY - 2019 SP - Paper 1234 AN - OPUS4-48686 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oelze, Marcus A1 - Vogl, Jochen T1 - A second anchor Fe isotope reference material based on high purity Fe metal for the exhausted IRMM-014 N2 - Iron isotopes are used in a variety of fields from e.g., geologic question to medical applications. Measurements of iron isotopes are usually performed as delta measurements to an artificial based delta zero standard. In the case of Fe isotopes is that delta zero standard IRMM-014, a pure Fe metal. Unfortunately, that conventional delta zero reference material defining the 56/54Fe scale is out of stock and therefore unavailable. To overcome that situation and fulfill the need for laboratories that measure Fe isotope on a regular basis we will provide a set of solutions with IRMM-014 and a second anchor point for Fe isotope ratio measurements that is based on a pure Fe metal. This new second anchor point, a high purity Fe from BAM, will be calibrated against IRMM-014 and can be used as bracketing standard or as reference value for stable Fe isotope measurements. We are in the good situation that BAM ordered a large stock of IRMM-014 several years ago. That stock of IRMM-014 Fe cubes and IRMM-014 Fe wires will be dissolved in 6M HCl in a large quantity. The new anchor point, the high purity Fe metal, that is commercially available at BAM, is a pure Fe metal with only trace amounts of impurities. The high purity BAM material will also be dissolved in 6M HCl in large quantity. Several aliquots of both solutions will be measured on the Neptune Plus MC-ICP-MS to define this second anchor point with a low uncertainty. Further will we send several aliquots of both solutions to different laboratories to also measure this second anchor point of high purity Fe on the 56/54Fe scale. We will report the values of that study on BAM high purity Fe and will provide a guide for scale conversion to the IRMM-014 scale and for uncertainty calculation to use that new anchor point instead of the exhausted IRMM-014. T2 - EWCPS CY - Ljubljana, Slovenia DA - 30.01.2023 KW - Iron isotopes KW - Reference material PY - 2023 AN - OPUS4-58012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Solomun, Tihomir A1 - Sturm, Heinz T1 - A standard procedure for the irradiation of biomolecules with radiation of varying linear energy transfer N2 - The damage caused by ionizing radiation to DNA and proteins is the reason to treat cancer by radiation therapy. A better understanding of the molecular processes and quantification of the different damaging mechanisms is the prerequisite to develop more efficient therapies. Hereby the understanding of the processes involved in the damage to DNA are of key interest due to its central role in reproduction and mutation. For radiation with low linear energy transfer (LET), most of the damage is caused by the secondary particles produced by scattering of the ionizing radiation with water. Thereby a multitude of species are produced, whereby especially kinetic low energy electrons, prehydrated electrons, OH-radicals and ions are of importance. With higher LET the relative amount of the direct damaging effects increases. This is especially important considering the increased usage of high LET nucleons in radiation therapy. Therefore, the quantification of the contribution to DNA damage of direct and indirect effects and the different secondary species is of high interest due to the increase of radio biological efficiency when applying high LET radiation. Here we present an approach to investigate the relative contributions to DNA strand break yield for radiation of different LET within a single electron microscope in combination with electron scattering simulations. T2 - IRPA 2018 CY - Havanna, Cuba DA - 16.04.2018 KW - Dosimetry KW - Microdosimetry KW - LET KW - SEM KW - DNA KW - Radiation damage KW - OH radicals KW - LEE KW - Ionizing radiation KW - Geant4 PY - 2018 AN - OPUS4-44820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -